$\mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{LA}_{\mathrm{E}} \mathrm{X}$ and math

Enrico Gregorio

26 ottobre 2019

GulTmeeting 2019

Starting up

We all know that $T_{E} \mathrm{X}$ was born out of Knuth's discomfort after having seen the proofs of the new edition of the first volume of his magnum opus "The Art of Computer Programming".

Starting up

We all know that $T_{E} X$ was born out of Knuth's discomfort after having seen the proofs of the new edition of the first volume of his magnum opus "The Art of Computer Programming".
Many papers have been written by Knuth himself and by others on the topic of math typesetting. Here I'd like to present some personal ideas on the subject, coming from almost thirty year long experience in mathematical typesetting.

Starting up

We all know that $T_{E} X$ was born out of Knuth's discomfort after having seen the proofs of the new edition of the first volume of his magnum opus "The Art of Computer Programming".
Many papers have been written by Knuth himself and by others on the topic of math typesetting. Here I'd like to present some personal ideas on the subject, coming from almost thirty year long experience in mathematical typesetting. I'll also present some recent developments and new tricks made available with expl3.

Modes

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has three main modes

Modes

$T_{E} X$ has three main modes

1. vertical mode

Modes

$T_{E} X$ has three main modes

1. vertical mode
2. horizontal mode

Modes

$T_{E} X$ has three main modes

1. vertical mode
2. horizontal mode
3. math mode

Modes

$T_{E} X$ has three main modes

1. vertical mode
2. horizontal mode
3. math mode

Each mode has two flavors. In particular, math mode can be inline or display.

Math modes

$$
\backslash \text { sum_ }\{k=1\}^{\wedge} n k^{\wedge} 2=\backslash f r a c\{1\}\{3\} n \backslash l e f t(n+\backslash f r a c\{1\}\{2\} \backslash \text { right })(n+1)
$$

Math modes

\sum_ $\{k=1\}^{\wedge} n k^{\wedge} 2=\backslash$ frac $\{1\}\{3\} n \backslash l e f t(n+\backslash f r a c\{1\}\{2\} \backslash$ right $)(n+1)$

If this code is put between $\backslash(\ldots \backslash)$ we get

Math modes

$$
\backslash \text { sum_ }\{k=1\}^{\wedge} n k^{\wedge} 2=\backslash f r a c\{1\}\{3\} n \backslash l e f t(n+\backslash f r a c\{1\}\{2\} \backslash \text { right })(n+1)
$$

If this code is put between $\backslash(\ldots \backslash)$ we get

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{3} n\left(n+\frac{1}{2}\right)(n+1)
$$

Math modes

$$
\backslash \text { sum_ }\{k=1\}^{\wedge} n k^{\wedge} 2=\backslash f r a c\{1\}\{3\} n \backslash l e f t(n+\backslash f r a c\{1\}\{2\} \backslash \text { right })(n+1)
$$

If this code is put between $\backslash(\ldots \backslash)$ we get

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{3} n\left(n+\frac{1}{2}\right)(n+1)
$$

```
Between \[...\] we get
```


Math modes

$$
\backslash \text { sum_ }\{k=1\}^{\wedge} n k^{\wedge} 2=\backslash f r a c\{1\}\{3\} n \backslash l e f t(n+\backslash f r a c\{1\}\{2\} \backslash \text { right })(n+1)
$$

If this code is put between $\backslash(\ldots \backslash)$ we get

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{3} n\left(n+\frac{1}{2}\right)(n+1)
$$

```
Between \[...\] we get
```

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{3} n\left(n+\frac{1}{2}\right)(n+1)
$$

To Each His Own

Do you see something strange in the following formula?

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

To Each His Own

Do you see something strange in the following formula?

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

Here's the correct version:

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

To Each His Own

Do you see something strange in the following formula?

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

Here's the correct version:

$$
A \backslash B=\{x \mid x \in A, x \notin B\}
$$

$A \backslash$ setminus $B=\backslash\{x \backslash m i d \quad x \backslash i n A, x \backslash n o t i n ~ B \backslash\}$

To Each His Own

The ‘Rel’ spacing of \mid might look too wide, personal taste counts!

To Each His Own

The ‘Rel' spacing of \mid might look too wide, personal taste counts! In any case, even if one prefers the second one

$$
\begin{aligned}
& A \backslash B=\{x \mid x \in A, x \notin B\} \\
& A \backslash B=\{x \mid x \in A, x \notin B\}
\end{aligned}
$$

that's obtained with $\backslash, \backslash \backslash$, instead of \backslash mid

To Each His Own

The ‘Rel’ spacing of \mid might look too wide, personal taste counts! In any case, even if one prefers the second one

$$
\begin{aligned}
& A \backslash B=\{x \mid x \in A, x \notin B\} \\
& A \backslash B=\{x \mid x \in A, x \notin B\}
\end{aligned}
$$

that's obtained with $\backslash, \backslash \backslash$, instead of \backslash mid

Warning

the code $\backslash, \backslash \backslash$, should not be typed in

To Each His Own

In a paper I had to massage for publication in a volume, the separator in the set builder notation was denoted like

$$
\begin{aligned}
& \{x \mid x \in A, x \notin B\} \\
& \{x: x \in A, x \notin B\} \\
& \{x ; x \in A, x \notin B\}
\end{aligned}
$$

To Each His Own

In a paper I had to massage for publication in a volume, the separator in the set builder notation was denoted like

$$
\begin{aligned}
& \{x \mid x \in A, x \notin B\} \\
& \{x: x \in A, x \notin B\} \\
& \{x ; x \in A, x \notin B\}
\end{aligned}
$$

The paper had three authors

To Each His Own

In a paper I had to massage for publication in a volume, the separator in the set builder notation was denoted like

$$
\begin{aligned}
& \{x \mid x \in A, x \notin B\} \\
& \{x: x \in A, x \notin B\} \\
& \{x ; x \in A, x \notin B\}
\end{aligned}
$$

The paper had three authors
Repetitive constructions must be packed in a command, say one of \newcommand\{\suchthat\}\{\,
,\}
\newcommand\{\suchthat\}\{\mid\}
\newcommand\{\suchthat\}\{:\}

To Each His Own

In a paper I had to massage for publication in a volume, the separator in the set builder notation was denoted like

$$
\begin{aligned}
& \{x \mid x \in A, x \notin B\} \\
& \{x: x \in A, x \notin B\} \\
& \{x ; x \in A, x \notin B\}
\end{aligned}
$$

The paper had three authors
Repetitive constructions must be packed in a command, say one of \newcommand\{\suchthat\}\{\,
,\}
\newcommand\{\suchthat\}\{\mid\}
\newcommand\{\suchthat\}\{:\}
There are very good reasons to do this!

To Each His Own

Fussy supervisors are my favorite example here: after months of blood, toil, sweat and tears, a student hands in her thesis.

To Each His Own

Fussy supervisors are my favorite example here: after months of blood, toil, sweat and tears, a student hands in her thesis.

Nice, but shouldn't the separator in set builder notation be a colon, rather than a vertical bar?

To Each His Own

Fussy supervisors are my favorite example here: after months of blood, toil, sweat and tears, a student hands in her thesis.

Nice, but shouldn't the separator in set builder notation be a colon, rather than a vertical bar?

Now you know why to use \suchthat

To Each His Own

Fussy supervisors are my favorite example here: after months of blood, toil, sweat and tears, a student hands in her thesis.

Nice, but shouldn't the separator in set builder notation be a colon, rather than a vertical bar?

Now you know why to use \suchthat

An important exception

In the abstract there should be no use of personal macros. It should be able to typeset with a 'naked' version of $\operatorname{LA} T_{\mathrm{E}} \mathrm{X}$: it's very common nowadays that the abstract is fed to some web page that maybe uses MathML, MathJax or similar device for handing the text to browsers.

Fine points of mathematical typing

$$
\begin{aligned}
& \left\{\begin{aligned}
a^{6}+2 a^{3} b^{3}+b^{6} & =q^{2} \\
4 a^{3} b^{3} & =-\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{3}-b^{3} & =\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{aligned}\right.
\end{aligned}
$$

Fine points of mathematical typing

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } } & { = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } } & { = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array}{rl}
a^{6}+2 a^{3} b^{3}+b^{6} & =q^{2} \\
4 a^{3} b^{3} & =-\frac{4}{27} p^{3}
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
\left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \begin{array}{l}
\left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
\left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{3}-b^{3} & =\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{aligned}\right.
\end{array}
\end{aligned}
$$

Fine points of mathematical typing

$$
\begin{aligned}
& \begin{cases}a^{6}+2 a^{3} b^{3}+b^{6}=q^{2} \\
4 a^{3} b^{3}=-\frac{4}{27} p^{3}\end{cases} \\
& \left\{\begin{array}{c}
a^{6}+2 a^{3} b^{3}+b^{6}=q^{2} \\
4 a^{3} b^{3}=-\frac{4}{27} p^{3}
\end{array}\right. \\
& a^{6}-2 a^{3} b^{3}+b^{6}=q^{2}+\frac{4}{27} p^{3}
\end{aligned}\left\{\begin{array}{c}
a^{6}+2 a^{3} b^{3}+b^{6}=q^{2} \\
4 a^{3} b^{3}=-\frac{4}{27} p^{3}
\end{array}\right\} \begin{gathered}
a^{3}+b^{3}=-q \\
a^{6}-2 a^{3} b^{3}+b^{6}=q^{2}+\frac{4}{27} p^{3}
\end{gathered}\left\{\begin{array}{c}
a^{3}+b^{3}=-q \\
a^{6}-2 a^{3} b^{3}+b^{6}=q^{2}+\frac{4}{27} p^{3}
\end{array}\right\} \begin{aligned}
& a^{3}+b^{3}=-q \\
& \left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3} \\
& \left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3}
\end{aligned}\left\{\begin{aligned}
a^{3}+b^{3}=-q \\
\left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right\}
$$

Fine points of mathematical typing

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } } & { = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } } & { = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array}{rl}
a^{6}+2 a^{3} b^{3}+b^{6} & =q^{2} \\
4 a^{3} b^{3} & =-\frac{4}{27} p^{3}
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ a ^ { 3 } + b ^ { 3 } = - q } \\
{ a ^ { 6 } - 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } = q ^ { 2 } + \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \left\{\begin{array}{rl}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{array}\right.\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
\left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array} \\
& \text { The ugly }
\end{aligned}
$$

Fine points of mathematical typing

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array} { r l }
{ a ^ { 6 } + 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } } & { = q ^ { 2 } } \\
{ 4 a ^ { 3 } b ^ { 3 } } & { = - \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \quad \left\{\begin{array}{rl}
a^{6}+2 a^{3} b^{3}+b^{6} & =q^{2} \\
4 a^{3} b^{3} & =-\frac{4}{27} p^{3}
\end{array}\right.\right.\right. \\
& \left\{\begin{array} { l }
{ a ^ { 3 } + b ^ { 3 } = - q } \\
{ a ^ { 6 } - 2 a ^ { 3 } b ^ { 3 } + b ^ { 6 } = q ^ { 2 } + \frac { 4 } { 2 7 } p ^ { 3 } }
\end{array} \left\{\begin{array}{rl}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{array}\right.\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
\left(a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array}\right. \\
& \left\{\begin{aligned}
a^{3}+b^{3} & =-q \\
a^{6}-2 a^{3} b^{3}+b^{6} & =q^{2}+\frac{4}{27} p^{3}
\end{aligned}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
\left(a^{3}-b^{3}\right)^{2}=q^{2}+\frac{4}{27} p^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
a^{3}+b^{3}=-q \\
a^{3}-b^{3}=\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{array}\right. \\
& \text { The good } \\
& \text { The bad } \\
& \begin{aligned}
a^{3}+b^{3} & =-q \\
\left.a^{3}-b^{3}\right)^{2} & =q^{2}+\frac{4}{27} p^{3} \\
a^{3}+b^{3} & =-q \\
a^{3}-b^{3} & =\sqrt{q^{2}+\frac{4}{27} p^{3}}
\end{aligned} \\
& \text { The ugly }
\end{aligned}
$$

Alignments

$$
\begin{array}{rlr}
\binom{A_{\mu}}{\rho_{\mu}^{*}} & \rightarrow\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{A_{\mu}}{\rho_{\mu}^{*}}, & \tan \theta=\frac{g_{e l}}{g_{*}} \\
\binom{\psi_{L}}{\chi_{L}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\psi_{L}} & -\sin \varphi_{\psi_{L}} \\
\sin \varphi_{\psi_{L}} & \cos \varphi_{\psi_{L}}
\end{array}\right)\binom{\psi_{L}}{\chi_{L}}, & \tan \varphi_{\psi_{L}}=\frac{\Delta}{m} \\
\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
\sin \varphi_{\tilde{\psi}_{R}} & \cos \varphi_{\tilde{\psi}_{R}}
\end{array}\right)\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}}, & \tan \varphi_{\tilde{\psi}_{R}}=\frac{\tilde{\Delta}}{\tilde{m}}
\end{array}
$$

Alignments

$$
\begin{aligned}
& \binom{A_{\mu}}{\rho_{\mu}^{*}} \rightarrow\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{A_{\mu}}{\rho_{\mu}^{*}}, \quad \tan \theta=\frac{g_{e l}}{g_{*}} \\
& \binom{\psi_{\llcorner }}{\chi_{\llcorner }} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\psi_{\llcorner }} & -\sin \varphi_{\psi_{\llcorner }} \\
\sin \varphi_{\psi_{\llcorner }} & \cos \varphi_{\psi_{\llcorner }}
\end{array}\right)\binom{\psi_{\llcorner }}{\chi_{\llcorner }}, \quad \tan \varphi_{\psi_{\llcorner }}=\frac{\Delta}{m} \\
& \binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
\sin \varphi_{\tilde{\psi}_{R}} & \cos \varphi_{\tilde{\psi}_{R}}
\end{array}\right)\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}}, \quad \tan \varphi_{\tilde{\psi}_{R}}=\frac{\tilde{\Delta}}{\tilde{m}} \\
& \binom{A_{\mu}}{\rho_{\mu}^{*}} \rightarrow\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{A_{\mu}}{\rho_{\mu}^{*}}, \\
& \binom{\psi_{\llcorner }}{\chi_{\llcorner }} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\psi_{\llcorner }} & -\sin \varphi_{\psi_{\llcorner }} \\
\sin \varphi_{\psi_{\llcorner }} & \cos \varphi_{\psi_{\llcorner }}
\end{array}\right)\binom{\psi_{\llcorner }}{\chi_{\llcorner }}, \quad \tan \varphi_{\psi_{\llcorner }}=\frac{\Delta}{m} \\
& \binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
\sin \varphi_{\tilde{\psi}_{R}} & \cos \varphi_{\tilde{\psi}_{R}}
\end{array}\right)\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}}, \quad \tan \varphi_{\tilde{\psi}_{R}}=\frac{\tilde{\Delta}}{\tilde{m}}
\end{aligned}
$$

Alignments

$$
\begin{array}{ll}
\binom{A_{\mu}}{\rho_{\mu}^{*}} \rightarrow\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{A_{\mu}}{\rho_{\mu}^{*}}, & \tan \theta=\frac{g_{e l}}{g_{*}} \\
\binom{\psi_{\llcorner }}{\chi_{L}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\psi_{L}} & -\sin \varphi_{\psi_{L}} \\
\sin \varphi_{\psi_{L}} & \cos \varphi_{\psi_{L}}
\end{array}\right)\binom{\psi_{\llcorner }}{\chi_{L}}, & \tan \varphi_{\psi_{L}}=\frac{\Delta}{m} \\
\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
\sin \varphi_{\tilde{\psi}_{R}} & \cos \varphi_{\tilde{\psi}_{R}}
\end{array}\right)\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}}, & \tan \varphi_{\tilde{\psi}_{R}}=\frac{\tilde{\Delta}}{\tilde{m}} \\
\binom{A_{\mu}}{\rho_{\mu}^{*}} \rightarrow\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{A_{\mu}}{\rho_{\mu}^{*}}, & \tan \theta=\frac{g_{e l}}{g_{*}} \\
\binom{\psi_{\llcorner }}{\chi_{\llcorner }} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\psi_{L}} & -\sin \varphi_{\psi_{L}} \\
\sin \varphi_{\psi_{L}} & \cos \varphi_{\psi_{L}}
\end{array}\right)\binom{\psi_{\llcorner }}{\chi_{L}}, & \tan \varphi_{\psi_{L}}=\frac{\Delta}{m} \\
\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}} \rightarrow\left(\begin{array}{cc}
\cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
\sin \varphi_{\tilde{\psi}_{R}} & \cos \varphi_{\tilde{\psi}_{R}}
\end{array}\right)\binom{\tilde{\psi}_{R}}{\tilde{\chi}_{R}}, & \tan \varphi_{\tilde{\psi}_{R}}=\frac{\tilde{\Delta}}{\tilde{m}}
\end{array}
$$

Alignments

What's wrong in the first alignment?

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.
What's the difference between the second and the third alignment?

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.

What's the difference between the second and the third alignment?
It's a purely stylistic choice, there's nothing wrong in either of them.

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.

What's the difference between the second and the third alignment?
It's a purely stylistic choice, there's nothing wrong in either of them.
The trick is to add \backslash hphantom $\{-\}$ in place of the real minus sign.

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.

What's the difference between the second and the third alignment?
It's a purely stylistic choice, there's nothing wrong in either of them.
The trick is to add \backslash hphantom $\{-\}$ in place of the real minus sign.

```
\begin{pmatrix}
    \cos \varphi_{\tilde{\psi}_{R}} & -\sin \varphi_{\tilde{\psi}_{R}} \\
    \sin \varphi_{\tilde{\psi}_{R}} & \hphantom{-}\cos \varphi_{\tilde{\psi}_{R}}
\end{pmatrix}
```


Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.

What's the difference between the second and the third alignment?
It's a purely stylistic choice, there's nothing wrong in either of them.
The trick is to add \backslash hphantom $\{-\}$ in place of the real minus sign.

```
\begin\{pmatrix\} }
    \cos \varphi_\{\tilde\{\psi\}_\{R\}\} \& -\sin \varphi_\{\tilde\{\psi\}_\{R\}\} \\
    \sin \varphi_\{\tilde\{\psi\}_\{R\}\} \& \hphantom\{-\}\cos \varphi_\{\tilde\{\psi\}_\{R\}\}
\end\{pmatrix\} }
```

Be consistent!

Alignments

What's wrong in the first alignment?
The equals signs in the second columns have nothing to do with each other, so they don't need to be aligned.
We also fill a hole.
What's the difference between the second and the third alignment?
It's a purely stylistic choice, there's nothing wrong in either of them.
The trick is to add \backslash hphantom $\{-\}$ in place of the real minus sign.

```
\(\backslash\) begin\{pmatrix\}
    \cos \varphi_\{\tilde\{\psi\}_\{R\}\} \& -\sin \varphi_\{\tilde\{\psi\}_\{R\}\} \\
    \sin \varphi_\{\tilde\{\psi\}_\{R\}\} \& \hphantom\{-\}\cos \varphi_\{\tilde\{\psi\}_\{R\}\}
\end\{pmatrix\} }
```

Be consistent! Also with your choice of "phi".

Thin points of mathematical typing

$$
\begin{gathered}
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
(1+\sqrt{z-1}) z^{2} \\
(1+\sqrt{z-1}) z^{2}
\end{gathered}
$$

Thin points of mathematical typing

$$
\begin{gathered}
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
(1+\sqrt{z-1}) z^{2} \\
(1+\sqrt{z-1}) z^{2}
\end{gathered}
$$

The eagle eyed people in the attendance will have spotted the small but important differences.

Thin points of mathematical typing

$$
\begin{gathered}
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
(1+\sqrt{z-1}) z^{2} \\
(1+\sqrt{z-1}) z^{2}
\end{gathered}
$$

The eagle eyed people in the attendance will have spotted the small but important differences.

The difference is the same as between

$$
2 \log x \quad \text { and } \quad 2 \log x
$$

Thin points of mathematical typing

$$
\begin{gathered}
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
(1+\sqrt{z-1}) z^{2} \\
(1+\sqrt{z-1}) z^{2}
\end{gathered}
$$

The eagle eyed people in the attendance will have spotted the small but important differences.

The difference is the same as between

$$
2 \log x \quad \text { and } \quad 2 \log x
$$

but in this case $T_{E} X$ automatically the thin space.

Thin points of mathematical typing

$$
\begin{gathered}
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
a \frac{f(x+h)-f(x)}{h}+b \frac{g(x+h)-g(x)}{h} \\
(1+\sqrt{z-1}) z^{2} \\
(1+\sqrt{z-1}) z^{2}
\end{gathered}
$$

The eagle eyed people in the attendance will have spotted the small but important differences.

The difference is the same as between

$$
2 \log x \quad \text { and } \quad 2 \log x
$$

but in this case $T_{E} X$ automatically the thin space.
In the formulas above we have to add \backslash, manually where needed.

To ISO or not to ISO?

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

Engineers and mathematicians agree to disagree in this respect.

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

Engineers and mathematicians agree to disagree in this respect. Physicists disagree with each other.

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

Engineers and mathematicians agree to disagree in this respect. Physicists disagree with each other.

Should the Euler number or the imaginary unit symbols be printed in upright or italic type?

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

Engineers and mathematicians agree to disagree in this respect. Physicists disagree with each other.

Should the Euler number or the imaginary unit symbols be printed in upright or italic type?

ISO prescribes upright type.

To ISO or not to ISO?

The ISO 80000-2:2009 standard is mandatory for technical writing involving mathematics.

Engineers and mathematicians agree to disagree in this respect. Physicists disagree with each other.

Should the Euler number or the imaginary unit symbols be printed in upright or italic type?

ISO prescribes upright type. Mathematicians mostly use italic.

To ISO or not to ISO?

To ISO or not to ISO?

What's the symbol for the natural logarithm function?

To ISO or not to ISO?

What's the symbol for the natural logarithm function?
Most mathematicians use "log", ISO prescribes "ln".

To ISO or not to ISO?

What's the symbol for the natural logarithm function?
Most mathematicians use "log", ISO prescribes "ln".
Can " $\sin ^{-1 "}$ be used?

To ISO or not to ISO?

What's the symbol for the natural logarithm function?
Most mathematicians use "log", ISO prescribes "In".
Can " $\sin ^{-1 "}$ " be used?
No, as mandated by ISO and on mathematical grounds: the sine function is obviously not invertible. The correct notation is "arcsin".

To ISO or not to ISO?

What's the symbol for the natural logarithm function?
Most mathematicians use "log", ISO prescribes "In".
Can " $\sin ^{-1 "}$ " be used?
No, as mandated by ISO and on mathematical grounds: the sine function is obviously not invertible. The correct notation is "arcsin".

Should I mention the differential d?

The differential d

\newcommand $\{\backslash$ diff $\}\{\backslash$ mathop $\} \backslash!d\}$

The differential d

\newcommand\{\diff\}\{\mathop $\} \backslash!d\}$
or \backslash mathrm $\{\mathrm{d}\}$ if one really prefers the abomination

The differential d

\newcommand\{\diff\}\{\mathop $\} \backslash!d\}$
or $\backslash m a t h r m\{d\}$ if one really prefers the abomination

$$
\int_{0}^{x} t d t=\frac{x^{2}}{2} \quad \text { int_\{0\}^\{x\} } t \backslash \operatorname{diff} t=\backslash \operatorname{frac}\left\{x^{\wedge}\{2\}\right\}\{2\}
$$

The differential d

\newcommand\{\diff\}\{\mathop $\} \backslash!d\}$
or \backslash mathrm $\{\mathrm{d}\}$ if one really prefers the abomination

$$
\int_{0}^{x} t d t=\frac{x^{2}}{2} \quad \backslash i n t _\{0\}^{\wedge}\{x\} \quad t \backslash \operatorname{diff} t=\backslash \operatorname{frac}\left\{x^{\wedge}\{2\}\right\}\{2\}
$$

A double integral

$$
\iint_{D} f(x, y) d x d y \quad \backslash i i n t \backslash l i m i t s _\{D\} f(x, y) \backslash d i f f x \backslash d i f f y
$$

The differential d

\newcommand\{\diff\}\{\mathop $\} \backslash!d\}$
or \backslash mathrm $\{\mathrm{d}\}$ if one really prefers the abomination

$$
\int_{0}^{x} t d t=\frac{x^{2}}{2} \quad \backslash i n t _\{0\}^{\wedge}\{x\} \quad t \backslash d i f f \quad t=\backslash \operatorname{frac}\left\{x^{\wedge}\{2\}\right\}\{2\}
$$

A double integral

$$
\iint_{D} f(x, y) d x d y \quad \backslash i i n t \backslash l i m i t s _\{D\} f(x, y) \backslash d i f f x \backslash d i f f y
$$

Choose whatever form of d you like, but be consistent

Sets, bras and kets

Would you like to type something like
\backslash left $\backslash\{x \backslash ; \backslash m i d d l e \mid \backslash ; \backslash$ frac $\{1\}\{2\}<x<\backslash f r a c\{1+\backslash$ sqrt $\{5\}\}\{2\} \backslash$ right $\backslash\}$ whenever you have a set denotation?

Sets, bras and kets

Would you like to type something like
\backslash left $\backslash\{x \backslash ; \backslash$ middle $\ \backslash$;frac $\{1\}\{2\}<x<\backslash$ frac $\{1+\backslash$ sqrt $\{5\}\}\{2\} \backslash$ right $\backslash\}$ whenever you have a set denotation?

Wouldn't the code

```
\set*{x \suchthat \frac{1}{2} < x < \frac{1+\sqrt{5}}{2}}
```

be better?

Sets, bras and kets

Would you like to type something like
\backslash left $\backslash\{x \backslash ; \backslash$ middle $\ \backslash$;frac $\{1\}\{2\}<x<\backslash$ frac $\{1+\backslash$ sqrt $\{5\}\}\{2\} \backslash$ right $\backslash\}$ whenever you have a set denotation?

Wouldn't the code
\set* $* x$ suchthat \backslash frac $\{1\}\{2\}<x<\backslash \operatorname{frac}\{1+\backslash \operatorname{sqrt}\{5\}\}\{2\}\}$
be better?

Or something like
\langle $x \backslash$ mathclose \quad mathopenly \backslash rangle \backslash langle $x \backslash m i d ~ y \backslash r a n g l e ~$ which are a "bra", a "ket" and a "braket"?

$$
\langle x| \quad|y\rangle \quad\langle x \mid y\rangle
$$

Sets, bras and kets

Good news: the paper contains code for easing the input:
\backslash bra\{x\} \ket\{y\} \braket\{x|y\} \braket\{x|y|z\}

Sets, bras and kets

Good news: the paper contains code for easing the input:
\bra\{x\} \ket\{y\} \braket\{x|y\} \braket\{x|y|z\}

The code also provides easy way to increase the size of the delimiters when needed

Numbers and units

What I agree with ISO on is typesetting numbers and units

Numbers and units

What I agree with ISO on is typesetting numbers and units
Have you ever seen road signs saying that something is mt. 100 ahead?

Numbers and units

What I agree with ISO on is typesetting numbers and units
Have you ever seen road signs saying that something is mt. 100 ahead?
Or 20 Kg , or other improvised notation, such as 600 cc ?

Numbers and units

What I agree with ISO on is typesetting numbers and units
Have you ever seen road signs saying that something is mt. 100 ahead?
Or 20 Kg , or other improvised notation, such as 600 cc ?
Can you guess the order of magnitude of 7400043022221 at first sight?

Numbers and units

What I agree with ISO on is typesetting numbers and units
Have you ever seen road signs saying that something is mt. 100 ahead?
Or 20 Kg , or other improvised notation, such as 600 cc ?
Can you guess the order of magnitude of 7400043022221 at first sight?

Isn't 7400043022221 much better to parse?

Numbers and units

What I agree with ISO on is typesetting numbers and units
Have you ever seen road signs saying that something is mt. 100 ahead?
Or 20 Kg , or other improvised notation, such as 600 cc ?
Can you guess the order of magnitude of 7400043022221 at first sight?

Isn't 7400043022221 much better to parse?
It would be 7,400,043,022,221 for our American or British friends

Numbers and units

Another piece of good news: we have the siunitx package that does most of the work for us

Numbers and units

Another piece of good news: we have the siunitx package that does most of the work for us
\backslash SI $\{100\}\{\backslash$ meter $\} \backslash$ SI $\{100\}\{\backslash$ metre $\}$
\SI\{20\}\{\kilo\gram\}
\SI\{600\}\{\cubic\centi\meter\} \SI\{600\}\{\cubic\centi\metre\}
\num\{7400043022221\} \num[group-separator=\{,\}]\{7400043022221\}

Numbers and units

Another piece of good news: we have the siunitx package that does most of the work for us

```
\SI{100}{\meter} \SI{100}{\metre}
\SI{20}{\kilo\gram}
\SI{600}{\cubic\centi\meter} \SI{600}{\cubic\centi\metre}
\num{7400043022221} \num[group-separator={,}]{7400043022221}
```

100 m 100 m
20 kg
$600 \mathrm{~cm}^{3} 600 \mathrm{~cm}^{3}$
7400043022221 7,400,043,022,221

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the $\Delta T_{E} X$ team

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the ${ }^{\Delta} T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the $\Delta T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached It also states what are the legal units to use in technical documents, the so called Système International (SI)

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the $\Delta T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached It also states what are the legal units to use in technical documents, the so called Système International (SI)
The BIPM standards are also endorsed by the ISO and the national authorities for standards, in Italy it is UNI, so they have the force of law in some contexts

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the $\Delta T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached It also states what are the legal units to use in technical documents, the so called Système International (SI)
The BIPM standards are also endorsed by the ISO and the national authorities for standards, in Italy it is UNI, so they have the force of law in some contexts

No, it's not illegal if a mathematical paper uses "log" for the natural logarithm

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the $\Delta T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached It also states what are the legal units to use in technical documents, the so called Système International (SI)
The BIPM standards are also endorsed by the ISO and the national authorities for standards, in Italy it is UNI, so they have the force of law in some contexts

No, it's not illegal if a mathematical paper uses "log" for the natural logarithm

But the project of a building might be rejected on the ground of not using proper SI units

Numbers and units

The author of siunitx is Joseph Wright, who started "expanding and fixing" the Slunits package and finished becoming a member of the ${ }^{\Delta} T_{E} X$ team

The Bureau international des poids et mesures (BIPM) publishes very detailed information about how to typeset numbers with (or without) units attached It also states what are the legal units to use in technical documents, the so called Système International (SI)
The BIPM standards are also endorsed by the ISO and the national authorities for standards, in Italy it is UNI, so they have the force of law in some contexts

No, it's not illegal if a mathematical paper uses "log" for the natural logarithm

But the project of a building might be rejected on the ground of not using proper SI units
Remember the Mars Climate Orbiter crash?

Numbers and units

The acceleration due to gravity near the surface of the Earth is

$$
9.8 \mathrm{~m} \mathrm{~s}^{-2}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

The three realizations have all been input with

$$
\backslash S I\{9.8\}\{\backslash \text { meter } \backslash \text { per } \backslash \text { square } \backslash \text { second }\}
$$

by just changing some runtime options

Numbers and units

The acceleration due to gravity near the surface of the Earth is

$$
9.8 \mathrm{~m} \mathrm{~s}^{-2}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

The three realizations have all been input with

$$
\backslash S I\{9.8\}\{\backslash \text { meter } \backslash \text { per } \backslash \text { square } \backslash \text { second }\}
$$

by just changing some runtime options
\sisetup\{per-mode=reciprocal\} \% default
\sisetup\{per-mode=fraction\}
\sisetup\{per-mode=symbol\}
so it's easy to adapt a paper to the publisher's requirements without changing the code in the document environment

Numbers and units

The acceleration due to gravity near the surface of the Earth is

$$
9.8 \mathrm{~m} \mathrm{~s}^{-2}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

The three realizations have all been input with

$$
\backslash S I\{9.8\}\{\backslash \text { meter } \backslash \text { per } \backslash \text { square } \backslash \text { second }\}
$$

by just changing some runtime options
\sisetup\{per-mode=reciprocal\} \% default
\sisetup\{per-mode=fraction\}
\sisetup\{per-mode=symbol\}
so it's easy to adapt a paper to the publisher's requirements without changing the code in the document environment

OK, I cheated: the middle term has been typeset with
\SI[per-mode=fraction]\{9.8\}\{\meter \backslash per \backslash square \backslash second $\}$

Numbers and tables

You now shouldn't be surprised that the following three tables have all been typeset with the same input code for the table body

Numbers and tables

You now shouldn't be surprised that the following three tables have all been typeset with the same input code for the table body

Nation	Number	Nation	Number	Nation	Number	
Italy	640375	Italy	640,375	Italy	640	$\times 10^{3}$
Germany	231803	Germany	231,803	Germany	232	$\times 10^{3}$
France	100002	France	100,002	France	100	$\times 10^{3}$
Turkey	91329	Turkey	91,329	Turkey	91.3	$\times 10^{3}$
Spain	1003000	Spain	1,003,000	Spain	1.00	$\times 10^{6}$

Source: Mr Leporello, private communication

Numbers and tables

```
The first two tables
\begin{tabular}{
    @{}
    l
    S[table-format=7.0]
    @{}
}
\toprule
Nation & {Number} \\
\midrule
Italy & 640375 \\
Germany & 231803 \\
France & 100002 \\
Turkey & 91329 \\
Spain & 1003000 \\
\bottomrule
\end{tabular}
```


Numbers and tables

```
The first two tables
\begin\{tabular\}\{ }
    a \(\}\)
    l
    S[table-format=7.0]
    จ\{\}
\}
\toprule
Nation \& \{Number\} \\
\midrule
Italy \& 640375 \\
Germany \& 231803 \\
France \& 100002 \\
Turkey \& 91329 \\
Spain \& 1003000 \\
\bottomrule
\end\{tabular\} }
```


Numbers and tables

The first table has been typeset with no special setting

Numbers and tables

The first table has been typeset with no special setting

The second table with \sisetup\{group-separator=\{,\}\}

Numbers and tables

The first table has been typeset with no special setting
The second table with \sisetup\{group-separator=\{,\}\}
The third table with
\sisetup\{
round-mode=figures,
round-precision=3,
scientific-notation=engineering
\}

Acknowledgment

The math and technical typesetting would be different without
Claudio Beccari, "Typesetting mathematics for science and technology according to ISO 31/XI>. TUGboat, 18 (1), 1997
and without Claudio, to begin with

Grazie, Claudio

