
preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1001

LATEX2ε, pict2e and complex numbers

Claudio Beccari

Abstract

In 2003 the endless list of LATEX packages was en-
riched by the package pict2e that is supposed to
substitute the dummy one that is accompanying ev-
ery LATEX distribution since 1994. This package im-
plements everything as stated by Lamport in the
second edition of his LATEX manual for the version
called LATEX2ε. But if you explore the inner work-
ings of the new pict2e and you add some complex
number arithmetics you discover the new package
has unexpected potential applications, especially if
complex number arithmetics are included into it.

1 Introduction

The original package pict2e, that accompanied the
first issue of LATEX2ε in 1994, was just a dummy
package that would simply typeout an info message
that the real package war not yet available. Nev-
ertheless the LATEX manual by Leslie Lamport [2]
already described the features of this expected pack-
age; its primary function was to relieve the strong
limitations of the picture environment that were
mainly due to the fact that graphic objects were re-
alized by means of special fonts which necessarily
contained a limited number of “graphic” glyphs.

Whoever has used the original picture en-
vironment has been looking forward for the new
pict2e package, so as to being able to draw the
usual drawings that can be drawn with any simple
drawing facility, even those that are an integral part
of commercial and/or open source text processors.

The new pict2e [1] relieves all the limitations
of the old picture environment, in particular: the
small set of possible inclinations of segments and
vectors; the limited number of radii for drawing cir-
cles; the rigidity in drawing ovals, whose corners suf-
fered from the limited number of quarter circle arcs;
the shortest length of segments and vectors limited
to 10pt except for horizontal and vertical ones; the
line thickness limited to two values due to the very
limited number of special picture fonts; only sec-
ond order Bézier curves which were made up of small
dots partially superimposed to one another.

The new pict2e resorts to the output driver fa-
cilities, in the sense that it is dvips or pdf(la)tex1

that takes care of drawing straight and curved lines,
filled and unfilled contours, arrow tips, and the like,
with all the facilities offered by the powerful Post-

1 Some other drivers are partially or totally supported.

x

y

Figure 1: Line segements with angular slopes
multiples of 10◦ drawn with pict2e

Script language, even in its simplified form as it is
used in PDF documents.

Figure 1 shows for example a set of lines with
slopes of 10◦, 20◦, . . . , 80◦. The following picture
code reflects the usual syntax with the only excep-
tion that line slopes are three digit integers, instead
of the relatively prime one digit integers limited to
a magnitude of 6 as in the “old” picture environ-
ment. The coefficients of the line slopes are simply
obtained by rounding to the closest integers the sines
and cosines of the angular slopes multiplied by 1000.
\unitlength=1mm
\begin{picture}(70,70)
...
\put(0,0){\line(985,174){68.95}}
\put(0,0){\line(940,342){65.80}}
\put(0,0){\line(866,500){60.62}}
\put(0,0){\line(766,643){53.62}}
\put(0,0){\line(643,766){45.01}}
\put(0,0){\line(500,866){35.00}}
\put(0,0){\line(342,940){23.94}}
\put(0,0){\line(174,985){12.18}}
\end{picture}

Depending on the used output driver pict2e
inserts the necessary \special commands with the
suitable syntax so that when running pdflatex the
output PDF file already contains the drawings that
are directly visible with the PDF viewer. When run-
ning latex, the DVI file generally2 must be pro-
cessed with dvips in order to get a PostScript file

2 There are several DVI file previewers that can interpret
the PostScript \specials, but this is not true in general.

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

1002 preliminary draft, August 23, 2005 16:11 TUGboat, Volume 0 (2060), No. 0

sinφ

φ

−1

0

+1

2 4 6

Figure 2: A sine wave

where the drawings are directly visible with the PS
viewer, and/or the PS file may be processed with
ps2pdf so as to get a PDF file complete of its draw-
ings. When dealing with pict2e I believe the latex
+ dvips + ps2pdf procedure is less interesting than
the direct production of a PDF file by means of
pdflatex, because in the former case the composer
may alternatively use the well known and more pow-
erful PSTricks [3].

I would like to encourage the few LATEX users
who ignore the availability of pict2e to download
the package from CTAN and experiment the new fea-
tures; in particular I would like to draw the attention
of the Linux users that some distributions execute
the upgrade from the their sites, which are not neces-
sarily up to date with the CTAN archives. My Linux
based updated distribution (2005/08/15) contains
only issue 14 of latexnews.dvi dated 2001/06/01,
while my updated MiKTeX distribution contains is-
sue 16 dated 2003/12/01; pict2e was announced in
issue 15, also dated 2003/12/01. The current version
(2005/08/15) of pict2e is dated 2004/08/06.

In the following sections I will describe some
simple enhancements of the pict2e package, I will
show how to use some internal commands and how
to build new powerful commands so as to draw
arbitrary curves by means of third order Bézier
curves. Meanwhile I need to describe some elemen-
tary properties of complex numbers and therefore
how to make complex number arithmetics by means
of LATEX and the underlying TEX macros and prim-
itives.

What you can draw, for example, is an accurate
sine wave as in figure 2 with a simple command such
as

\Curve(0,0)<1,1>% 0 deg
(1.570796,1)<1,0>% 90 deg
(4.712389,-1)<1,0>% 270 deg
(6.283185,0)[<,1>% 360 deg

where the parentheses contain the curve node coor-
dinates while the square brackets contain the direc-
tion coefficients of the curve tangents at each node.

Figure 3: A curve containing a cusp

Figure 4: Eptagon and seven pointed star

Another diagram with cusps is shown in fig-
ure 3; the code used is the following simple one:
\Curve(2.5,0)<1,0>(5,3.5)<0,1>%

(2.5,3.5)<-.5,-1>[-.5,1]%
(0,3.5)<0,-1>(2.5,0)<1,0>

Another example is given in figure 4 where the
\polyline is used; the simple code for generating
the eptagon and star vertices is the following:
\begin{picture}(5,5)(-2.5,-2.5)
\DividE 360pt by 7pt to\Seventh
\DirFromAngle\Seventh to\Dir
\CopyVect 0,2.5 to\Vone
\MultVect\Vone by\Dir to\Vtwo
\MultVect\Vtwo by\Dir to\Vthree
\MultVect\Vthree by\Dir to\Vfour
\MultVect\Vfour by\Dir to\Vfive
\MultVect\Vfive by\Dir to\Vsix
\MultVect\Vsix by\Dir to\Vseven
\polyline(\Vone)(\Vtwo)(\Vthree)(\Vfour)%

(\Vfive)(\Vsix)(\Vseven)(\Vone)
\thicklines
\polyline(\Vone)(\Vfour)(\Vseven)%
(\Vthree)(\Vsix)(\Vtwo)(\Vfive)(\Vone)

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1003

\end{picture}

2 Simple extensions to the pict2e package

The pict2e package, according to the description
in [2] keeps the limitation that the slope parame-
ters of the picture segments are represented with
integer numbers; according to the authors, this “lim-
itation” is due to the specific division routine they
used besides fulfilling the line and vector specifica-
tions specified by Lamport.

In a previous paper [4] I complained about the
fact that even e-TEX does not implement real float-
ing number calculations and I invited the developers
to extend the e-TEX functionality in that direction.

Meanwhile the LATEX programmer must rely on
“poor man” methods. The only TEX object that is
representable with a fractional number in the input
flow is the scale factor used for scaling lengths: when
you type

\newlength{\dimA} \newlength{\dimB}
\setlength{\dimA}{33.25pt}
\setlength{\dimB}{1.44\dimA}
\showthe\dimB

you expect to see on the log file (and on the screen)
that the dimensional register \dimB contains the
value of 47.88pt. Actually the log file will exhibit the
value of 47.88008pt because of conversion, round-
ing and truncation errors during the whole process.
Here is where the floating point arithmetics could
come handy. . . in the future. But notice that 47.88
is the arithmetic product of the fractional measure
in points of the register \dimA multiplied by the
fractional number 1.44. Multiplications is then rel-
atively an easy task provided we can convert back
and forth fractional numbers and dimensions.

The trick is easy but it is classified as a “dirty”
one in the TEXbook [5, page 375] and it has been
used by almost everyone who needed to use this poor
man approach to fractional number multiplication.

Division is trickier because it can produce over-
flows (as well as multiplication), the division by zero
error, and it does not have any relation to scale fac-
tors, the only objects that TEX can use only as mul-
tipliers.

Integer division is generally unusable and the
routine Gäßline and Niepraschk used accepts inte-
ger dividend and divisor transformed into lengths,
but yields a length whose measure in points is the
required fractional quotient.

When pict2e became available I had been us-
ing a division routine for several years; it was part
of a package of mine that was never published. The
good point is that I had been using that package for

years and that routine always worked shamelessly
although no controls were actually performed so as
to avoid overflows or divisions by zero, even if they
could be possibly done before calling the routine.
This routine actually divides two lengths and yields
their ratio as a fractional signed decimal number.
The code may be seen in figure 5.

TEX programming was used together with some
plain TEX macros that are available also in the ker-
nel of LATEX. I chose to use the delimited argu-
ment facility of TEX, which is not available in LATEX,
because coding becomes more readable; the funny
choice of the name with initial and final capitals has
a long and insignificant history, but I did not want to
change it here in order to avoid contradictions. For
the same reason I did not translate \segno into, say,
\Sign, but I suppose that its meaning is understand-
able by everybody. In practice \DividE implements
a long division between the numerator and denom-
inator lengths translated into scaled points (this is
what TEX does when a counter is assigned a length
value) stored into two numerical counters; at every
iteration the remainder is multiplied by ten and the
single digit new quotient \q is appended to the over-
all quotient \Q.

The only test I added to this last version of the
routine is to assign a positive maximum TEX value
to the quotient in case of division by zero, so that
the best TEX approximation to infinity is used.

With this division routine at hand there is no
problem in extending the slope argument of seg-
ments to any reasonable fractional number; the
\line macro of pict2e may be changed with the
code in figure 6.

Some comments are in order because some of
the code may seem redundant. The \line macro
behaves as the original pict2e one, except that the
“only” argument #1 actually has the usual format
of two fractional or integer numbers separated by
a comma; this is the form I will give to the rep-
resentation of complex numbers; the \line macro
does not actually need this machinery, but since the
necessary macros are already there, why not?

The \DirOfVect macro takes the two direction
comma separated coefficients passed in argument #1,
interprets them as the horizontal and vertical com-
ponents of a vector and determines the directing
cosines, or, if you prefer, normalizes these two vector
components to the length of the vector itself, so that
they are both fractional numbers whose magnitude
does not exceed unity. This is good for the follow-
ing operations and division calculations. The rest of
the macro is very similar to the original one. But it
may be observed that the above normalization does

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

1004 preliminary draft, August 23, 2005 16:11 TUGboat, Volume 0 (2060), No. 0

\ifx\DividE\undefined
\def\DividE#1by#2to#3{%

\begingroup
\dimendef\Numer=254\relax \dimendef\Denom=252\relax
\countdef\Num 254\relax \countdef\Den 252\relax \countdef\I=250\relax
\Numer #1\relax \Denom #2\relax
\ifdim\Denom<\z@ \Denom -\Denom \Numer -\Numer\fi
\def\segno{}\ifdim\Numer<\z@ \def\segno{-}\Numer -\Numer\fi
\ifdim\Denom=\z@
\ifdim\Numer>\z@\def\Q{16383.99999}\else\def\Q{-16383.99999}\fi

\else
\Num=\Numer \Den=\Denom \divide\Num\Den
\edef\Q{\number\Num.}%
\advance\Numer -\Q\Denom \I=6\relax
\@whilenum \I>\z@ \do{\DividEDec\advance\I\m@ne}%

\fi
\xdef#3{\segno\Q}\endgroup

}%

\def\DividEDec{\Numer=10\Numer \Num=\Numer \divide\Num\Den
\edef\q{\number\Num}\edef\Q{\Q\q}\advance\Numer -\q\Denom}%

\fi

Figure 5: Another division routine for fractional values

not depend on the integer or fractional nature of the
directional coefficients; it even neglects the fact that
their magnitude may be larger than 1000, which is
the last constraint remaining in the original pict2e
\line macro.

Of course these coefficients should not be too
large, even though the length of the vector com-
putation implies some powers of two and a square
root; computations are made in such a way as to
extract from the root the largest of the two com-
ponents, so that actually a number not exceed-
ing unity gets squared and the radicand never ex-
ceeds 2. The \ModOfVect macro actually executes
this square root and I have never observed any de-
ficiency in its calculations.

This extension suggests another one; since the
direction coefficients may be of any reasonable mag-
nitude why should we maintain the picture syn-
tax for defining lines, where along with the direction
coefficients it is necessary to specify the horizontal
projection of the segment? Why not defining the
line with its absolute horizontal and vertical com-
ponents? Everything would be much cleaner and
the execution time would be much shorter. This is
why I defined another alternative line description as
such:

\def\Line(#1,#2){%
\pIIe@moveto\z@\z@

\pIIe@lineto{#1\unitlength}%
{#2\unitlength}%

\pIIe@strokeGraph}%

where the arguments passed to the macro represent
the actual components of the segment, and no length
is specified. With \put you put the segment ori-
gin as usual and the \Line macro does the rest.
The “moveto”, “lineto” and “stroke” keywords
are those used in PostScript and in many descriptive
graphic languages; these are some among the new
keywords introduced by pict2e and they may in-
duce a small revolution in considering graphics with
LATEX.

For example it is possible to define a macro for
tracing a polygonal line joining an arbitrary number
of nodes as such3:
\def\polyline(#1){\beveljoin
\GetCoord(#1)\d@mX\d@mY
\pIIe@moveto{\d@mX\unitlength}%

{\d@mY\unitlength}%
\p@lyline}%

\def\p@@lyline(#1){%
\GetCoord(#1)\d@mX\d@mY
\pIIe@lineto{\d@mX\unitlength}%

{\d@mY\unitlength}%

3 Of course with delimited arguments it is not possible to
use the LATEX macro definition commands.

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1005

\def\line(#1)#2{\begingroup
\@linelen #2\unitlength
\ifdim\@linelen<\z@\@badlinearg\else
\expandafter\DirOfVect#1to\Dir@line
\GetCoord(\Dir@line)\d@mX\d@mY
\ifdim\d@mX\p@=\z@\else

\ifdim\d@mX\p@<\z@ \@tdB=-\p@\else\@tdB=\p@\fi
\DividE\@tdB by\d@mX\p@ to\sc@lelen \@linelen=\sc@lelen\@linelen

\fi
\pIIe@moveto\z@\z@
\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
\pIIe@strokeGraph

\fi
\endgroup\ignorespaces}%

\def\GetCoord(#1)#2#3{%
\expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

\def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%

\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to\@tempa \DividE\t@X\p@ by\@tempdimc to\t@X
\DividE\t@Y\p@ by\@tempdimc to\t@Y
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
\@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
\ifdim\@tempdima>\@tempdimb

\DividE\@tempdimb by\@tempdima to\@T
\@tempdimc=\@tempdima

\else
\DividE\@tempdima by\@tempdimb to\@T
\@tempdimc=\@tempdimb

\fi \ifdim\@T\p@>\z@
\@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
\advance\@tempdima\p@ %
\@tempdimb=\p@%
\@tempcnta=5\relax
\@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
\advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
\advance\@tempcnta\m@ne}%\

iterazioni
\@tempdimc=\@T\@tempdimc%

\fi
\Numero#2\@tempdimc %
\ignorespaces}%

\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Figure 6: Redefinition of the \line macro

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

1006 preliminary draft, August 23, 2005 16:11 TUGboat, Volume 0 (2060), No. 0

x

y

x

y

Figure 7: Square and round caps

\p@lyline}%

\let \lp@r(\let\rp@r)

\def\p@lyline{%
\@ifnextchar\lp@r{\p@@lyline}%

{\pIIe@strokeGraph\ignorespaces}%
}%

This simple macro \polyline would be rather dif-
ficult to realize without the moveto, lineto and
stroke keywords.

A final small improvement consists in setting
the shape of the line terminators; by default they are
square caps but when tracing thick lines that meet
at the same point it is better to set them round. See
figure 7 for comparing what I mean with line ter-
minators. The following code gives access to these
settings:

\ifcase\pIIe@mode\relax

\or %Postscript

\def\roundcap{\special{ps:: 1 setlinecap}}%

\def\squarecap{\special{ps:: 0 setlinecap}}%

\def\roundjoin{\special{ps:: 1 setlinejoin}}%

\def\beveljoin{\special{ps:: 2 setlinejoin}}%

\or %pdf

\def\roundcap{\pdfliteral{1 J}}%

\def\squarecap{\pdfliteral{0 J}}%

\def\roundjoin{\pdfliteral{1 j}}%

\def\beveljoin{\pdfliteral{2 j}}%

\fi

I prefer to have the round cap version as the default
setting, but this is a question of personal taste. Ap-
parently these settings, set up by means of the spe-
cial programming language of the destination file,
are global ones so it is necessary to countermand
them once the default has to be restored; it is not
possible to rely on groups the usual TEX way. I have
also the impression that at each closing of a pic-
ture environment any setting is lost; I do not know
the PostScript language as much as to understand if
some internal pict2e command executes this reset,
but after all it is no trouble to reset the preferred
settings at the beginning of each picture.

It must be noticed that the line terminator
choice does not work with the original pict2e \line
definition when the drawn segments are purely hor-
izontal or vertical, while it works with my redefini-
tion as it can be seen in figure 7. After all the orig-
inal pict2e definition of \line mimiks the original
“LATEX 209” one, where it was important to avoid
drawing lines by means of the special graphic fonts
when horizontal and vertical lines could be more eas-
ily and efficiently drawn with the low level dvi com-
mands TEX uses for vertical and horizontal rules.
When lines are drawn with the device driver facili-
ties it is not necessary any more to resort to the low
level dvi commands.

I should remark that several other graphic pack-
ages are available; among them the curves one
by Ian Maclaine [6] certainly is the first one that
might benefit from these new facilities introduced
by pict2e. There is also the package bundle pgf by
Till Tantau [7]; PGF stands for “portable graphic
format” and its intention is to provide LATEX with a
portable set of macros such as to perform almost as
PSTriks even when running pdflatex. The latter
program is at the base of the excellent presentation
document class beamer and certainly it is worth us-
ing because of its fine properties. I did not actually
extend pgf because I found some difficulties in writ-
ing macros such as to relocate their output to spec-
ified coordinates. Moreover I believe that pict2e,
although much simpler then pgf, is part of LATEX,
not a major extension as pgf4 is.

3 Complex numbers

As it has partially been seen, drawing implies treat-
ing directions; in particular it is necessary to ma-
nipulate vectors and their directions. METAFONT

[8], the program for drawing fonts written by Knuth
himself, treats all these objects with complex num-
bers. Knuth hardly ever cites complex numbers in
the METAFONT book, but all the inner and outer
workings are done by means of pairs that are noth-
ing else but complex numbers; the manipulation of
directions and angles is always done in an alternat-
ing change from cartesian to polar representation of
complex numbers; here and there some of the opera-
tions available on pairs are explicit complex number
operations.

Most people don’t know or don’t like complex
numbers; may be this is due to the fact that they

4 With pict2e I had no difficulties rewriting the macros
of a package of mine for drawing electronic circuits; I was not
able to do the same with pgf; of course the one to blame is
just myself.

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1007

contains imaginary quantities, something far away
from the everyday reality of numbers.

Mathematicians, on their side, do very little in
order to ease students in learning complex numbers,
and with their love for abstraction and generaliza-
tion they sometimes miss to convey the message that
these entities are noting more than “scale-rotate”
operators: they simply scale up or down an object
and rotate it around a pivoting point; something al-
most everybody is familiar with, as soon they have
used one of the many interactive drawing programs,
even the simple ones that are also included in the
commercial and open source text processing or pre-
sentation programs.

Take a vector ~V drawn from the origin of a
cartesian plane defined with axes x and y; if you
project the above vector on the x axis you get the
horizontal component ~vx, while if you project it on
the y axis you get the vertical component ~vy. If you
define two unit vectors, ~ux parallel to the x axis and
pointing to increasing x values, and similarly ~uy for
the y axis, you can separate in every component the
information of its magnitude from that of its direc-
tion and you can write

~v = ~vx + ~vy = vx~ux + vy~uy

Now let us enphasize the link the vector ~v has
with the unit direction along the x axis by writing

~v = [vx + (~uy/~ux)vy]~ux

so that we may interpret the contents of the square
brackets as the operator that acts on the unit x vec-
tor by scaling it according to the magnitude of ~v and
by rotating it by a certain angle, the angle of ~v with
respect to the x axis. The contents of the square
brackets has the same characteristics as those we
anticipated for complex numbers.

The ratio ~uy/~ux is generally given the name of
‘i’ by the mathematicians and of ‘j’ by most tech-
nologists5. It has the obvious meaning that when
applied to the unit vector ~ux changes it to the unit
vector ~uy, i.e. it rotates the unit vector ~ux 90◦ coun-
terclockwise.

If we apply twice in a row the 90◦ rotation op-
erator ‘i’ to the unit vector ~ux , producing a total
rotation of 180◦, we get the renown expression

i ~uy = i(i ~ux) = i2 ~ux = −1~ux

that is
i2 = −1 or i =

√
−1

which induced the XVI century mathematicians to
call ‘i’ the imaginary unit.

5 Notice that this mathematical operator is not a variable
and therefore according to the international regulations must
be written with an upright font.

If we further process the above results, we get

vx + (~uy/~ux)vy = vx + i vy = |~v|
(

vx

|~v|
+ i

vy

|~v|

)
where

|~v| =
√

v2
x + v2

y

We recognize that if the original vector ~v is in-
clined by an angle θ counterclockwise with respect
to the x axis, then the two above fractions represent
the cosine and sine of such an angle

vx

|~v|
= cos θ

vy

|~v|
= sin θ

The scaling factor of the operator acting on the unit
x vector is |~v| and the direction of the x unit vector
is changed by the angle θ counterclockwise. The
operator is actually a scale-rotate operator, i.e. a
complex number.

If we apply two scale-rotate operators in a row
to the unit x vector, we make the following observa-
tions:

1. the two scaling factors behave as two multipliers
and are commutative;

2. the two rotations angles add up and are com-
mutative;

3. the total effect produced by the two operators
is therefore equivalent as that of a single opera-
tor whose magnitude is the product of the two
magnitudes and whose angle is the sum of the
two angles;

In order to represent such effects with the operation
of multiplication it is advisable to use magnitudes
as regular factors, and to use angles as exponents of
a suitable base; the mathematicians tell us that a
scale-rotate operator of magnitude a and of angle θ
can be represented as

a(cos θ + i sin θ) = a ei θ

which is called Euler’s formula. There are many
serious reasons for choosing ‘e’ as the base and for
representing the exponent as an imaginary quantity,
but we are not concerned here with them; we simply
note that given two scale-rotate operators a exp(i θ)
and b exp(iφ) their total effect is (ab) exp[i(θ + φ)].

This observation together with Euler’s formula
lets us understand which is the meaning of the di-
vision by a complex number, i.e. a scale-rotate op-
erator; in facts the division is nothing else than the
inverse operator of a multiplication and this resorts
to be [

a ei θ
]−1

=
1
a

e− i θ

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

1008 preliminary draft, August 23, 2005 16:11 TUGboat, Volume 0 (2060), No. 0

where we observe that the scaling factor is simply
the reciprocal of the multiplicative one, while the ro-
tation term is just in the opposite direction relative
to the multiplicative one.

The scale-rotate interpretation of complex
numbers lets us understand also very easily the
meaning of addition and subtraction of such enti-
ties which end up to being the same as addition and
subtraction of vectors. Moreover the vector notation
becomes redundant since the scale-rotate operators
always act on the unit x vector that can be taken for
granted and omitted from the complex number ex-
pressions; these expressions therefore maintain the
meaning of vector operations and of complex num-
ber relationships.

For what concerns us here let us underline
that exp(i θ) has unit magnitude, therefore contains
only the information on the direction. Furthermore
exp(− i θ) represents a rotation in the opposite di-
rection; if we have the means of multiplying by such
factors we can change the direction of any vector the
way we like both counterclockwise or clockwise.

For TEX arithmetics it is better to use sim-
ple multiplications without exponentials, but Eu-
ler’s formula lets us change back ad forth from the
exponential form to the cartesian one; the exponen-
tial form gives us an easy interpretation of the rotat-
ing effects while the cartesian form gives us the easy
mechanism for executing the complex multiplication
and therefore the required rotation.

4 Complex number TEX macros

I am not going to include here the code for every
complex number operation [9]; let me just list the
macro names of the operations I wanted to realize
with some possible explanations, if the need arises,
to clarify some detail.

Notice that I decided to maintain most if not
all fractional numbers into control sequences; I
use also control sequences to pass complex val-
ues to the macros, so that in order to operate on
the complex number parts a macro \GetCoord is
needed to separe them, as well as another macro
\MakeVectorFrom is needed for assembling them to-
gether again.

Most macros have delimited arguments; the
main command is followed by the sequence of ar-
guments separated by keywords; rarely arguments
must be enclosed in the traditional curly braces as
it is normally necessary in LATEX. For example in
order to extract the magnitude (modulus) and the
direction from a given vector the macro name is
\ModAndDirOfVect but the various arguments are

separated by the words to and and so that a typical
call might be

\ModAndDirOfVect\VectorA to\ModA and\DirA

In this context the word “vector” is synonymous of
complex number or scale-rotate operator; the word
“direction” refers to a complex number with unit
magnitude so that the scaling factor is unity.

In the following list of macros the parameters
#1, #2,. . . are the arguments passed to the various
macros. The macro names are assumed to be self
explanatory.

\SinOf#1to#2
\CosOf#1to#2
\TanOf#1to#2
\MakeVectorFrom#1#2to#3
\CopyVect#1to#2
\ModOfVect#1to#2
\DirOfVect#1to#2
\ModAndDirOfVect#1to#2and#3
\GetCoord(#1)#2#3
\DistanceAndDirOfVect#1minus#2to#3and#4
\XpartOfVect#1to#2
\YpartOfVect#1to#2
\DirFromAngle#1to#2
\ScaleVect#1by#2to#3
\ConjVect#1to#2
\AddVect#1and#2to#3
\SubVect#1from#2to#3
\MultVect#1by#2to#3
\MultVect#1by*#2to#3
\DivVect#1by#2to#3

The list ends with the usual four arithmetic oper-
ations performed on any mathematical entity; the
variant of the multiplication that contains an aster-
isk performs the multiplication of the first operand
by the complex conjugate of the second operand; the
complex conjugate of a complex number is just the
scale-rotate operator where the rotation direction
has been reversed.

The above list starts with the usual trigono-
metric functions; actually I stated earlier that arith-
metics in TEX should be done with numbers and di-
rections; angles, that are so expressive in the Euler’s
formula, should be avoided; nevertheless at some
point it’s necessary to convert angles to their sines
and cosines, but switching back and forth from the
Euler’s representation to the cartesian one implies
the computation of both direct and inverse trigono-
metric functions; TEX can do both operations (with
acceptable approximations) but it slows down quite
a bit with these frequent transformations. I realized
the computation of the direct trigonometric func-
tions of angles in degrees, not in radians, by means

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1009

of the continued fraction expansion of the half angle
tangent and the parametric formulas

sin θ =
2 tan x

1 + tan2 x

cos θ =
1− tan2 x

1 + tan2 x

tan θ =
2 tan x

1− tan2 x

where

tanx =
1

1
x
− 1

3
x
− 1

5
x
− 1

7
x
− · · ·

and x = θ/114.591559 it the half angle in degrees
converted to radians.

This iterative formula for the tangent is quite
fast and its precision is remarkable if we consider
the modest performance of TEX calculations with
fractional numbers. I decided to stop the continued
fraction with the term containing the coefficient ‘11’;
probably it is a little too much for TEX capabilities
but I prefer to perform one extra cycle than to miss
the target.

Unfortunately I could not find similar fast algo-
rithms for the inverse trigonometric functions; nev-
ertheless I decided to avoid using such inverse func-
tions. METAFONT implements both algorithms, but
METAFONT is not TEX: the former was designed
to perform fractional number calculations (although
represented in fixed radix notation) while the lat-
ter was designed for efficiently typesetting texts and
calculations are reduced to integer operations with
some simple tricks to cope with the necessity of us-
ing fractional “factors”.

The macro \DirFromAngle is the only one that
uses trigonometric funcions; further on, just direc-
tion vectors are used.

5 Circular arcs

pict2e implements only the drawing commands
specified by Lamport in [2]; it can draw full circles or
quarter circles but it cannot draw arcs of any other
specified angle amplitude. Or better: it cannot draw
them because of the lack of user commands, but it
has all the potentialities.

Suppose we want to draw an arc by specifying
its center, its starting point and its angle amplitude.
The center and the starting point may be absolute
coordinates in the picture environment space or
may be relative to the position specified by a \put
command.

O

P1P2
B

A
Q1Q2

θθ

Figure 8: Circular arc elements

With pict2e we can resort to third order Bézier
curves as well as it is done in METAFONT; if the
third order curve is not misused, it can approximate
up to a half circle with remarkable precision. The
problem is to find the arc end point and the correct
control points of the Bézier curve.

With reference to figure 8 it is a simple exercise,
given the center O, the starting point P1, and the
arc angle 2θ, to determine the coordinates of the end
arc point P2 and of the two control points Q1 and
Q2.

For the end point P2 it suffices to take the vec-
tor −−−−→P1 −O and rotate it about the center point by
the given angle 2θ; this operation is simplified by
the complex number arithmetics described above.

A little trickier is the determination of the con-
trol points. It is evident that they lay on the
segments perpendicular to the vectors −−−−→P1 −O and−−−−→P2 −O, but how long are the vectors −−−−−→Q1 − P1 and−−−−−→Q2 − P2 ?

It is necessary to know the cubic Bézier equa-
tion

P = P1(1− t)3 + 3Q1t(1− t)2 + 3Q2t
2(1− t) + P2t

3

that can be found (with other symbols) also on the
METAFONTbook.

P is the generic point on the curve; the start
and end points and the control points form the co-
efficients of the equation; t is a parameter that runs
from 0 to 1 while P moves from P1 to P2. The above
equation in reality represents the couple of equa-
tions that one can obtain when the point coordinates
are substituted; therefore it represents the couple of
parametric equations that describe the curve in the
usual xy cartesian plane.

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

1010 preliminary draft, August 23, 2005 16:11 TUGboat, Volume 0 (2060), No. 0

If we move the origin of the coordinates to point
A of figure 8 and exploit the obvious symmetry, the
similar triangles, the Bézier equation, and the fact
that point B must be distant from O just as P1 and
P2, it turns out that le length K of the required
vectors is

K =
4
3
(1− cos θ)R

where R is the arc radius, the length of the vector−−−−→P1 −O. Again, with the complex number opera-
tions we have at our disposal, it is straightforward
to exploit the information we have for tracing the
cubic Bézier curve from P1 to P2; the result is in-
distinguishable from a true circle when the total arc
angle does not exceed 90◦ and is not noticeable with
naked eye when the total arc angle does not exceed
180◦.

Therefore a good \Arc macro should check the
amount of the total arc angle and possibly split the
total arc into sub-arcs none of which exceeds a half
circle, or, even better, a quarter circle. This is why
in actual computations it is much better to measure
angles in sexagesimal degrees than to use radians;
with radians the reduction of angles by amounts cor-
responding to quarter or to half circles requires the
intrinsic approximation due to the irrational nature
of π; TEX introduces its own approximations errors,
so let us not contribute with further ones.

6 General curves

The mentioned package curves [6] offers the user the
possibility of tracing arbitrary curves by stating just
the curve nodes; METAFONT is all built over this
possibility although it uses much finer mathematics
and it offers the user the opportunity to optionally
specify node tangents and arc tensions.

From the user point of view these differences
are great by themselves, but there is another im-
portant difference: curves uses quadratic Bézier
curves, while METAFONT uses cubic ones. This pro-
duces dramatic differences when the curve nodes im-
ply the presence of inflection points. In this case the
algorithm devised by Maclaine more often than not
produces anomalous loops; such loops are very rare
with cubic Bézier curves and it is necessary to work
hard to find examples where such loops show up.

Of course Maclaine had to sacrifice some
graphic functionality in front of simpler mathemat-
ics, that, as we know, is not TEX best feature.

I tried to devise a chain of macros that trace one
cubic Bézier arc at a time, and pass one another the
end point tangent directions. Such macros are

\StartCurveAt#1WithDir#2
\CurveTo#1WithDir#2

\CurveFinish

where the first argument is a point coordinate pair
(a complex number) and the second argument is a
direction (a complex number with unit magnitude);
the first macro initializes the process and memo-
rizes the first point direction; the second macro gives
the destination program the necessary information
on the arc nodes and control points, and the third
macro eventually strokes the curve with the syntax
of the destination program.

The first macro basically uses the moveto key-
word, the second macro the curveto one, and the
final macro the stroke one; we have already par-
tially seen these keywords while discussing lines and
polylines. The first and second macros provide also
to normalize the directions given, so the final user
does not need to make preliminary calculations in
order to normalize the direction magnitude; they
also memorize the specified and normalized direc-
tion for the benefit of the next \CurveTo call.

This macro is the one that has to do the main
work in determining the position of the control
points. Obviously it must start by checking the triv-
ial situations where the directions form zero or 180◦

angles with the arc chord; it must also distinguish
the situations where the tangents form 90◦ angles
with the chord. It must behave correctly even if
the end nodes and the directions imply an inflexion
point. But in most cases it has to deal with normal
situations where the control point directions relative
to the respective end points are given but the dis-
tances of the control points from the nodes must be
determined.

There is a great margin for arbitrary decisions;
I decided to divide the chord in two parts that are
more or less proportional to the projection of the
directions on the chord and to determine the dis-
tance K of each control point from its neighboring
node with the same formula it was found for cir-
cular arcs; the chord fraction is treated as half the
chord of a circular arc and the corresponding radius
is determined so as to use the mentioned formula.
This choice is totally arbitrary but, as it is easily
understandable, it is a reasonable one.

This done, the usual complex number arith-
metics can be used to locate the position of the con-
trol point and to give the internal command for in-
structing the destination program how to draw the
desired curve. In figure 2 there is a simple example
of a sine curve that has been drawn with three arcs:
from the origin to the maximum, from this point to
the minimum, and lastly from the minimum to the
end of the cycle.

preliminary draft, August 23, 2005 16:11 preliminary draft, August 23, 2005 16:11

TUGboat, Volume 0 (2060), No. 0 preliminary draft, August 23, 2005 16:11 1011

Actually the three above macros are the ingre-
dients of the general macro \Curve that operates on
an arbitrary number of couples of nodes and direc-
tions:

\Curve(〈P0〉)<〈dir0〉>(〈P1〉)<〈dir1〉>...
(〈Pn〉)<〈dirn〉>

whose code is the following:

\def\Curve(#1)<#2>{%

\StartCurveAt#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\PackageWarning{curve2e}{%

Curve specifications must contain at least

two nodes!\Messagebreak

Please, control your Curve

specifications\MessageBreak}}}

\def\@Curve(#1)<#2>{%

\CurveTo#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\@ifnextchar[\@ChangeDir\CurveFinish}}

\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

For each node it is necessary to specify the direc-
tion of the tangent to that node; tangent direction
coefficients need not be normalized; they are passed
as if they were LATEX optional arguments enclosed
in angle brackets; if there is a cusp, the thangent
changes abruptly so that a new direction must be
specified before continuing to draw the curve; this
“optional” change in direction is indicated with a
direction enclosed in square brachets; see the code
that exemplifies the description of the line in fig-
ure 3.

In the light of that example it is not a burden
to specify all the directions at each node, although
a simpler syntax as that used in METAFONT would
be desirable.

7 Conclusion

I wanted to illustrate the use of fractional number
TEX arithmetics applied to complex numbers; these
are formidable tools for graphics applications and
the necessary macros are actually within the range
of every TEXnician; there is no need to be gurus.

I hope the ideas I gave here may be exploited
better than I can do for extending the existing
graphic packages so as to get the best from the
pict2e package; this package in particular may ben-
efit from some simple extensions, or may incorporate
the user macros for drawing circular arcs and arbi-
trary curves, possibly even with the filling capabili-
ties that are being offered by other programs.

There might even be some expert programmer
who gets challenged to write a user graphical inter-
face that exploits the suggested extensions.

The pict2e package still has some minor
glitch6, but even right now it opens many possibil-
ities that were unthinkable of when the standard
LATEX 209 picture environment was the only native
graphic one LATEXers could resort to; they eventually
had to give up and had to move to other dedicated
programs; these are fine, but they do not necessarily
produce completely compatible code and generally,
with some remarkable exceptions such as, for exam-
ple,pgf, require special treatment in order to insert
the same fonts used in the main text.

References

[1] Gäßlein H. and Niepraschk R., The pict2e

package, PDF document attached to the “new”
pict2e bundle; the bundle may be downloaded
from any CTAN archive or one of their mirrors.

[2] Lamport L., LATEX: A document preparation sys-
tem Addison Wesley Publishing Co., Reading,
Massachusetts, 1994.

[3] van Zandt T., PSTriks, CTAN archives
and mirrors; see also http://www.tug.org/
applications/PSTricks maintained by Denis
Girou for further documentation and examples.

[4] Beccari C., Floating point numbers and Meta-
font, Metapost, TEX, and PostScript Type 1
fonts, TUGboat 23(3/4), 2002, pp. 261-269

[5] Knuth D.E., Computers & Typesetting/A: The
TEXbook, Addison Wesley Publishing Co., Read-
ing, Massachusetts, Millenium Edition.

[6] Maclaine I., curves and curvesls, may be
downloaded from any CTAN archive or one of
their mirrors.

[7] Tantau T., User’s Guide to the PGF Package,
Version 0.65, included in the pgf bundle down-
loadable from any CTAN archive or one of their
mirrors.

[8] Knuth D.E., Computers & Typesetting/C: The
METAFONTbook, Addison Wesley Publishing
Co., Reading, Massachusetts, Millenium Edi-
tion.

[9] Beccari C., curve2e, CTAN archive and mirrors.

� Claudio Beccari
Politecnico di Torino
Turin, Italy
claudio.beccari@polito.it

6 With the version I have at hand, pict2e traces vectors
a little bit thicker than segments, although the line thickness
is maintained constant; with my redefintion of \vector this
glitch appears corrected.

