
Which Success for TEX as an Old Program?

Jean-Michel Hufflen

Abstract
We propose a personal analysis of TEX’s strong
and weak points. In particular, we show that this
program’s history can explain some conventions
viewed as strange nowadays. From a point of view
related to teaching LATEX to Computer Science
students, going thoroughly into these strong and
weak points allows us to show how this field has
evolved over decades.

Sommario
In questo articolo è proposta un’analisi dei punti
di forza e di debolezza di TEX. In particolare, si
mostra come la storia di questo programma possa
spiegare alcune convenzioni, che al giorno d’oggi
possono sembrare poco familiari. Dal punto di vi-
sta di chi insegna LATEX a studenti che seguono
corsi di informatica, esaminare scrupolosamente
tali punti di forza e di debolezza consente di mo-
strare l’evoluzione, nel corso dei decenni, di questo
campo di studi.

1 Introduction
The story has begun in 1978. Donald Knuth pro-
vided a powerful system, as a kernel and a format,
Plain TEX, able to typeset texts. The adaptation
of the notion of document type—originating from
Scribe (Reid, 1984)—by Leslie Lamport resulted
in a new format, LATEX, built out of TEX. LATEX is
the most well-known format nowadays, especially
within scientific publication, but also used in other
topics, including history, humanities and social sci-
ences. As another illustration of this success, the
curricula of many universities and high schools
include an introduction to LATEX. A good exam-
ple of support material for such an introduction
is given as part of last guIt1 meeting (2019). Of
course, such an introduction is designed for PhD
students, but sometimes also for graduate or un-
dergraduate ones. This way, they can learn how
to manage large-sized documents. Beyond LATEX’s
basic commands and environments, they can get
aware of the separation of data and presentation,
and more generally, the separation of form and
substance.

TEX’s kernel is a very old—and old-fashioned—
program: as mentioned above, its first version came
out in 1978. Current coding practices in program-
ming have very little to do with the look of the lan-

1. Gruppo Utilizzatori Italiani di TEX .

guages of that time. Nevertheless, the typesetting
systems built out of TEX are still widespread. More-
over, TEX’s end has been announced many times. . .
but the word processors based on TEX—LATEX,
ConTEXt (Hagen, 2001), more recent—remain
unrivalled for getting high-quality output prints.
Only a few programs got a lifetime comparable to
TEX’s. But, due to some design choices, this pro-
gram shows its age, even it is still at the forefront.
Hereafter we propose a personal analysis of

strong and weak points of LATEX. We aim to empha-
sise that most of the weak points that perpetuate
in recent versions result from design choices per-
formed since the first versions. Teaching TEX & Co.
to new end-users may be complicated because of
these weak points, because they may be difficult
to justify. But we think that Computer Science
students—especially undergraduate ones—can get
some experience from going thoroughly into this
program. They can see how some initial design
choices may become recurrent from a version to
another. They can also discover how programming
and software engineering have evolved since TEX’s
first version. In Section 2, we briefly recall the ad-
vantages of these typesetting systems. Section 3 is
devoted to the some ‘historical’ conventions that
may seem to be strange to new users. After dis-
cussing our way to introduce LATEX in Section 4, we
conclude about our approach. Reading this farticle
only requires basic knowledge about (LA)TEX, more
precise details can be found in (Knuth, 1986a,b;
Mittelbach et al., 2004). Some technical points
more related to Computer Science technique are
explained in appendices: we tried to be precise for
readers unfamiliar with Computer Science, without
being too technical.

2 LATEX’s advantages
As mentioned above, the typesetting systems built
out of TEX are unrivalled for getting high-quality
output prints. They are not interactive, they work
like a programming language’s compiler. This point
may be viewed as a drawback in comparison with
interactive wysiwyg2 systems. In fact, people writ-
ing very short reports or formatting documents
that will be not reworked later may prefer inter-
active and graphical menus of systems such as Mi-
crosoft Word or InDesign. On the contrary, LATEX
is often preferred by users writing large-sized doc-

2. ‘What You See Is What You Get’, in contrast to
wysiwym (What You See Is What You Mean) systems.

24

uments, or articles existing in different versions:
a simple example can be given by an article in-
cluded into a conference’s proceedings, and later
republished in a journal’s issue, the layouts of these
two versions may differ. For example, the former
may be based on one-column layout, the latter on
two-column layout.

TEX’s kernel includes a kind of programming lan-
guage, allowing users to develop new functions or
customise existing ones. Roughly speaking, this lan-
guage, mainly based on macros3, is old-fashioned,
and putting ambitious applications using it may
be tedious, but many forums of LATEX users, or-
ganised by local user groups—e.g., guIt—can help
new programmers fix many mistakes. Anyway, such
synergy among end-users is an important feature
of free software. The same holds true for ConTEXt.
LATEX’s current version—LATEX2ε—came out in
1994 (Lamport, 1994). As a suitable illustration of
such synergy, this version provides many packages
(Mittelbach et al., 2004), developed by many
users and whose fields are very diverse: some can
be used for literary purposes, some are devoted to
applications in Physics and Chemistry, etc. Many
graphical tools usable around LATEX have been
developed, too, as described in (Goossens et al.,
2009).

L. Lamport (1994) introduces LATEX2ε as a
higher-level system, in comparison with Plain TEX.
This effort to move towards a very high-level pro-
gramming language to express tasks LATEX can per-
form is in progress with the LATEX 3 project (Mit-
telbach and Schöpf, 1991). The result should
be a language whose syntax is very different than
LATEX2ε’s, this new language using precise nota-
tions for types, variables, functions and evaluation
strategies. As shown in (LATEX3 project, 2020),
the expl3 package allows end-users to experiment
this new syntax. A recent survey is given in (Mit-
telbach and the LATEX3 project team, 2020).

Although TEX’s end, as a legacy program’s, was
announced many times, new versions progressively
incorporated modern requirements such as interna-
tionalisation or new schemes for font management.
Moreover, the expressive power of engines based on
TEX’s kernel has been greatly increased by coupling
it with a modern programming language. The most
known example is LuaTEX (Hagen, 2006), where
the engine can call procedures written using the
Lua language (Ierusalimschy, 2006), other ex-
periment connect TEX with Python (Lutz, 1996).
Interesting applications based on such a modus
operandi can be found in (Menke, 2019; Ziegen-
hagen, 2019). Developing such channels of com-
munication between TEX and modern languages
have succeeded, but let us mention that putting
such extensions into action by using TEX’s imple-
mentation language would have been perilous: on

3. See Appendix A for more details about this notion.

the one hand, this language is no longer practised,
on the another hand, no one but D. Knuth is suf-
ficiently familiar with TEX’s sources in order to
change them.

3 LATEX’s strange behaviour
If you practise LATEX for many years, you probably
got used to these points for a long time. But if you
have now to design an introduction to new end-
users, some conventions will immediately appear
as strange. Syntactic rules for mark-up are more
homogeneous in LATEX than in Plain TEX4: a good
example is given by the use of square brackets for
commands’ optional arguments. The recommended
use of:

\begin{name} . . . \end{name}

—where name is a command name dealing with
sizes, such as small or large—rather than:

{ \name ... }

makes easier the use of such commands5. But let
us remark that braces are often used to delimit
arguments, and sometimes to limit local behaviour,
what may be ambiguous. On the contrary, the
duplicate commands for font style changes—e.g.:

\textbf{...} vs {\bfseries ...}

is related to the difference between short and long
commands (Mittelbach et al., 2004, Table 7.2):
the latter can include an end-of-paragraph mark—
that is the \par command—not the former. But
this difference is less relevant than thirty years ago:
at that time, running LATEX on a document that
was about one hundred pages long took a while6.
When LATEX processed such an end-of-paragraph
mark, checking that there was no short command
unclosed before continuing seemed more efficient
than taking a while in order to reach the docu-
ment’s end, performing such check, and discovering
that many commands were unclosed. But due to
progress about computers’ efficiency, this point is
less justified nowadays.
TEX’s language allows Computer Science stu-

dents to deal with a dynamic language, whereas
the programming languages used nowadays are
lexical, in general (cf. Appendix B). When modern
programming languages are used, compiling source
files is based on both lexical and syntactic analyses.
On the contrary, TEX’s analyser of input streams
has only one analyser, performing the whole of
the process. As an illustration of old-fashioned
4. . . . but such rules are more systematic in ConTEXt

than in LATEX.
5. The same remark applies to LATEX’s sloppypar envi-

ronment, in comparison with the \sloppy command (Mit-
telbach et al., 2004, p. 103).

6. We personally remembered that time, as reported in
(Hufflen, 2003) in French.

ArsTEXnica Nº 30, Ottobre 2020 Which Success for TEX as an Old Program?

25

syntactic conventions, a command’s name must be
followed by a separator, and a space character used
as such is not put in the ouput built by LATEX:

\LaTeX is beautiful (1)

(it is well-known that a possible workaround is to
replace ‘\LaTeX ’ by ‘\LaTeX\ ’). Likewise, some
strange behaviour result from the dynamic pro-
cessing of conditional expressions: more examples
are given in Appendix C.
In other situations, LATEX aims to be ready for

the next run. When we teach cross-references—
by means of the commands \label and \ref—
to students, they ask if it would possible to iter-
ate LATEX’s running until solving cross-references
reaches a stable state7. Here also, the answer is
given by what happened many years ago: when
a text was not finished, end-users may run LATEX
just in order to ensure that there was no syntactic
mistake, but these end-users were not interested
in checking an unfinished text’s layout, they only
aimed to know if they could go on later with their
text. Let us recall that at that time, running LATEX
sometimes took a while. . .

According to a close point of view, LATEX some-
times aims to be ready for the next run, provided
that end-users help it. When LATEX warns an end-
user about an overfull hbox, often it allows this
user to see where a word should be hyphenated.
Even if a good technique is to fix that only on a
text’s final version, such convention yields good
result, provided that end-users understand that
LATEX does not always build the best and final
version, but allows users to approach it at next
run. This point also holds on about marginal notes
misplaced at a page’s beginning. About vertical
alignment of successive paragraphs on the same
page, it has been said that TEX was either per-
fect, or deficient. In fact, if you aim to reach
higher-level quality, these problems—orphans and
widows—could be solved by using some commands
such as \looseness (Knuth, 1986a, pp. 103–104).
More recently, some advanced features of the mi-
crotype package (Schlicht, 2010)—protrusion
and font expansion—based on the pdf8 format—
allow final texts to be reworked very precisely.
This package also allows tracking9—that is, work-
ing on space between letters—by means of the
commands \textls and \SetTracking, but this
modus operandi should be very marginal. Any-
way it should be reserved for very difficult cases,
because it is not recommended within good typog-
raphy, it should be applied to fragments using only
capitals or only small capitals.
7. Let us remark that such iteration aiming to solve

cross-references is done by ConTEXt’s texexec command.
8. Portable Document Format, Adobe’s format.
9. This feature is also provided by the companion package

letterspace, and by the soul package (Mittelbach et al.,
2004, § 3.1.7).

4 Discussion
As mentioned above, TEX’s syntax is compli-
cated, in comparison with LATEX’s. For example,
LATEX recommends an \input command’s argu-
ment to be surrounded by braces—as any com-
mand’s argument—whereas braces are not needed
in Plain TEX. As any end-user may see, $\frac12$
yields ‘ 1

2 ’, that is ‘1’ and ‘2’ are obviously distinct
tokens. That is not true for ‘16’ in the following
statement:

\write16{Do you enjoy \LaTeX?}

displaying the second argument at a terminal
(Knuth, 1986a, pp. 226–228). In addition, braces
are not allowed to surround an output stream
number, the first argument of the \write com-
mand. LATEX tries to deal with more systematic
notations, but in general, what is usable in Plain
TEX works within LATEX. Some notations origi-
nating from Plain TEX are still used, because of
bad habits. For example, ‘$$...$$’ for a centered
mathematical formula, although this convention
is deprecated in LATEX and should be replaced
by ‘\[...\]’ (Downes, 2017, § 2.1). Plain TEX ’s
conditional statements (cf. Appendix C) are old-
fashioned and in LATEX, we should use only the
\newif command for simple cases (Knuth, 1986a,
p. 211)) and the ifthen package (Mittelbach
et al., 2004, § A.3.2) or even better the etoolbox
package (Lehman and Wright, 2020) for the
others. But many source texts of packages use
these old conditional statements. User-defined com-
mands should be able to end with a space character
if need be when the xspace pakage (Mittelbach
et al., 2004, § 3.1.2) is used. So, the behaviour
pointed at (1) can be avoided. But this package
sometimes makes a wrong decision, in which case
some settings belonging to this package can be
needed (Carlisle and Høgholm, 2014), putting
‘{}’ at the end of such a command being another
immediate solution.
We agree that some technical points may be

avoided for non-Computer Science students. As
an Assistant Professor of Computer Science, we
think that Computer Science is. . . a science, and
we have to teach this point to our students, who
aim to be specialised in this topic. This science
encompasses techniques and methods, but also has
a History. Some programs got a very long lifetime,
because they have been able to incorporate some
new requirements, and a program such as TEX can
illustrate that. Some programs are monolithic and
it seems too difficult to rework the kernel: TEX
belongs to this kind of programs, too. Some tech-
niques have been experienced in Computer Science
and have led to some behaviour difficult to under-
stand and reproduce, or to some inconsistency: the
problems raised by the way TEX parses its pro-
grams can show that. Some students have never

Jean-Michel Hufflen ArsTEXnica Nº 30, Ottobre 2020

26

read any program using ‘goto’ statements: some
examples chosen within (Knuth, 1986b) can il-
lustrate this technique. . . and its drawbacks. This
choice is relevant since TEX’s implementation lan-
guage, WEB10, is quite structured, that is, the use
of ‘goto’ statements is marginal, but instructive
from a teaching point of view. Last, but not least,
many students program as if they take no care of
efficiency11. Here also, we can speak about NTS12

(Taylor et al., 2000). This rewriting of TEX in
Java, developed at the 20th century’s end, focused
mainly on an object-oriented approach and ne-
glected efficiency questions. As a result, this pro-
gram worked much slower than the original TEX
program and was unable to replace it.

To sum up, we think that the students who aim
to become computer scientists can take advantage
to the study of some obscure points of TEX. This
program is still used: they can learn how it has
been designed and how it works. This is an occasion
of dealing with old techniques, not artificially. In
fact, most of them enjoy that13.

5 Conclusion
People who have to process short texts, or texts
that will be not reworked, may be not interested in
learning LATEX. The advantages of its approach are
relevant for big-sized documents, possibly written
by several authors. On another point, the curricu-
lum of our students in Computer Science includes
some projects, by groups. Every project ends with
a report and an oral defence. We have noticed
that many groups use LATEX for these two tasks,
although they do not have to. Anyway, we can
deduce that they enjoy using this typesetting pro-
gram. The final touch of our lecture consists of
a short introduction to Overleaf (2020), which is
a collaborative cloud-based editor of LATEX docu-
ments and templates. Even if the LATEX version
used may be not updated, even if no program
can impose consistency about the style of several
authors, students dealt with these aspects, and
they noticed that LATEX was able to be adapted to
such modern use. We began to experience this way
last year, just before the Covid health crisis (!).
Of course, we do not know how long it will last,
but since teleworking is now encouraged, we think
that our students follow the right path. To sum
up, we are a happy teacher of LATEX, especially to

10. A good introduction to this language is (Knuth,
1992).

11. For example, ask them for a program checking if a
string s is a palindrom. Many will answer s = reverse(s),
where reverse returns the reversed form of a string. Of
course, such a solution would be acceptable for a specifica-
tion, but not for a real program, that would perform more
comparisons than needed.
12. New Typesetting System.
13. But we recognise that these obscure points of TEX

have never been used within any examination!

Computer Science students. We hope that these
students are happy, too, even if they go behind the
scenes.

A Functions vs macros
Most often, functions belonging to modern pro-
gramming languages use calls by value, that is, an
argument is evaluated before applying this function.
Let us consider the following function, written us-
ing Python, returning a list, its two elements being
equal to the function’s argument:

def twicef(x):
return [x,x]

If you try to evaluate twicef(2019 + 1), first
the argument is evaluated to 2020, and then this
value 2020 is bound to the local argument x. Of
course, the result is the list [2020,2020]. Differ-
ent techniques may be applied in other languages,
including more modern techniques that optimise
the evaluation of an argument—interested read-
ers can find a survey in (Aho et al., 2006)—but
in general, an argument of such a subprogram is
not evaluated several times14. Now let us consider
this definition of a macro of the Scheme functional
programming language15:

(define-syntax twice-m
(syntax-rules ()

((twice-m x) ; Such a call is expanded to:
(list (quote x) (quote x)))))

Let us recall that Scheme systematically uses pre-
fixed operators, as shown by this evaluation:

(+ 2019 1) =⇒ 2020

but when a macro is called, every argument is
processed as it is. Let us notice that the quote
special form16—used within the expanded form of
the twice-m macro—inhibits the evaluation of its
argument, so:

(twice-m (+ 2019 1)) =⇒
((+ 2019 1) (+ 2019 1))

TEX’s commands are closer to macros than func-
tions17:

\def\twicem#1{[#1,#1]}

14. . . . except for some early programming languages. . .
That was a long time ago. . .

15. A good introduction to this functional programming
language, including its modern hygienic macro system, is
(Dybvig, 1996).

16. Of course, quote is not a function.
17. By the way, let us mention that LATEX 3’s terminol-

ogy uses the function word (LATEX3 project, 2020), but
according to a different sense in comparison with functional
programming languages, even if programming functions ac-
cording to this ‘classical’ sense is possible with expl3 (Gre-
gorio, 2020). In fact, commands are divided into variables
and functions, precise conventions rule available strategies
for parameter passing.

ArsTEXnica Nº 30, Ottobre 2020 Which Success for TEX as an Old Program?

27

That command builds its argument twice since
it is put twice within the result. A simple test is
given by an expression incrementing a counter and
returning it18:

\newcounter{c}
\twicem{\stepcounter{c}\thec}

which yields ‘[1,2]’. If you would like this argu-
ment to be build only once, just put a box (Knuth,
1986a, pp. 120–122) as a container:

\newbox\tmpbox
\def\twicemversiontwo#1{%

\setbox\tmpbox\hbox{#1}%
[\unhcopy\tmpbox,\unhbox\tmpbox]}

and the expression:

\twicemversiontwo{\stepcounter{c}\thec}

now yields ‘[3,3]’. Simpler cases can be solved by
using local definitions or the \expandafter macro
(Knuth, 1986a, p. 213).

B Lexically or dynamically
The difference between lexical and dynamic pro-
gramming languages is related to variables’ scope.
Let us consider a subprogram that uses a notation
not included into its arguments. When this subpro-
gram is applied, a lexical (resp. dynamic) scope is
put into action if we consider the value associated
with this notation at definition-time (resp. run-
time). Most programming languages used nowa-
days are lexical. About TEX, let us consider the
following example, already given in (Hufflen,
2009):

\def\state{happy}
\edef\firstquestion{%

You’re \state, ain’t U?\par}
\def\secondquestion{%

You’re \state, ain’t U?\par}
\def\state{afraid}

In Plain TEX, many commands are introduced us-
ing the \def command (Knuth, 1986a, Ch. 20):
such commands are dynamic, that is, other com-
mands used inside bodies are expanded at run-
time, so processing \secondquestion causes the
paragraph:

You’re afraid, ain’t U?

to be typeset. By default, TEX is dynamic, but
some lexical behaviour can be expressed using
TEX’s \edef command, because the whole body
of such a command is fully expanded as soon
as this command is defined. So, processing the
\firstquestion command causes the paragraph:

You’re happy, ain’t U?
18. The c counter, defined hereafter, will be reused later.

def max3(x,y,z):
if x >= y :

if z >= x : return z
else : return x

elif z >= y : return z
else : return y

Figure 1: Python program using conditional statements.

to be processed, even if the \state command
has been redefined. LATEX’s kernel provides the
\protected@edef command (Mittelbach et al.,
2004, p. 892), similar to \edef. However, LATEX
can be viewed as dynamic, since the preferred ways
to define new commands—the \newcommand com-
mand and similar constructs mentioned in (Mit-
telbach et al., 2004, § A.1.2)—introduce dynamic
commands.

We have to pay particular attention when \edef
is used for commands with arguments, since such
a definition’s body is expanded as far as possi-
ble at definition-time—some pitfalls are described
in (Knuth, 1986a, pp. 215–216)—in particular,
it is unsuitable to avoid an argument’s multiple
evaluation in the commands given in § A:

\def\twicemversionthree#1{%
\edef\tmp{\noexpand#1}%
[\tmp,\tmp]}

If the \noexpand command (Knuth, 1986a, p. 213)
is removed within the previous definition, it crashes
because the argument is unavailable at definition-
time. Processing:

\twicemversionthree{\stepcounter{c}\thec}

yields ‘[3,3]’, that is, the c counter has not been
incremented, the argument is not evaluated.

C Processing conditional
expressions

As an example of using conditional statements,
Fig. 1 gives a Python function returning the great-
est value among three numbers. In Python and
most of modern programming languages, some con-
structs are specified by means of reserved words,
e.g., ‘if’, ‘else’, ‘elif’ (for ‘else if’). Such a re-
served word cannot be used as a variable and con-
ventions based on delimiters allow us to use them
as literals: ‘ ’if’ ’, ‘ "else" ’, . . .
When such a source text is processed by an in-

terpreter or compiler, two analyses—lexical and
syntactic—are performed. The former aims to di-
vide a source text into a sequence of tokens: e.g.,
‘if’, x’, ‘>=’, ‘y’, . . . The latter checks if the succes-
sive tokens are assembled in conformity with the
programming language’s grammar. The result of
these two analyses may be viewed as a tree, Fig. 2

Jean-Michel Hufflen ArsTEXnica Nº 30, Ottobre 2020

28

x >= y

z >= x z
↗

x
↗

%
%
%

B
B
B

l
l
l
l

if-then-else

z >= y z
↗

y
↗

%
%
%

B
B
B

l
l
l
l

if-then-else

����������

%
%
%

aaaaaaaa

if-then-else

Figure 2: Abstract syntax tree for Fig. 1’s program.

giving a sketch19 of a tree modelling Fig. 1’s pro-
gram. So the complete structure of a source text
is made explicit before interpreting this structure,
or generating an executable program from it.

The modus operandi is very different within TEX.
Only one analyser encompasses both lexical and
syntactic analyses. More precisely, a command ex-
tracts its arguments as soon as it is recognised.
Then TEX runs the command’s body, and the pro-
cess goes on. As a consequence, when TEX begins
to process an ‘\if...’ command, it does not know
where this command will end. That is why we per-
sonally think that such process is fully dynamic, it
may behave strangely if you get used to modern
languages. Let us recall that all these ‘\if...’ com-
mands are documented in (Knuth, 1986a, pp. 209–
210): they end with a ‘\fi’ marker. There may be
an ‘\else’ optional part, but we do not use this
feature in the examples given below. They aim to
emphasise the difference between recognising the
beginning of an ‘\if...’ command and popping a
token, even if it could begin an ‘\if...’ command.

(i) \iffalse no\iftrue yes\fi more\fi
In such a case, the \iffalse command causes
the following tokens to be skipped until the
\fi marker: as explained in (Knuth, 1986b,
§§ 500ff), skipping \iftrue adds a level and
the two occurrences of \fi are correctly as-
sociated with \iftrue and \iffalse, respec-
tively;

(ii) \if\iftrue a\fi a ok\fi
because of the \if command, the first token is
expanded, the second, too, and ‘ok’ is typeset;

(iii) \ifx\iftrue a ko\fi
here, the \ifx command takes the first two
tokens without expanding them, so the com-
parison just involves \iftrue and a, the \fi
marker is associated to the \ifx command,
which is quite counter-intuitive at first glance;

19. An ‘actual’ abstract syntax tree would be more ex-
panded: an expression such as ‘x >= y’ would be replaced
by a sub-tree, the same for ‘...↗’, picturing a value to be
returned.

(iv) \iftrue\verb+\iffalse+something\fi
because of the \iftrue command, the fol-
lowing tokens will be processed until the \fi
marker: \iffalse is processed as the argu-
ment of the \verb command and the \fi
marker is associated with \iftrue;

(v) \iffalse\verb+\iffalse+no\fi no\fi
like in (i), the tokens following the first oc-
currence of \iffalse are skipped, but the
second occurrence of \iffalse adds a level
when it is skipped and the \fi marker’s two
occurrences are needed in order for this input
line to be processed without crash, even if this
behaviour is counter-intuitive20.

Finally, let us remark that an ‘\if...’ com-
mand marker can appear inside a body’s command
without being associated with a \fi marker and
vice-versa21. A very good example is the ‘\loop
... \repeat’ macro, provided by Plain TEX for
expressing iterative operations (Knuth, 1986a,
pp. 217–218 & 352), where \repeat is defined this
way:

\let\repeat=\fi

Acknowledgements
This work has been supported by the eiphi Grad-
uate school. Many thanks to Francesco Biccari
for his patience and Massimiliano Dominici, who
has translated the abstract in Italian. I am also
very grateful to the reviewers, who addressed me
constructive criticisms and suggested me some im-
provement points.

References
Aho, Alfred V., Monica S. Lam, Ravi Sethi and
Jeffrey D.Ullman (2006). Compilers, Princi-
ples, Techniques and Tools. Pearson Interna-
tionel Edition, 2ª edizione.

Carlisle, David and Moten Høgholm (2014).
The xpace package. http://ctan.org/pkg/
xspace.

Downes, Michael J. with Barbara Beeton (2017).
Short Math Guide for LATEX. http://tug.ctan.
org/info/short-math-guide.pdf.

Dybvig, R. Kent (1996). The Scheme Program-
ming Language. ansi Scheme. Prentice-Hall, 2ª
edizione.
20. Roughly speaking, the \verb command belongs to

LATEX, not to TEX’s kernel, so it may be told that mix-
ing LATEX and Plain TEX is not recommended and may
cause strange behaviour. This remark does not apply to
Example (iii), which is counter-intuitive, too.
21. That is impossible within modern languages. In

Python (cf. Fig. 1), an if construct ends with a line begin-
ning at the left of the indentation point.

ArsTEXnica Nº 30, Ottobre 2020 Which Success for TEX as an Old Program?

29

http://www.pragma-ade.com/general/manuals/cont-enp.pdf
http://www.pragma-ade.com/general/manuals/cont-enp.pdf

Goossens, Michel, Frank Mittelbach, Sebas-
tian Rahtz, Denis B. Roegel and Her-
bert Voß (2009). The LATEX Graphics Com-
panion. Addison-Wesley Publishing Company,
Reading, Massachusetts, 2ª edizione.

Gregorio, Enrico (2020). «Funzioni e expl3».
ArsTEXnica, 30, pp. 36–45.

GuIT (a cura di) (2019). Meeting, Sessione mat-
tutina. ArsTEXnica 28, pp. 8–134, Turin.

Hagen, Hans (2001). ConTEXt, the Man-
ual. http://www.pragma-ade.com/general/
manuals/cont-enp.pdf.

— (2006). «LuaTEX: Howling to the moon». Biule-
tyn Polskiej Grupy Użytkowników Systemu TEX,
23, pp. 63–68.

Hufflen, Jean-Michel (2003). «Mes diverses pé-
riodes avec LATEX». Cahiers GUTenberg, 42, pp.
38–60.

— (2009). «Using TEX’s language within a course
about functional programming». maps, 39, pp.
92–98. In EuroTEX 2009 conference.

Ierusalimschy, Roberto (2006). Programming in
Lua. Lua.org, 2ª edizione.

Knuth, Donald Ervin (1986a). Computers & Type-
setting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.

— (1986b). Computers & Typesetting. Vol. B: The
Program. Addison-Wesley Publishing Company,
Reading, Massachusetts.

— (1992). How to read a WEB, Center for the
Study of Language and Information, capitolo 7,
pp. 179–184. Numero 27 in Lecture Notes.

Lamport, Leslie (1994). LATEX: A Document
Preparation System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts.

LATEX3 project (2020). The LATEX3 In-
terfaces. http://ctn.org/pkg/l3kernel/
interface3.pdf.

Lehman, Philipp and Joseph Wright (2020).
The etoolbox Package. An e-TEX Toolbox for
Class and Package Authors. ctan.org/pkg/
etoolbox.

Lutz, Mark (1996). Programming Python. O’Reilly
& Associates.

Menke, Henri (2019). «Parsing complex data for-
mats in LuaTEX with lpeg». TUGBoat, 40 (2),
pp. 129–135. In Proc. tug.

Mittelbach, Frank and Rainer Schöpf (1991).
«Towards LATEX 3.0». TUGBoat, 12 (1), pp.
74–79.

Mittelbach, Frank and the LATEX3 project
team (2020). «Quo vadis LATEX(3) team—A
look back and at the coming years». TUGBoat,
41 (2), pp. 201–207.

Mittelbach, Frank and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod (2004). The LATEX Companion.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 2ª edizione.

Overleaf (2020). LATEX, Evolved. The Easy to
Use, Online, Collaborative Editor. https://www.
overleaf.com.

Reid, Brian Keith (1984). «scribe document pro-
duction system user manual». Technical report,
Unilogic, Ltd.

Schlicht, Robert (2010). Microtype: an Interface
to the Micro-Typographic Extensions of pdfTEX.
http://ctan.org/pkg/microtype.

Taylor, Philip, Jiři Zlatuška and Karel Skoupý
(2000). «The NTS project: from conception to
implementation». Cahiers GUTenberg, 35–36,
pp. 53–77.

Ziegenhagen, Uwe (2019). «Combining LATEX
with Python». TUGBoat, 40 (2), pp. 126–128.
In Proc. tug 2019.

. Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) &
University of Bourgogne Franche-
Comté,
16, route de Gray,
25030 Besançon CEDEX
France
jmhuffle at femto-st dot fr

Jean-Michel Hufflen ArsTEXnica Nº 30, Ottobre 2020

30

http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/etoolbox
https://www.overleaf.com
https://www.overleaf.com
http://ctan.org/pkg/microtype

	Introduction
	LaTeX's advantages
	LaTeX's strange behaviour
	Discussion
	Conclusion
	Functions vs macros
	Lexically or dynamically
	Processing conditional expressions

