Processing “Computed” Texts

Jean-Michel HUFFLEN
LIFC — University of Franche-Comté
GUIT, 17th October 2009
Contents

What are “computed” texts?

Why to use XML?

Generating TEX-like texts

Generating XSL-FO texts

Using ConTEXt MkIV

Conclusion
TEX & Co.

Usually process texts typed by authors.
TEX & Co.

Usually process texts typed by authors.

But some texts may be extracted from a larger structure.
TeX & Co.

Usually process texts typed by authors.

But some texts may be extracted from a larger structure.

Example: ds.xml, a list of stories available as *pulps* and *pocket books*.
Usually process texts typed by authors.

But some texts may be extracted from a larger structure.

Example: ds.xml, a list of stories available as *pulps* and *pocket books*.

Very simple version of many actual examples.
Examples

Available at:

http://lifc.univ-fcomte.fr/home/~jmhufflen/texts/guit-2009/
Doing it in (La)TeX?

Theoretically possible, but very tedious in practice.
Doing it in (La)TEX?

Theoretically possible, but very tedious in practice.

TEX: not suitable for neither handling data bases,
Doing it in (L)\TeX?

Theoretically possible, but very tedious in practice.
\TeX: not suitable for neither handling data bases, nor functionalities related to programming: e.g., sorting.
Doing it in (La)TEX?

Theoretically possible, but very tedious in practice.

TEX: not suitable for neither handling data bases, nor functionalities related to programming: e.g., sorting.

Complicated markup, complicated definitions.
XML

Structured texts, like trees.
XML

Structured texts, like trees.

Data bases.
XSLT

Now widely used.
XSLT

Now widely used.

This operation is actually a transformation of some information.
XSLT

Now widely used.

This operation is actually a transformation of some information.

The new version (2.0) allows character maps $\Rightarrow (\LaTeX)$’s special characters processed more easily.
XSLT

Now widely used.

This operation is actually a transformation of some information.

The new version (2.0) allows character maps \Rightarrow (LATEX’s special characters processed more easily.

(Example.)
XSLT: the better choice?

No static checking except if you derive XML texts.
XSLT: the better choice?

No static checking except if you derive XML texts.

Balanced braces.
XSLT: the better choice?

No static checking except if you derive XML texts.

Balanced braces.

Balanced environments for \texttt{\LaTeX}:
\begin{something}...\end{something}
XSLT: the better choice? (con’d)

Such test would be difficult to implement about texts processed by ConTEXT:
\texttt{\start} something \ldots \texttt{\stop} something

(e.g., \texttt{\starttext} \ldots \texttt{\stoptext})
XSLT: the better choice? (con’d)

Such test would be difficult to implement about texts processed by ConTExt:
\startsomething ... \stopsomething
(e.g., \starttext ... \stoptext)

Very partially done in nbst \leftarrow latex mode.
XQuery

Less verbose.
XQuery

Less verbose.

Programming by *templates*, more than *applicative* programming.
XQuery

Less verbose.

Programming by *templates*, more than *applicative* programming.

(Example.)
XQuery (con’d)

Suitable for simple examples, but with the same drawbacks about static checking.
XQuery (con’d)

Suitable for simple examples, but with the same drawbacks about static checking.

Many standard features in XSLT—e.g., character maps—are implementation-dependent in XQuery.
An ‘actual’ programming language

DSSSL was used for SGML texts, but might be suitable for XML texts, especially if many features are related to ‘pure’ programming.
An ‘actual’ programming language

DSSSL was used for SGML texts, but might be suitable for XML texts, especially if many features are related to ‘pure’ programming.

\TeX{} source texts are not directly specified, only \textit{constructs} a DSSSL processor translates to \TeX{}.
An ‘actual’ programming language

DSSSL was used for **SGML** texts, but might be suitable for **XML** texts, especially if many features are related to ‘pure’ programming.

TEX source texts are not directly specified, only **constructs** a **DSSSL** processor translates to **TEX**.

(Example.)
Generating xml-like texts

\[
\text{XML} \xrightarrow{\text{XSLT}} \text{XSL-FO}
\]

(Example.)

\[\text{\LaTeX} \] users can easily learn \text{XSL-FO}, but it is another language.
Generating xml-like texts

$$\text{XML} \xrightarrow{\text{XSLT}} \text{XSL-FO}$$

(Example.)

\LaTeX\ users can easily learn XSL-FO, but it is another language.

FO processors are almost complete, but in progress.
LuaTEX

Tasks related to ‘pure’ programming are delegated to external functions written using Lua.
LuaTEX

Tasks related to ‘pure’ programming are delegated to external functions written using Lua.

ConTeXt MkIV allows XML texts to be processed,
LuaTEX

Tasks related to ‘pure’ programming are delegated to external functions written using Lua.

ConTEXt MkIV allows XML texts to be processed, but has not reached stable state yet;
Tasks related to ‘pure’ programming are delegated to external functions written using Lua.

ConTEXT MkIV allows XML texts to be processed, but has not reached stable state yet; it uses XPath-like expressions, but not identical to ‘pure’ XPath’s.
Point of view

Simple transformation \implies XQuery.
Point of view

Simple transformation \mapsto XQuery.

More ambitious one \mapsto XSLT.
Point of view

Simple transformation \rightarrow XQuery.

More ambitious one \rightarrow XSLT.

Keep in touch with FO’s processors’ progress.
Point of view

Simple transformation \Rightarrow XQuery.

More ambitious one \Rightarrow XSLT.

Keep in touch with FO’s processors’ progress.

Scrutinise ConTEXt MKIV’s development, ask his team for more development.