
Functions in TEX and Elsewhere
Jean-Michel Hufflen

Abstract After a short survey about the notion of function in Mathematics and Computer Science,
we look into the relationships between (LA)TEX’s commands and features associated with functions:
processing arguments, possible side effects, . . . Then we explore the relationships between the notion of
types and the different kinds of objects handled by (LA)TEX’s commands.

Sommario Dopo una breve panoramica sulla nozione di funzione in Matematica e in Scienza del-
l’Informazione, esaminiamo la relazione tra i comandi (LA)TEX e le proprietà associate alle funzioni:
elaborazione degli argomenti, possibili effetti collaterali, ecc. Quindi esploriamo la relazione tra la
nozione di tipo e le differenti specie di oggetti gestite dai comandi (LA)TEX.

1. Introduction

The starting idea for this present article originates from Gregorio (2020a), presented at
last guIt

1 meeting, an English version also existing as Gregorio (2020b). At the beginning
of this article, Enrico Gregorio explains that within LATEX3’s terminology, there is a clear
separation between variables and functions: the former are used as containerswhereas the latter
perform some action when they are called. Let us recall that the first step towards LATEX3’s
implementation is the expl3 package, providing a new programming interface for LATEX. In
particular, new syntactic conventions can be put into action between the two commands
\ExplSyntaxOn and \ExplSyntaxOff (The LaTeX3 project, 2021). Let us go back to vari-
ables and functions within expl3, this separation only affects internal definitions, not user-level
commands, as explained in Gregorio (2020b). In fact, this distinction between containers
and action-performers already existed within TEX’s commands, but was not obvious, since
identical notations are used for both.

Hereafter we propose a short survey of this notion of function in Mathematics and Com-
puter Science, then we explore the relationships between functions and definitions expressed
using constructs of (LA)TEX’s language, such as \def or \newcommand. Often our examples
from more ‘classic’ programming originate from functional languages, where the notion of
function is obviously central. Besides, many programming languages use typeswithin function
definitions, we also sketch this notion and its relation with TEX’s commands. Reading this arti-
cle only requires basic knowledge in Mathematics and Computer Science. (LA)TEX’s commands
mentioned throughout this article are described in Knuth (1986);Mittelbach et al. (2004).

1. Gruppo Utilizzatori Italiani di TEX .

Numero 32 · Ottobre 2021

2. What is a function?

2.1. In Mathematics

Let us assume that readers are familiar with the notion of sets in Mathematics2. A binary
relation R between two sets 𝑆0 and 𝑆1 is a subset of the cartesian product 𝑆0 × 𝑆1. If for all
element 𝑥0 of 𝑆0:

(i) either there is no element of 𝑆1 associated with 𝑥0,

(ii) or only one element of 𝑆1 is,

thenR is a function from 𝑆0 to 𝑆1, 𝑆0 (resp. 𝑆1) being the set of departure (resp. destination) of
R. Formally, this definition can be expressed by:

∀(𝑥0, 𝑥1), (𝑦0, 𝑦1) ∈ R, 𝑥0 = 𝑦0 ⇒ 𝑥1 = 𝑦1

Let us notice that this definition is the most widespread, but is not universal. For example,
Grätzer (1979) andMac Lane (1971) consider only the (ii) condition, that is, applications
according to the most widespread terminology in Mathematics. So we can notice that this
notion of function is subject to variation.

A function of several arguments is a function whose domain is a cartesian product. A
zero-argument function 𝑓0 : → 𝑆1 may be viewed as 𝑓0 : {∅} → 𝑆1, as mentioned byGrätzer
(1979)3.

Let us recall that ‘classic’Mathematics are based on sets in the sense that basicmathematical
objects are introduced as sets. For example, an (𝑥0, 𝑥1) couple is formally defined as the set
{{𝑥0}, {𝑥0, 𝑥1}}. With this definition, we can show that two couples are equal if and only if
their elements are equal and in the same order4. As another example, a real number can be
defined as the set of its minoring rational numbers. A different approach, more based on a
notion of computation process, has been coined with the _-calculus (Church, 1941). Without
going thoroughly into the basic definitions of this formalism, let us mention that a function
such as:

𝑓 : ℝ −→ ℝ

𝑥 ↦→ 𝑥 + 1

would be denoted by 𝑓 = _𝑥 : ℝ . 𝑥 + 1 according to conventions closely related to typed
_-calculus, and 𝑓 = _𝑥 . 𝑥 + 1 in ‘simple’ _-calculus, without additional type information.
This ‘_’ notation, allowing a function to be wholly specified by an expression, has intensively
been used by functional programming languages, such as Lisp dialects (McCarthy, 1960) or
more modern languages such as Standard ML (Paulson, 1996) or Haskell (Peyton Jones,
2003). Such languages allow a function to be an argument or result of a subprogram. For
example, we can easily program a sort procedure parameterised by the relation order used
for elements. In addition, modern versions of general-purpose programming languages such

2. Readers interested in going thoroughly into this notion of sets can report to Halmos (1987), very didactic.
3. Let us remark that this definition has been exactly implemented in some programming languages—e.g., Haskell

(Peyton Jones, 2003)—: such a 𝑓0 function is of type () → 𝑆1 , where ‘()’ denotes the unit type, containing only
the () value.

4. The proof is quite tedious but not really difficult.

52 | Jean-Michel Hufflen

ArsTEXnica

as C++ (Stroustrup, 1991), Python (Lutz, 1996), and Java (Java, 1997) have included such
functional expressions5.

2.2. In Computer Science

2.2.1. Generalities

Calling a function, within programming languages used in Computer Science, is related to a
process, that is, a fragment of a computer program being executed. More precisely, a function
is a subprogram that produces a result, whereas other kinds of subprograms—procedures—
just perform some effects. Let us notice that the C programming language (Kernighan and
Ritchie, 1988) has reversed this view since a C program is a sequence of functions returning
results, particular cases are functions that returns a result being the void type: they just return
to the caller function, as procedures do within earlier programming languages such as Algol
(Naur, 1960) or Pascal (Wirth, 1971). Functions used within Computer Science may be very
different from mathematical functions, since they can modify their environment. As a very
simple example, the following C function counts the number of its calls—the nb_of_times
variable being defined at the top level—:

int nb_of_times = 0 ;

int plusone_plus(int x) {
nb_of_times++ ; return x + 1 ;

}

Let us mention that functional programming languages aim to put into action functions in
the mathematical sense of this word, without side effects—unlike imperative languages such
as Algol, Pascal or C—, but in practice, most of functional programming languages allow
assignments and physical change of structures, that is, side effects.

The previous example has a great drawback: since the nb_of_times variable is global, any
subprogram can modify it with its own way. A better version, related to the same functionality,
is given in Scheme by the following function, returning a linear list with the successor of a
number, followed by the number of calls of this function.Within this version, the nb-of-times
variable is local, installed at the definition of this plusone-plus-s function, and incremented
at each call, then saved. Only this plusone-plus-s function can access to the nb-of-times
variable, so this variable is protected against other access.

(define plusone-plus-s
(let ((nb-of-times 0))
(lambda (x)

(set! nb-of-times
(+ nb-of-times 1))

(list (+ x 1) nb-of-times))))

For example, the first two calls of this function could be:

(plusone-plus-s 2021) =⇒ (2022 1)
(plusone-plus-s 82) =⇒ (83 2)

5. A didactic introduction to these functional expressions used in Java 8 can be found in Liguori and Liguori (2014).

Functions in TEX and Elsewhere | 53

Numero 32 · Ottobre 2021

This example allows us to introduce the notion of closure. The plusone-plus-s func-
tion deals with a local environment, retaining the local variable nb-of-times. This local
variable must not be cleaned by a garbage collector between successive applications of the
plusone-plus-p function, and this function should be able to retrieve this variable whenever
it is called, that is possible by means of a mechanism so-called lexical closure. Some languages
do not provide closures, but modern ones—e.g., Python or Java—do it. Sometimes a lexical
closure allows a local variable to be read, but not written: this is the case in Java; Python’s
modern versions defaults to this behaviour, even if additional declarations allow such local
variables to be updated.

2.2.2. Functions vs other objects

On another point, the Scheme functional programming language allows us to emphasise a
great difference, between functions and special forms, already sketched in Hufflen (2020). Let
us recall that Scheme systematically uses prefixed forms, that is:

(* 16 10 (+ 1918 103)) =⇒ 323360
(if (= 2020 2021) ’ok ’ko) =⇒ ko

In the first example, a function—the product, denoted by *—is applied to numbers, which
may be directly provided or be the result of a computation, e.g., (+ 1918 103) =⇒ 2021.
In such a case, Scheme begins with the evaluation of all the arguments of a function before
applying it, that is, the strategy is based on calls by value6. In the second example, a condition is
evaluated, and depending on this result, the second or third argument of the if special form is
evaluated and gives the result of this special form. Let us remark that if cannot be a function
in Scheme; otherwise, it would evaluate all its arguments, which would be catastrophic in an
example such as:

(if (zero? j) #f (/ i j))

where ‘#f’ denotes the false logical value on Scheme. We can intuit that this expression
implements a protection against a division by zero. But if all the arguments of if were
evaluated, the (/ i j) expression would be evaluated even if j was equal to zero. So, it is
impossible, for a programming language, to express any construct by means of a function, if
calls by value are used for functions. More generally, this notion of special form applies to the
constructs predefined in a programming language, such as conditional or iterative constructs,
etc.7 Some languages—including Scheme— allows the definition of macros, in which case
the arguments of a macro are taken verbatim, without evaluation, as mentioned in ?h2020:

(define-syntax twice-m
(syntax-rules ()
((twice-m x)

6. Other strategies, possibly based on variables’ addresses, were used within the first programming languages, or are
still in use nowadays, especially within object-oriented languages. This point is outside this article’s scope.

7. The difference between functions and other constructs exists in languages other than Scheme, but within
‘traditional’ languages such as C, the latter are expressed by syntactic markers—e.g., ‘if (. . .) . . . ; else
. . . ;’—so the difference may appear more clearly. On the contrary, the same syntax is used for all commands
provided by TEX, as in Lisp dialects (including Scheme).

54 | Jean-Michel Hufflen

ArsTEXnica

(list (quote x) (quote x)))))

(twice-m (+ 2020 1)) =⇒
((+ 2020 1) (+ 2020 1))

2.2.3. Call by value or by need

Several recent functional programming languages —including Haskell—no longer use a call-
by-value strategy, but lazy evaluation (or call by need). An argument of a function is evaluated
only if need be, and is evaluated once in such a case. The main interest of thismodus operandi is
that it avoids the evaluation of a program that loops if its result is not needed. Let us consider
these two examples in C:
int endlessly() {

back : goto back ; (* Loops endlessly! *)
return 2020 ; (* Never reached. *)

}

int thisyearf(int x) { return 2021 ; }

We can observe that the result returned by the thisyearf function is independent of its
argument’s value, so evaluating it is not needed stricto sensu. However, the evaluation of the
expression:

thisyearf(endlessly())

loops: C’s call-by-value strategy causes the subexpression endlessly() to be evaluated. . .
without returning any value. Now let us look at an analagous definition using Haskell:

thisyearf x = 2021

The expression thisyearf (1 / 0) returns 2021 and the division by zero has not been
performed since the argument has not been evaluated. We do not want the reading of this
article to be slowed down, so some complements about the lazy evaluation have been put at
Appendix A. Hereafter we just mention that:

• the lazy evaluation allows the definition of infinite objects: if only a subpart is of interest,
the rest can remain untouched (cf. Appendix A);

• according to such a strategy, a conditional construct ‘if . . . then . . . else
. . . ’ can be viewed as a function: the first argument is evaluated, and according to
the result, either the second or the third is evaluated.

2.3. Functions and (LA)TEX

In practice, we can consider that the (LA)TEX’s commands introduced by constructs such as
\def in Plain TEX or \newcommand in LATEX are functions returning strings when expanded
fully. Other data types are used within TEX—e.g., counters, dimensions, etc.—but they are
defined by other constructs. Some commands may return an empty string, in particular the
commands that perform side effects, e.g.:

Functions in TEX and Elsewhere | 55

Numero 32 · Ottobre 2021

\def\skipfootnote{%
\addtocounter{footnote}{1}%

}

which skips a footnote number. This behaviour includes commands that performs new defini-
tions on the fly, e.g.:

\def\title#1{\gdef\@title{#1}}

After running this title command, the \@title command8 will be a container for the docu-
ment’s title. (LA)TEX’s commandswithout argument introduced by \def or \newcommand—e.g.,
\skipfootnote—are closer to zero-argument functions than constants (‘single’ elements of
a set), since they are evaluated as many times as they are called. They are closer to processes
than associations of variables with values.

There exists some significant similarity between TEX’s language and functional program-
ming languages: the latter allows functions to build new functions, the former allows com-
mands to run commands dynamically built. If the generated command’s name is the result of
some computation, the construct ‘\csname. . .\endcsname’ allows this name to be specified.

As mentioned inHufflen (2020), TEX is a dynamic language. There is no way to use lexical
closures. Let us consider this example, close to what we proposed in our previous article—let
us recall that if C is a counter, ‘\theC’ yields its value—:

\newcounter{lastyearc}
\setcounter{lastyearc}{2020}
\edef\firstsentence{%
We ain't in \thelastyearc, are we?\par}

\def\secondsentence{%
We are in \thelastyearc, ain't we?\par}

\addtocounter{lastyearc}{1}

The \secondsentence command yields the paragraph:

We are in 2021, ain’t we?

whereas the \firstsentence command’s body is expanded as far as possible at definition-
time:

We ain’t in 2020, are we?

So the \edef command allows a lexical scope to be simulated—as we show in Hufflen
(2020)—and prevents against a command’s redefinition. But the updates of a single command
are ignored, too. In addition, if an (LA)TEX command uses a local environment, changes on it
are not saved when this command exits. In TEX, persistent updatings can be applied only on
global definitions, as we do in our first example plusone_plus in C (cf. § 2.2.1).

As mentioned in Hufflen (2020), TEX’s commands are closer to macros than functions
since the arguments are taken verbatim and processed when the command’s body is expanded.
Such a modus operandi allows a command to be deferred until it is applied. Let us consider the
following definition:

8. Let us recall that this \@title command is both internal—its name contains the ‘@’ character—and global—it
has been introduced by the \gdef construct, which is a shorthand for ‘\global\def’.

56 | Jean-Michel Hufflen

ArsTEXnica

\def\apply#1#2{#1{#2}}

If the first argument of this \apply command is also a command, it is applied to the second
argument: ‘\apply{\uppercase}{ok}’ returns ‘OK’. Applying a command by giving its name
as a string, is possible, too:

\def\applywrtname#1#2{%
\csname#1\endcsname{#2}%

}

in which case an example could be:

\applywrtname{uppercase}{guit}

which produces ‘GUIT’. As in a macro, TEX command’s arguments are evaluated as many
times as they occur. Some workarounds allow multiple evaluations to be avoided, and a kind
of call by value can sometimes be simulated by using the \expandafter command (Knuth,
1986, p. 213), which expands the first token after the second. A ‘classic’ example is:

\uppercase\expandafter{\romannumeral 753}

where the \romannumeral command is expanded before the \uppercase command is ap-
plied, so this last command correctly processes Roman numerals and the result is ‘DC-
CLIII’, as expected. If the \expandafter is removed, then the \uppercase command pro-
cesses the group between braces verbatim—which returns this group unchanged—and the
\romannumeral command is applied, so the result is ‘dccliii’.

The use of a box as a container (Knuth, 1986, pp. 120–122) can allow multiple evaluations
of the same argument to be avoided, as shown in Hufflen (2020):

\newbox\tmpbox
\def\twicemversiontwo#1{%
\setbox\tmpbox\hbox{#1}%
[\unhcopy\tmpbox,\unhbox\tmpbox]%

}

It is more related to a call by need than a call by value. A command’s arguments are not
evaluated and the decision of making a box is taken inside the command’s body, in which case
an argument may be evaluated only once. In other words, we are very close to a lazy evaluation.

2.4. In LATEX3

As abovementioned, the first step towards the implementation of LATEX3 has consisted in
designing a new programming interface for LATEX by means of the expl3 package, documented
in The LaTeX3 project (2021). Let us go back to our purpose, this package provides inter-
esting and useful abstraction barriers between user-level commands and auxiliary definitions.
However, since all the definitions are expanded into ‘basic’ TEX’s language, this expl3 package
cannot add features impossible to put into action in ‘basic’ TEX. So LATEX3 remains a dynamic
language—as TEX—even if it possible to force expansions at definition-time. The scope of vari-
ables is clearly specified, but there is no local remanent variables which would allow closures.

Functions in TEX and Elsewhere | 57

Numero 32 · Ottobre 2021

Concerning the management of functions’ arguments, the expl3 package proposes type
specifiers that allow expansion to be controlled. As in TEX, this system is more related to
macros than functions, since the expansion level can be specified: one-level or recursively9;
in other words, the expansion can be limited. As an interesting innovation, specifying calls
by value is easier, since these specifiers can apply to any argument. In §2.3, we showed that
the \expandafter command can simulate it, but in practice this strategy is suitable for
a command’s first argument. For the others, we may have to put an impressive number
of occurrences of this command. From our point of view, the finer control of expanding
arguments is actually a great contribution of LATEX3.

3. Types

3.1. In Computer Science

Within this short survey, we do not go thoroughly into theoretical aspects about type theory10;
according to a basic approach, we only consider a type as a characterisation of possible values
for expressions used throughout programs. Regarding how types are handled, programming
languages can be divided into three categories:

typed any value belongs to a type;

strongly typed in addition, variables are given a type;

untyped all the possible values belong to one type.

These definitions are the most commonly used, although some variations may be observed
according to literature sources. In addition, we make precise that:

• in some languages, a type inferencemechanism allows end users to be discharged from
mentioning types; for example, Haskell acknowledges the definition of a function by
making precise the arguments’ types and result’s; nevertheless, types are omnipresent
within such languages: if the type inference fails, the corresponding definition or ex-
pression is rejected11;

• some languages—including Scheme—manage types dynamically: functions allow users
to be informed about any value’s type;

• types and type errors should not be confused: for example, some people consider thatScheme is untyped because it is typed dynamically, but some type errors may occur—
e.g., if an arithmetic operation is applied to non-numeric values—; as another example,
pl/1 (IBM System 360, 1968) used type declarations, but a rich collection of conversion
functions allowed a subprogram to be applied to any value (!), so type clashes were
impossible within this language.

9. . . . which is close to calls by value.
10. Interested readers can consult Collins (2012), recent and very well documented about historical aspects of this

part of Theoretical Computer Science.
11. For example, if the thisyearf function—cf. § 2.2.3—is processed by Standard ML, it acknowledges this function

by giving its type: ‘’a -> int’, where ‘’a’ stands for ‘any type, denoted by a’.

58 | Jean-Michel Hufflen

ArsTEXnica

3.2. Types and (LA)TEX

Obviously, TEX’s kernel is not a strongly typed language. Defining new types is not allowed,
either. Is TEX an untyped language? We do not think so. In addition to characters and strings,
it handles numbers, counters, dimensions, registers, and tables. A command crashes if it is
applied to an object being a wrong type.

Is TEX a language dynamically typed? Sometimes, but not always. There is no test functions
as in Scheme—number?, string?, etc.—but in some cases, a workaround may allow us to
guess an object’s type. Any TEXpert knows how to check if a \c command exists:

\expandafter\ifx\csname c\endcsname\relax%
. . . % If the \c command is undefined, define it

% as the \relax command and expand
% this first part.

\else. . . % Expand this second part if the \c
% command is already defined.

\fi

by using the construct ‘\csname. . .\endcsname’, mentioned at § 2.3. This modus operandi has
been abbreviated in LATEX by:

\@ifundefined\c{. . . }{. . . }

and improved in e-TEX by the constructs:

\ifcsname c\endcsname. . . % If \c is defined.
\else. . . % If not, it remains undefined.

\fi

or \ifdefined\c{. . . }{. . . }, equivalent to the previous expression.

Let us now go back to something close to type-checking and as an example, let us assume
that we are wondering if a LATEX command can be applied to a counter defined by means of
the \newcounter command. Let ct be the first argument: if it is actually such a counter, the
\thect command allows its value to be displayed, so we can check if this command exists.
Let us notice that such a test is a kind of false-biased Monte Carlo algorithm12: it is very quick;
if it returns false, we are sure that the ct counter does not exist; if it returns true, the \thect
command may exist without connection with a ct counter, even if such a case rarely occurs
in practice. Besides, this modus operandi works with LATEX’s counters, not with TEX’s counters
introduced by the \newcount command.

In fact, checking non-string objects in (LA)TEX could be easier if TEX’s kernel included an
error-handling mechanism, because all the non-string objects handled by TEX can be accessed
by the \the command, which returns a string representation of such an object. But the ‘trick’
we have recalled applies only to a command name, we cannot check the validity of a complete
expression.

12. In Computing, aMonte Carlo algorithm is an algorithm—often randomised, but always quick—whose output
may be incorrect with a certain probability, quite small in practice (Metropolis, 1987).

Functions in TEX and Elsewhere | 59

Numero 32 · Ottobre 2021

3.3. In LATEX3

Obviously the designers of LATEX3 have wanted to put into action a strongly typed language. As
explained in Gregorio (2020b), this decision does not apply to user-level commands, but to
the implementation of such commands. On another point, it is preferable for LATEX3’s syntax
to be close to LATEX’s. So the types of variables are not given as annotations—like in C—but
belongs to the names of variables. For example, \g_example_title_tl, where ‘tl’ stands
for ‘token list’. More generally, the format for a variable name is:

\⟨scope⟩_⟨prefix⟩_⟨proper name⟩_⟨type⟩

where:

• ⟨scope⟩ is ‘c’ for a constant, ‘g’ for a global variable, ‘l’ for a local one;

• ⟨prefix⟩ is a package name;

• ⟨proper name⟩ is the ‘actual’ name of the variable;

• ⟨type⟩ denotes its type.

Function names are similar:

\⟨prefix⟩_⟨proper name⟩_⟨signature⟩

where ⟨signature⟩ is a sequence of characters denoting the type of the function’s successive
arguments. For example, the arguments of the \seq_seq_slit:Nnn function are respectively
of types N, n, and n; that is, a single token and two braced lists of tokens. The type of a function’s
result is not given within its signature.

Type specifications are different for variables and functions. A variable can retain any
object of TEX, that is why types such as ‘int’—for integers—or ‘box’ are allowed. The letters
used within function signatures are related either to the look of the corresponding argument—
e.g., ‘c’ is for a braced argument—or its evaluation. As mentioned in §2.4, the expansion of an
argument can be controlled by using:

• ‘e’ for consuming an expansion’s result;

• ‘f’ for a recursive expansion, ending as soon as an unexpandable token is found;

• ‘o’ for a one-level expansion;

• ‘x’ for a compile-time expansion, as performed by TEX’s \edef construct.

The expl3 package provides a rich collection of predefined types. We personally regret
that there is no way to define new type of containers in order to retain more structured
information. But maybe it is planned for future versions. . . The information provided by
signatures is very precise, provided that the expansion mechanism of TEX is mastered by
programmers. Checking the type of a result is both easy and tedious: there is no functions
checking types, we have to retain a result into a variable whose type is given.

60 | Jean-Michel Hufflen

ArsTEXnica

4. Conclusion

The purpose of this article is twofold. The first point is that there are some variations about
terms frequently used within programming. The list of the programming languages we have
cited throughout this article is obviously non-limitative, it shows how different the imple-
mentations of comparable notions are. As a consequence, the writers of a documentation
should be very careful and precise about terminology. The second point, started in Hufflen
(2020), consists of studying the programming in TEX, since its modus operandi is quite apart
from the other programming paradigms. We have showed that about the notions of functions
and types. We can be told that this language is very specialised and has been recognised
very suitable for typesetting texts (!), but the need for functionalities more related to ‘classic’
programming has led to the coexistence of TEX and another programming language, the best
example being LuaTEX (Hagen, 2006). In addition, some features very specific to (LA)TEX may
be difficult to understand, so it may be useful to compare them with analogous functionalities
within other languages. That is true about TEX’s kernel language, but will probably be true for
LATEX3’s future language. The mechanisms put into action with this project are interesting and
promising, especially if we consider the clear separation between the interface of commands
and their implementation. But undoubtedly the behaviour put into action within LATEX3 will
be very different to the other programming paradigms, too.

A. Lazy evaluation

As mentioned in §2.2.3, if a lazy-evaluation strategy is used, an argument of a function is
evaluated only if need be. For example, let us consider the following definition:

succ2nd x y = y + 1

Evaluating ‘succ2nd (1 / 0) 2020’ yields 2021 and the first argument of the succ2nd
function—the expression ‘(1 / 0)’—has been untouched, whereas ‘succ2nd 2020 (1 /
0)’ fails because the second argument needs to be evaluated in order to perform the addition.

We also mentioned that this approach allows the specification of infinite objects. Hereafter,
we show the easiest way to see that:

• a structure may be evaluated only partially;

• a part of such a structure, if it is evaluated, is evaluated once.

A very simple example of an infinite object in Haskell is:
naturalnumberlist =

let from n = n : from (n + 1)
in from 0

The internal function from returns a list of all the natural numbers from n—where n ∈ ℕ—
that is, n followed13 by the list of all the natural numbers from n + 1. Obviously, the lists
returned by the internal function from—including thenaturalnumberlist variable’s value—
are infinite objects. Let us use the ghci14 compiler of Haskell and its :sprint tool, typing the
13. In Haskell, the ‘:’ infix operator separates the first element of a list and the following ones.
14. Glasgow Haskell Compiler Interactive. A didactic introduction to it can be found in O’Sullivan et al. (2010).

Functions in TEX and Elsewhere | 61

Numero 32 · Ottobre 2021

command ‘:sprint naturalnumberlist’ causes the following output to be displayed:

naturalnumberlist = _

where ‘_’ means that the expression has not been evaluated yet. Now let us access the elements
Nos. 0 and 2 of this list15:

naturalnumberlist !! 0 =⇒ 0
naturalnumberlist !! 2 =⇒ 2

After these twoevaluations, let us typeagain theghci command—‘:sprint naturalnumberlist’
—and the result is:

naturalnumberlist = 0 : 1 : 2 : _

When we access to a particular element—or more generally a finite part—of this list, we need
to compute all the elements before it, but the elements located after it can remain unevaluated:
that is expressed by the ‘_’ notation for the part of the list that is not evaluated yet. Some
elements could be evaluated in the future if we move forward in this list. Of course, evaluating
naturalnumberlist itself would cause an infinite loop to occur.

Acknowledgements

I am very grateful to the anonymous referees of this article’s first version, since I was given
constructive comments and an Italian translation of my abstract. I also thank Denis Bitouzé
for his valuable comments.

References

Church, Alonzo (1941). The Calculi of Lambda-Conversion. Princeton University Press.

Collins, Jordan E. (2012). A History of the Theory of Types: Developments After the Second
Edition of ‘Principia Mathematica’. Lambert Academic Publishing.

Grätzer, George (1979). Universal Algebra. Springer-Verlag, 2nd edition.

Gregorio, Enrico (2020a). «Funzioni e expl3». ArsTEXnica, 30, pp. 38–50. In Proc. guit 2020
meeting.

— (2020b). «Functions and expl3». TUGBoat, 41 (3), pp. 299–307.
Hagen, Hans (2006). «LuaTEX: Howling to the moon». Biuletyn Polskiej Grupy Użytkowników

Systemu TEX, 23, pp. 63–68.

Halmos, Paul Richard (1987). Naive Set Theory. Undergraduate Texts in Mathematics.
Springer-Verlag.

Hufflen, Jean-Michel (2020). «Which success for TEX as an old program?» ArsTEXnica, 30,
pp. 24–30. In Proc. guit 2020 meeting.

15. In Haskell, the positions inside a list are numbered from zero, as in C.

62 | Jean-Michel Hufflen

ArsTEXnica

IBM System 360 (1968). pl/1 Reference Manual.

Java (1997). The Source for Java™ Technology. Documentation available at: http://java.
sun.com.

Kernighan, Brian W. and Dennis M. Ritchie (1988). The C Programming Language. Prentice
Hall, 2nd edition.

Knuth, Donald Ervin (1986). Computers & Typesetting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.

The LaTeX3 project (2021). The LATEX3 Interfaces. http://ctan.math.illinois.edu/
macros/latex/contrib/l3kernel/interface3.pdf.

Liguori, Robert and Patricia Liguori (2014). Java 8 Pocket Guide. Instant Help for Java
Programmers. O’Reilly.

Lutz, Mark (1996). Programming Python. O’Reilly & Associates.

Mac Lane, Saunders (1971). Categories for the Working Mathematician. Numero 5 in Graduate
Texts in Mathematics. Springer-Verlag.

McCarthy, John (1960). «Recursive functions of symbolic expressions and their computation
by machine, part I». Communications of the ACM, 3 (4), pp. 184–195.

Metropolis, N. (1987). «The beginning of the Monte Carlo method». Los Alamos Science, 15,
p. 125–130.

Mittelbach, Frank and Michel Goossens, with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and Joachim Schrod (2004). The LATEX Companion.
Addison-Wesley Publishing Company, Reading, Massachusetts, 2nd edition.

Naur, Peter (1960). «Report on the algorithmic language Algol 60». Communications of the
ACM, 3 (5), pp. 299–314.

O’Sullivan, Bryan, John Goerzen and Don Stewart (2010). Real World Haskell. O’Reilly.
Paulson, Lawrence C. (1996). ml for the Working Programmer. Cambridge University Press,

2ª edizione.

Peyton Jones, Simon (ed.) (2003). Haskell 98 Language and Libraries. The Revised Report.
Cambridge University Press.

Stroustrup, Bjarne (1991). The C++ Programming Language. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 2nd edition.

Wirth, Niklaus (1971). «The programming language Pascal». Acta Informatica, 1 (1), pp.
35–63.

Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) & University of Bourgogne Franche-Comté,
16, route de Gray,
25030 BESANÇON CEDEX
FRANCE
jmhuffle@femto-st.fr

Functions in TEX and Elsewhere | 63

Numero 32 · Ottobre 2021

http://java.sun.com
http://java.sun.com
http://ctan.math.illinois.edu/macros/latex/contrib/l3kernel/interface3.pdf
http://ctan.math.illinois.edu/macros/latex/contrib/l3kernel/interface3.pdf
jmhuffle@femto-st.fr

	Introduction
	What is a function?
	In Mathematics
	In Computer Science
	Generalities
	Functions vs other objects
	Call by value or by need

	Functions and (La)TeX
	In LaTeX3

	Types
	In Computer Science
	Types and (La)TeX
	In LaTeX3

	Conclusion
	Lazy evaluation

