
The wrapfig2 package
Claudio Beccari

Abstract Package wrapfig is extremely useful, but is delicate. It has many limitations because it has to
compute the space in terms of number of lines necessary to indent the surrounding text so that it can
wrap the insertion. Its documentation explains the limitations the users should be attentive to.

This short paper describes a new package, wrapfig2, that is backwards compatible with the originalwrapfig, but aims to let the users have a better control on the number of lines. At the same time it defines
a new environment, wraptext, that exploits the same ideas in order to insert a framed text block on a
shaded background wrapped by the surrounding text.

Sommario Il pacchetto wrapfig è molto utile, ma è delicato. Presenta diverse limitazioni dovute alla
difficoltà di calcolare correttamente di quante righe deve essere il rientro che consenta l’inserimento del
materiale da contornare con il testo.

Questo breve articolo descrive un nuovo pacchetto, wrapfig2, retrocompatibile con il pacchetto
originale wrapfig, che consente all’utente di avere un controllo migliore sul numero di righe del rientro
del testo circostante. Contemporaneamente definisce un nuovo ambiente,wraptext per inserire un blocco
di testo incorniciato e su uno sfondo sfumato, in un testo che lo circonda.

1. Introduction

Package wrapfig by Donald Arseneau has been available for several years; the last upgrade to
our best knowledge dates back to 2003; it is very useful to insert small objects (figures, tables,
and similar ones) in an indented part of the normal text; it is possible to configure the insertion
so as to specify the overhang into the margin, the total width of the insert, even the total
height of the necessary indention; it is possible to specify the margin where to protrude the
insertion and even to float the inserted material. The available environments are wrapfigure,
and wraptable; they depend on wrapfloat〈float kind〉1, where the 〈float kind〉 is already available.

Such insertions may be fixed or floated; placement codes may be specified by the user.
The general syntax of this environment is the following (the example refers to a figure,

but the syntax is similar for tables and other objects):

\begin{wrapfigure}[〈total number of indented lines〉]
{〈position〉}[〈overhang〉]{〈insert width〉}
〈material to be inserted〉

\end{wrapfigure}

It should be sufficient; actually if the insert is pretty long the environment may have
difficulties in computing the correct number of indented lines; the reasons are explained in thewrapfig package documentation; its author warns the user about the package idiosyncrasies.
1. Users are familiar with the figure and table float kinds, but by means of the float package it is possible to define

other kinds.

Numero 33 · Aprile 2022

Most of these idiosyncrasies can be avoided by choosing the right place in the source file
where to specify the environment: it should not follow too close a page break, a sectioning
command, a list, and so on. But according to our experience one of the most annoying features
is the difficulty of counting the correct number of indented lines; we found that it is simpler
to count the (generally small) number of lines to add to or subtract from the line number
computed by the original software.

There are a couple of reasons for following this corrective approach, rather than the
original approach.

1. The first time any wrapped insertion is specified, the users have no idea of how many
indented lines are necessary; therefore they do not specify the optional argument 〈total
number of indented lines〉; they let the software compute the necessary number of such
lines. More often than not such number is not the most suitable one, and often the
white space below the insertion is too high; or it may happen that the computed number
of lines is too small so that the inserted material overlaps the neighbouring text. In the
first case it is necessary to diminish the computed number of lines, while in the second
case such number should be increased.

2. It is simpler to count the small number of extra indented lines, or the small number of
overlapped full lines.

2. How to compute the correction line number

The new language LATEX3 offers many possibilities. Since the fall of 2020, most, if not all, thexparse functionalities are included into the LATEX kernel, and, except in special (deprecated)
cases, it is not necessary to load any package: the xparse documentation is still available, but
the package is not explicitly required. This wrapfig2 uses one of the deprecated cases, therefore
it provides to load such package.

On the opposite, the computing LATEX3 functionalities are not yet included into the kernel;
therefore the xfp package is loaded by wrapfig2; among such functionalities the \fpeval func-
tion can operate also on length values and can perform several kinds of rounding operations.

We foundmore efficient to redefine known environments, or define new ones, with similar
syntaxes; we therefore redefined wrapfigure and wraptable and defined the new wraptext
environment.

The core of the computation of the corrective line number is the following.

1. By using the environment arguments, store the object to be wrapped into a box and
determine its height.

2. Use the \fpeval to compute the ratio of the above height to the current base line height,
and let \fpeval round such ratio to the nearest integer.

3. Add a small fixed correction number and eventually add the user specified positive or
negative correction value.

4. Pass such computed number of lines as the first optional argument to wrapfloat with
the specific 〈float kind〉 string.

Following the above policy, both original wrapping environments are redefined as de-
scribed in the following subsections.

18 | Claudio Beccari

ArsTEXnica

2.1. Necessary packages and preliminary settings

The redefinitions we devised require some packages, therefore the following ones are required
and the new package provides to load them if they are not already loaded.

xfp provides the powerful LATEX3 commands \fpeval and \inteval; the former is used to
make calculations and round the results to a specified number of fractional decimal
digits. The second is similar but operates on integer operands.curve2e is going to be used with the wraptext environment so as to draw the emphasising
frame and a coloured background around the text. See the specific subsection below.etoolbox is always handy when code has to be written so as to render it more easily readable
and maintained.

3. Wrapped figures

Figure 1. A rectangle with diagonals

The main redefinition of the wrapfigure, wrspatable andwraptext environments is commented in a further section
that describes the relevant parts of the code; here we are
more interested to show what is possible to do.

Let us first describe the syntax of these revised or new
environments. The syntax shown in the box below refers
to version 6 of this package. Some options specify how
to select fallback settings in order to get the functionali-
ties of versions 5 or 4). Please read the wrapfig2 package
documentation.

\begin{wrapfigure}[〈total indented lines number〉]{〈position〉}[〈overhang〉]{〈width〉}〈star〉
〈inserted figure〉
\end{wrapfigure}

\begin{wraptable}[〈total indented lines number〉]{〈position〉}[〈overhang〉]{〈width〉}〈star〉
〈inserted table〉
\end{wraptable}

\begin{wraptext}<〈indented lines number correction〉>{〈position〉}[〈overhang〉]{〈width〉}
〈optional style settings〉
〈inserted text block with other settings and corner radius of curvature〉
\end{wraptext}

The package code for inserting a figure is the following; the one for inserting a table is
very similar.

\NewDocumentEnvironment{wrapfigure}{o m o G{\z@}}%

{\wrapfloat{figure}[#1]{#2}[#3]{#4}}%

{\endwrapfloat}

Package WrapFig2 | 19

Numero 33 · Aprile 2022

As it is can be seen from the code, the environment contents is first boxed into the box
register \NWFbox with the help of the lrbox environment. Then, depending on the presence
of the optional asterisk the total number of lines of the object to be included is measured; if
the asterisk is present the corrective argument is algebraically added to the estimated height;
if the asterisk is absent then if the total number of lines is specified, such a number is used
as in the original environment; if the user did not specify any value, the number of indented
lines is evaluated by the original environment. A specific figure might be inserted by one of
the following statements
\begin{wrapfigure}{l}{50mm} figure code \end{wrapfigure}

\begin{wrapfigure}[10]{l}{50mm} figure code \end{wrapfigure}

\begin{wrapfigure}[3]{l}{50mm}* figure code \end{wrapfigure}

The first statement is possibly the first one the users write in their document; the second
is the one that exploits the original environment functionalities, while the third uses just the
correction value to add after controlling what the first statement failed to compute correctly.

4. Wrapped tables

first second
third fourth

With (small) tables the situation is very similar; the difference relies on
the fact that small tables generally are not typeset with a prescribed
width; generally the user is not so good in estimating a suitable width for
a table that relies on the widths of all the tabular cells. Therefore the last

mandatory argument of the wraptable opening statement may be omitted thanks to a feature
of the xparse package that may use brace delimited optional arguments; if this argument is
omitted, together with the braces, the software is capable of determining the object width and
may provide accordingly.

The code for the redefinition of the new wraptable environment is not so different from
that of wrapfigure.
\NewDocumentEnvironment{wraptable}{o m o G{\z@}}%

{\wrapfloat{table}[#1]{#2}[#3]{#4}}%

{\endwrapfloat}

It goes by itself that the user has to insert the whole table code using, for example, thetabular environment. Therefore the user has a wider range of possibilities to change the size
of the table, as well to correct the estimated height of the actual table. Since the underlying
code is the one of the wrapfloat environment, it is possible that the various packages that deal
with tables and/or with their captions still work properly with the new definition. In any case
the result is still acceptable as with figures.

Caution

In both redefinitions of the standard wrapping environments, if the optional asterisk is
specified while the first optional argument is omitted, no error is raised and no warning is
output; simply the presence of the asterisk is ignored and the wrapped figure or table is typeset
with the original environments; if the authors use the asterisk, they should pay attention to
enter into the first optional argument the corrective number of lines, not the absolute one.

20 | Claudio Beccari

ArsTEXnica

5. Wrapped text

Recently a question was posted on stackexchange in order to get help for creating some sort
of small framed medallions on a coloured background to be wrapped by text as well as a figure.

Text, text, text, text, text, text, text, text, text,
text, text.

Of course it would not be too complex to
create the medallion with the functionalities
of the tcolorbox and saving the graphic result
into a box to be inserted as a wrapped figure
by means of thewrapfigure environment. But

in this last version 6 of thewrapfig2 package we preferred to draw the frame and is background
by means of the picture environment extended with the curve2e package functionalities.

The participants to that thread on stackexchange suggested theWrapText environment
based on the use of the original wrapfigure. Unfortunately the vertical space computed bywrapfiguremore often than not was too small, and the medallion bottom would overlap the
following normal text. A good friend of ours asked us if it was possible to maintain the same
structure based on wrapfigure, but with some means to correct the actual number of lines of
the indented normal text.

\NewDocumentEnvironment{wraptext}{O{0} m O{0pt} G{0.5\columnwidth}}%

{% Open environment

\insertwidth=#4\WFscalewidth

\def\textplacement{#2}%

\def\textcorrection{#1}%

\def\textoverhang{#3}%

\bgroup\edef\x{\egroup\noexpand\wrapfloat{text}%

[\textcorrection]{\textplacement}[\textoverhang]{\insertwidth}*}\x%

\def\caption{\unskip% Redefine the \caption command

\refstepcounter\@captype

\let\@tempf\@caption

\unless\ifcsname @float@c@\@captype\endcsname

\expandafter\expandafter\let

\expandafter\@tempf\csname @float@c@\@captype\endcsname

\fi

\@dblarg{\@caption\@captype}% Use the internal LaTeX kernel commands

}%

}{% Close environment

\endwrapfloat\ignorespaces}%

The user command syntax is the following:

\begin{wraptext}[〈indented lines number correction〉]{〈location〉}[〈overhang〉]{〈width〉}
〈optional colour settings〉

\includeframedtext[〈insertion measure〉]{〈text to frame〉}[〈settings〉][〈radius〉]
\end{wraptext}

The solution of this problemwas the motivation for designing the environments described
in this article. As we mentioned above, the syntax of this environment is slightly different
from the other two, but the philosophy is the same; as a matter of fact all environments use the

Package WrapFig2 | 21

Numero 33 · Aprile 2022

same wrapfloat environment behind the scenes. If the wrapped framed text needs a caption
(something we discourage, since we believe that the wrapping text is such as to describe why
that text has been wrapped) it is necessary to use the \caption command with its arguments;
with the texstackexchange solution and its default parameters, the caption would turn out to
be in the form “Figure 3.2”, but the label “Figure” does not seem to be the most appropriate;
with version 6 the default value for the caption label is “Text”, but by means of the babel orpolyglossia language handlers it is possible to adapt it to any language.

The above code is not simpler than the ones used for the redefinitions of wrapfigure andwraptable, not only because there is no need to be backwards compatible, but also because
some parameters, such as the text box width, are preset. The environment allows the user to
specify the text box width; nevertheless a width shorter than the default might pose some
justification problems, while a longer one would be too intrusive; depending on the text to
be wrapped and on the page layout, we recommend to maintain the text box width in the
range from 40% to 60% of the current column width; remember that while typesetting in one
column mode the \columnwidth value equals that of \textwidth.

6. Performance

We don’t know if this new extended versionwrapfig2, performs better than the original version
by Donald Arseneau. We partially modified his code, in particular the commands that define
the total height of the wrapped object, or the total indention of the wrapping lines. We adopted
the robust definitions of the LATEX3 language.

But certainly the idiosyncrasies that Arseneau described in his original documentation are
still there; since the original patches to render the wrapping procedure compatible with other
classes and/or packages have not beenmodified, it is possible they have the same pros and cons.

What we noticed is that the two revised environments and the new one are performing
pretty well even without resorting to the correction mechanism that was the main reason for
upgrading the package; probably this is due to the different way of boxing the material to be
wrapped, or to the well conceived approach used by Arseneau.

Figure 2. Italian names of ametal type details

The small examples we showed in the previous
sections do not actually require any correction ex-
cept for the wrapped figure; probably with taller
objects the idiosyncrasies are more easily triggered.
In any case the small wrapped figure 2 did not re-
quire any adjustment.

Notice, though, that the 〈width〉 of the object to
be inserted refers to the true or estimated horizon-
tal dimension of that object; if the width estimation
is difficult, as with tabular material, it is better to
specify a larger value and to specify \centering in
order to insert the thinner object within the wider
space that wrapfig2 reserves to the object. If the
larger estimated width is too large, on a second
compilation run it is possible to specify a more
suitable value; when the specified width value is

22 | Claudio Beccari

ArsTEXnica

too small a black bar appears to the right of the inserted object. Even better: it is possible
to omit the 〈width〉 specification; as we said before, the 〈width〉 parameter is a braced optional
argument such that the software computes the necessary width quite well with figures and
tables; this is what we did with figure 2.

In any case the inserted object must not have white margins around; for the wrapped text
the built-in frame does not have any margins; for tables we already explained the difficulty of
estimating their width, but they don’t have any built-in white margins; the situation may be
critical with images; it is important to carefully crop them so as to eliminate all four margins;
resorting to the standalone package functionalities may be precious.

Acknowledgements

A hearty thank you goes to Donald Arseneau who first created thewrapfig package; many users
are grateful to him for this package. I warmly acknowledge his original package paternity.

Heinrich Flech submitted me the described problems and suggested to implement more
flexible correction solutions; I thank him very much.

I gratefully thank Lorenzo Pantieri who spotted some glitches in the first versions of this
new package.

I also heartily acknowledge the suggestions concerning various testing sections, and some
smart solutions to some problems received from Juan Luis Varona Malumbres.

Claudio Beccari
claudio.beccari@gmail.com

Package WrapFig2 | 23

Numero 33 · Aprile 2022

claudio.beccari@gmail.com

	Introduction
	How to compute the correction line number
	Necessary packages and preliminary settings

	Wrapped figures
	Wrapped tables
	Caution

	Wrapped text
	Performance

