
TEX, LATEX and math

Enrico Gregorio

Abstract
We discuss some aspects of mathematical type-
setting: choice of symbols, code abstraction, fine
details. Relationships between math typesetting
and international standards are examined. A fi-
nal section on typesetting of numbers and units
reports on some recent developments in the field.

Sommario
Si discutono alcuni aspetti della tipografia mate-
matica: scelta dei simboli, astrazione del codice,
dettagli più fini. Si esaminano anche connessioni
tra la tipografia matematica e gli standard inter-
nazionali. La sezione conclusiva tocca il problema
della composizione di numeri e unità di misura alla
luce di sviluppi recenti.

1 Introduction
We all know that TEX was born out of Knuth’s
discomfort after having seen the proofs of the new
edition of the first volume of his magnum opus
“The Art of Computer Programming”.

Many papers have been written by Knuth him-
self and by others on the topic of math typesetting.
Here I’d like to present some personal ideas on
the subject, coming from almost thirty year long
experience in mathematical typesetting. I’ll also
present some recent developments and new tricks
made available with expl3.

2 A very short lead-in to math in
TEX

Every TEX guru knows that TEX is always in one
of three modes:

• horizontal mode,

• vertical mode,

• math mode.

Actually, there are circumstances when TEX is in
no mode at all (when writing to external files, for
the curious).
Each mode comes into two flavors, but we’re

interested only in math mode. Knuth calls the two
flavors ‘math mode’ and ‘display math mode’. In
order to better distinguish between them, I’ll call
the former ‘inline math mode’, so the unadorned
‘math mode’ will denote both.

There are subtle, well, not so much so, differ-
ences between the two flavors; beginners are most

impressed by
∑n
k=1 k

2 = 1
3n
(
n+ 1

2
)

(n+ 1) that
suddenly becomes

n∑

k=1
k2 = 1

3n
(
n+ 1

2

)
(n+ 1)

when displayed and a very common question is
‘how do I get the limits above and below the sum-
mation symbol and real fractions, not that smallish
replacement symbol?’
I’ve been a beginner myself; I discovered

\limits and abused it. Penitenziagite, would have
said Salvatore in “Il nome della rosa”. Now I’m
no longer a beginner and know why \limits
should not be used, not to talk about the dreaded
\displaystyle that sometimes is suggested to
newbies. The proper way is just \sum.

To the contrary, beginners are usually much less
impressed by the wrong typesetting in

A\B = {x|x ∈ A, x /∈ B}

but they are likely to shrug and move on, if they
ever note it. Sometimes they see something’s wrong
and ‘fix’ the vertical bar by using \,|\, that’s still
wrong. Why is it wrong? The spacing is too small,
of course, but there’s more into the problem: two
appearances of such a construction in the same
document is a sin similar to what I describe to
young basketball referees: “whoever calls a double
foul during their career has called one too many”.
The correct answer is: first of all define a macro
for the object, for instance,

\newcommand{\suchthat}{\,|\,}

(I’m talking LATEX, plain TEX users can translate).
In case one asks, if a+b appears twice or more in
a document there’s no need to make a macro out
of it; the separator in the set builder notation is a
single conceptual object and so it must be typed
by a single command.
About the spacing, one should realize that the

reverse bar is a binary operation symbol and the
vertical bar is a relation symbol. Both are already
defined in all flavors of TEX and they are, respec-
tively, \setminus and \mid, but it’s still conve-
nient and logically sound to define \suchthat, be-
cause \mid is a ‘generic’ name:

\newcommand{\suchthat}{\mid}
...
A \setminus B=\{x \suchthat

x\in A, x\notin B\}

47

will typeset as

A \B = {x | x ∈ A, x /∈ B}

This is the version with the thin spaces

A \B = {x |x ∈ A, x /∈ B}

Compare closely the spaces around the vertical
bar.
I’m not saying the last realization should be

rejected as awfully wrong: personal judgment is
always welcome when typography is concerned, af-
ter having studied the alternatives and common
practice. Above all, consistency throughout a doc-
ument is a must. I had to edit a paper where the
separator was a bar or a colon or a semicolon, de-
pending on which of the three authors had typed
the formula. Defining \suchthat allows for delay-
ing any decision about what symbol to use until
the last minute. More on set builder notation later.

The TEXbook lists several symbol names, some
have semantics attached to them, like \setminus,
others don’t, like \mid or \otimes.1 Why is that?
Some symbols have essentially a single use case,
others appear in different branches of mathematics
with different meanings. Everybody loves \lhd and
\unlhd, right? The symbols typeset as C and E
respectively. I believe to have seen once what the
names should suggest, but I forgot it. The symbols
are common in group theory, where they denote
‘normal subgroup’: it’s heartily recommended to
group theorists to define a meaningful command
for them. Oh, I was almost forgetting! Those are
not considered as relation symbols, so a savvy
group theorist will type in the document preamble

% normal subgroup
\newcommand{\ns}{\mathrel\lhd}
\newcommand{\nseq}{\mathrel\unlhd}
% subnormal subgroup
\newcommand{\sns}{\ns\ns}

The symbols are not among the core ones designed
by Knuth; they first appeared in a symbol font dis-
tributed along with LATEX; possibly Lamport used
them for his own papers as binary operators and
the classification stuck. They were later included
in amssymb.
What should an author do? The case of nor-

mal subgroups is clear: I surely wouldn’t litter
my paper with \mathrel\lhd each time I want
to mention normal subgroups. However, suppose
a paper frequently uses Euler’s totient function,
which has the well established tradition of being
denoted by ϕ (the open version of phi). Is it bet-
ter to use \varphi or to define \euphi? The lat-
ter. Upon receiving the proofs, the author realizes
that all instances of \varphi print out φ, because
the publisher uses a font that lacks the proper
1. Generally LATEX kept the same names.

symbol. With \euphi it is a matter of doing a re-
definition, probably borrowing the open phi from
another font. We don’t know when the instruc-
tion \let\varphi=\phi is performed, but using
\euphi makes this irrelevant.

An important exception: in the abstract
there should be no use of personal macros. It should
be able to typeset with a ‘naked’ version of LATEX:
it’s very common nowadays that the abstract is
fed to some web page that maybe uses MathML,
MathJax or similar device for handing the text to
browsers.

Going back to the normal subgroup symbol, one
should know that every math symbol belongs to a
class and there are seven of them:

• class 0, ordinary symbols;

• class 1, operators;

• class 2, binary operations;

• class 3, binary relations;

• class 4, opening symbols;

• class 5, closing symbols;

• class 6, punctuation.

TEX will set the spacing between symbols according
to well defined rules. This is not the place to discuss
them fully, see Gregorio (2009). Any object, as
long as it is legal in math mode, can be defined to
behave as if it belongs in one of the above classes
by typing it as the argument to

\mathord \mathop \mathbin \mathrel
\mathopen \mathclose \mathpunct

For instance, the symbol for the determinant is
internally carried out by something like

\mathop{\operator@font det}\nolimits

but there is a higher level interface available for
declaring new symbols like this; for instance, one
does

\DeclareMathOperator{\adj}{adj}

in order to introduce a symbol for the adjugate
matrix. A one-shot operator can be input in the
document by

\operatorname{adj}

The *-version of both commands makes for a sym-
bol that carries limits above and below in display
math mode, on the side when inline.

The unfortunately common perversion of denot-
ing open intervals like]a, b[needs input such as

\mathopen]a,b\mathclose[

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

48

One can easily spot that something is wrong when
just using]a,b[by looking at the difference be-
tween the two instances below

x ∈]a, b[x ∈]a, b[

In my calculus notes I type \interval[o]{a,b}. I
can decide to be a perv by just changing a few lines
in the definition. An open interval will be typeset
as (a . . b), but I’m not bound in any way: I can go
back to the comma again by just changing a line.
Also, I like to write upper unbounded intervals like
(a . . →), but I use \pinf for the arrow, so I can
make it to be typeset ∞ by acting on a single line,
should I change my mind.

Upon entering math mode, TEX will construct a
math list consisting of math atoms, each of which
has a nucleus, a subscript field and a superscript
field. When exiting from math mode, the math list
will be transformed into a horizontal list according
to the (complex) rules described in Appendix G
of the TEXbook. These rules add spaces, as said
before, but also take care of the bidimensionality of
math formulas: superscripts, subscripts, fractions,
accents, radicals, extensible delimiters and many
more aspects.
Had Knuth been into theoretical physics, he

probably would have added also “prescripts” for
isotopes and staggered multiple subscripts and
superscripts for tensors. Unfortunately he hasn’t.
See later for more on this topic.

3 Fine points of mathematics
typing

The title is the same as chapter 18 in the TEXbook.
Of course I won’t go through Knuth’s words. Since
I’m talking LATEX and math, I assume that ams-
math is loaded: no serious math typesetting can
be done without it.

A point that’s not touched upon in the TEXbook
is ‘when, really, consecutive equations should be
aligned and where’. Browsing TEX.StackExchange
reveals several examples of bad alignments.
A prominent example is a derivation of Car-

dano’s formula2 which I won’t give the code for,
but just three realizations that you can see in fig-
ure 1.

I often use the style “the good, the bad, and the
ugly”. There is actually an even uglier way, which
is what the questioner was asking for, see figure 2.
What’s the problem? The equals signs are not

really related to one another. The pairs of formulas
are related, the fact they are equations is almost
irrelevant. Mixing ragged right and ragged left in
one and the same paragraph (or display) makes for
very hard reading. I’d instead be more generous
with vertical spacing between the various braces
and I have no doubt whatsoever that the leftmost
2. https://tex.stackexchange.com/questions/193581

realization is our Clint Eastwood. Look for holes
in the typeset output and remove them.
Another example can be seen in figure 3.3 You

can judge by yourself what’s the best way to
present the display. My opinion is that the equals
signs in the second column pair are not related to
each other, so they’re not to be aligned.
Linear systems are an exception, because their

matrix-like structure is more important than holes.
I recommend the wonderful systeme package by
Ch. Tellechea (Tellechea, 2019). No doubt there
are other exceptions: typography, and mathemati-
cal typography in particular, is a craft that doesn’t
obey to mechanical rules. A thin space may open
up symbols and make them easier to read, adding
a pair of parentheses may clear up an ambiguity,
removing unnecessary parentheses may improve
the quality of a formula. Compare top and bottom
line

a
f(x+ h)− f(x)

h
+ b

g(x+ h)− g(x)
h

a
f(x+ h)− f(x)

h
+ b

g(x+ h)− g(x)
h

and decide which one looks better. In my notes
I used the bottom one when working the proof
of linearity of the derivative. If I talk about “the
function g(z) =

√
z − 1 ”, I add a thin space before

ending inline math mode:

‘‘the function $g(z)=\sqrt{z-1}\,$’’

in order to avoid the clash between the vinculum
and the quotes in “the function g(z) =

√
z − 1”.

Try with a parenthesis after the radical to see
another case: (1 +

√
2)−1 versus (1 +

√
2)−1. In

the latter case a thin space has been added.
Going to very fine details: does anybody notice

the differences below? Consider the formulas

log |x| 6= log|x| (7)
| sin x| 6= |sin x| (8)
‖ adjA‖ 6= ‖adjA‖ (9)

where the questionable typesetting is on the left.
While the top left could be a typographic choice
(so long as it is consistent), the other formulas in
the left-hand sides are definitely wrong.
The mathtools package provides a very good

facility for handling these cases, namely

\DeclarePairedDelimiter{\abs}{|}{|}

that allows to type \abs{\sin x} and forget about
the dreaded thin space, which can also be avoided
by

\lvert\sin x\rvert

3. https://tex.stackexchange.com/questions/500472

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

49

a6 + 2a3b3 + b6 = q2

4a3b3 = − 4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√
q2 +

4

27
p3

{
a6 + 2a3b3 + b6 = q2

4a3b3 = − 4

27
p3

{
a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{
a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√
q2 +

4

27
p3

a6 + 2a3b3 + b6 = q2

4a3b3 = − 4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√
q2 +

4

27
p3

Figure 1: Three ways of laying out the derivation of Cardano’s formula

{
a6 + 2a3b3 + b6 = q2

4a3b3 = − 4

27
p3

{
a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{
a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√
q2 +

4

27
p3

Figure 2: One of the worst alignment I can conceive

Which style to choose is a matter of personal pref-
erence and habit. I recommend not to abuse the
facility: reserve it for functions such as absolute
values, norms and similar objects. Don’t exploit it
for parenthesized expressions: something like

\paren{a+b}\paren{a-b}=a^2-b^2

hinders input reading and would print the same as
(a+b)(a-b)=a^2-b^2. True, one could do

\paren[\big]{a\paren{(b+c}}

but is this really more legible than

\bigl(a (b + c) \bigr)

that keeps the usual mathematical structure? That
is, assuming \big size is really necessary, which it
isn’t in the particular case.

Since I mentioned trigonometric functions, look
at √

sin x+
√

cosx+
√

tan x
and explain what’s going wrong. Yes, the tittle
makes the difference! It makes ‘sin’ higher than
‘cos’ and moves up the radical sign; similarly with
‘tan’. In my trigonometry notes I have

\let\cos\undefined
\DeclareMathOperator{\cos}

{cos\vphantom{i}}
\let\tan\undefined
\DeclareMathOperator{\tan}

{tan\vphantom{i}}

with which the above formula would become
√

sin x+
√

cosx+
√

tan x

Radicals often need fine control in order to get
them aligned with each other. Some appropriate
trick involving \vphantom or \smash can fix things
up: √

x+√y 6= √x+
√
y

Again, left is the questionable output; the formula
on the right has been input as

\sqrt{x}+\sqrt{\smash[b]{y}}

The alternative

\sqrt{\mathstrut x}+\sqrt{\mathstrut y}

doesn’t seem as attractive:
√
x +

√
y. Radicals

would need a full chapter, so I’ll stop here. One last
thing: add a thin space when a radical is followed
by a fence; similarly, add a thin space when a big
operator (summation, product, integral) in display
math mode is preceded by a fence and its limits
are wide. Example

(n∑

k=1
ak

)
6=
(n∑

k=1
ak

)

4 Upright or italic?
Rivers of (electronic) ink have been spilled try-
ing to answer the question. Actually it cannot be
answered: mathematicians and engineers agree to
disagree. Physicists disagree with each other.

Part of the question is: should constants be type-
set in upright font or not? The ISO 80000-2:2009
standard prescribes upright; adhering to this stan-
dard is mandatory in some technology and com-
mercial fields. This is a good thing: people reading

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

50

(
Aµ
ρ∗µ

)
→
(

cos θ − sin θ
sin θ cos θ

)(
Aµ
ρ∗µ

)
, tan θ = gel

g∗
(1)

(
ψL
χL

)
→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

)(
ψL
χL

)
, tanϕψL

= ∆
m

(2)
(
ψ̃R
χ̃R

)
→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

)(
ψ̃R
χ̃R

)
, tanϕψ̃R

= ∆̃
m̃

(3)

(
Aµ
ρ∗µ

)
→
(

cos θ − sin θ
sin θ cos θ

)(
Aµ
ρ∗µ

)
, tan θ = gel

g∗
(4)

(
ψL
χL

)
→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

)(
ψL
χL

)
, tanϕψL

= ∆
m

(5)
(
ψ̃R
χ̃R

)
→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

)(
ψ̃R
χ̃R

)
, tanϕψ̃R

= ∆̃
m̃

(6)

Figure 3: Two similar alignments

a technical report or manual will have no doubt
about the meaning of a symbol.4 While I strongly
disagree with several decisions of the ISO standard,
on mathematical grounds, I accept the underly-
ing philosophy towards uniformity in the technical
fields. Surely I appreciate its ban on the mathe-
matically wrong sin−1 and similar: the standard
has disputable aspects, but it’s never wrong from
a mathematical point of view.
On the other hand, many mathematicians are

traditionalists and prefer italics for constants such
as e (the Euler number) and i (the imaginary unit).
Euler and Gauss used italics for the latter, I’m
among those who don’t dare to challenge their
authority. Of course, I know that mathematical no-
tation has changed along time. I’d not use Cayley’s
original notation for matrices5 because a better
notation has developed. I follow the practice of set-
ting standard function names in upright type (sine,
cosine, logarithm and so on) even when ancient
mathematicians didn’t.
However, such decrees as ‘symbols for vectors

should be bold italic serif lowercase, for matrices
should be bold italic serif uppercase, for tensors
should be bold italic sans serif uppercase’ make
me smile: as a mathematician, I know that vectors,
matrices and tensors are not different objects from
a mathematical point of view. Matrices admit an
easier two-dimensional representation: this is the
‘big’ difference.

For pedagogical reasons, I might use a distinctive
typesetting for vectors and matrices in a students’
textbook. In a research paper or graduate level
book I’d probably not make any distinction, if not
mandated by clarity. In this case I’d explain the no-
tation choices at the beginning of the paper or book.

4. A problem with ISO standards is that they have to be
bought; the one we’re talking about prices 158CHF, about
143 e or $160 at the current exchange rate.

5. https://tex.stackexchange.com/q/487643

A very fine book by J. Dieudonné (Dieudonné,
1972), in the English edition by Academic Press,
uses

• R or C for number sets,

• X for manifolds, E for vector bundles,

• A for vector space operators,

• Tx(X) or Tx(f) for the tangent space or linear
mapping,

• dxf or dxf for the differential at x of a map-
ping (vector valued or scalar valued),

• Z for tensor fields,

and several other conventions that are consistently
followed across the book and the series. The book
starts of with a nine page long notation section.
The same notation is used in the original French
version.

However, it happens that book translations use
different conventions from the original. It is the
case of W. Rudin’s ‘Real and Complex Analy-
sis’ (Rudin, 1966) where the differential ‘d’ is in
italics, whereas it’s upright in the Italian trans-
lation published by Bollati-Boringhieri (Rudin,
1974). I disagree with the publisher: maybe the
editorial preference is for the upright ‘d’, but the
author’s style should be preserved as much as pos-
sible.

Not a big deal, one could think. No, this reflects
on the meaning of the differential ‘d‘. There are
several arguments in favor or against italics; my
feeling is that most pure mathematicians prefer
italics.
By the way, how to input the symbol in such a

way that the convention can be changed at will?
The simplest and more effective way is to define

\newcommand{\diff}{\mathop{}\!d}

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

51

(or \mathrm{d} if one really prefers the abomina-
tion).
I believe to have learned it from Claudio Bec-

cari through a comp.text.tex post. The code was
credited to him in the paper Guiggiani and Mori
(2008a),6 but I’m not sure about the real source
of this code pearl. Claudio Beccari had earlier pro-
posed a much more complicated code (Beccari,
1997), namely

\makeatletter
\providecommand*{\diff}{%

\@ifnextchar^{\DIfF}{\DIfF^{}}%
}
\makeatother
\def\DIfF^#1{%

\mathop{\mathrm{\mathstrut d}}%
\nolimits^{#1}%
\gobblespace

}
\def\gobblespace{%

\futurelet\diffarg\opspace
}
\def\opspace{%

\let\DiffSpace\!%
\ifx\diffarg(%

\let\DiffSpace\relax
\else

\ifx\diffarg[%
\let\DiffSpace\relax

\else
\ifx\diffarg\{%

\let\DiffSpace\relax
\fi

\fi
\fi
\DiffSpace

}

What’s the idea in the complicated definition?
Look whether a superscript follows; if it doesn’t,
add a dummy one. Well, this is already wrong, be-
cause it adds \scriptspace unconditionally. After
that, the next token is examined: if it is a fence,
then don’t add \!, because a \mathop is followed
by a fence with no thin space; in case an ordi-
nary symbol follows, the \mathop would add a
thin space, which is removed by \!. Well, try it
with \diff\bigl(x+y\bigr). Next try the simpler
definition and see! Where’s the trick? The empty
\mathop is followed by an ordinary symbol, the ‘d’;
we just need to remove the excess thin space! The
thin space preceding the empty \mathop is inserted
automatically by TEX following the rules. Thus we
can define

\newcommand{\tder}[2]
{\frac{\diff #1}{\diff #2}}

6. The paper is also available in English (Guiggiani and
Mori, 2008b).

without worrying that spurious spaces may creep
in. Instead

\iint\limits_{D} f(x,y) \diff x \diff y

will typeset as needed
∫∫

D

f(x, y) dx dy

For differential forms

f(x, y) dx ∧ dy

the spacing will be automatically right.
The same paper by Beccari (1997) proposes

commands for the constants, namely

% The number ‘e’
\providecommand*{\eu}

{\ensuremath{\mathrm{e}}}
% The imaginary unit
\providecommand*{\iu}

{\ensuremath{\mathrm{j}}}

I strongly disagree with proposing \ensuremath;
referring in the text to the Euler’s number by

We use \eu\ to denote...

is by no means easier and clearer than

We use \eu to denote...

One keystroke more? So what? That’s a mathe-
matical symbol so it ought to be typed in math
mode, just like when we talk about the variable x.
My definition would be

\newcommand{\eu}{\mathord{e}}

so typing \eu outside of math mode would raise
an error. Change to \mathrm if you prefer upright
type.

During the preparation of this paper, I examined
the toptesi bundle, to find

\providecommand{\eu}{%
\ensuremath{%

{\mathop{\mathrm{e}}\nolimits}%
}%

}

This is disputable under many respects:

• \ensuremath serves no real purpose;

• \nolimits can be safely omitted, because the
\mathop{...} bit is followed by }, so surely
there are no limits to take into account;

• \mathop itself is redundant, because the whole
thing is braced, so it is treated as an ordinary
symbol.

Oh, wait! No, \mathop is actually wrong! Consider
the following code:

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

52

\documentclass{standalone}
\usepackage{amsmath}
\newcommand{\euA}{\mathrm{e}}
\newcommand{\euB}{%

\ensuremath{%
{\mathop{\mathrm{e}}\nolimits}%

}%
}
\begin{document}
$2\euA\euB$
\end{document}

The output is shown in figure 4. Do you see the
problem? A single character in the argument to
\mathop is raised or lowered so that it extends the
same above and below the math axis.

2ee
Figure 4: Magnified output for the Euler’s constant prob-
lem

Now that we’re on the spot, how to define a
better \tder macro also supporting higher order
derivatives? The first attempt,

\newcommand{\tder}[3][]{%
\frac{\diff^{#1}#2}{\diff #3^{#1}}%

}

has a flaw: it unconditionally adds \scriptspace
to both the numerator and denominator. If I mea-
sure the width of \tder{f}{t} in display math
mode, with standard font and document class, I
get 14.07712pt; the version without the dummy
exponents has width 11.91045pt. More than two
points! With the upright ‘d’, the difference would
be half a point. And the visual result shows more:

df

dt
6= df

dt

df
dt 6=

df
dt

Yes, we need to avoid the dummy superscript, also
with the upright ‘d’, although the difference is
less noticeable: we want perfect output, don’t we?
And we want macros that allow users to choose
their own preferred ‘d’. One could test whether the
argument is empty, but there’s a better way with
xparse:

\NewDocumentCommand{\tder}{s o m m}{%
\IfBooleanTF{#1}{\dfrac}{\frac}%

{\diff\IfValueT{#2}{^{#2}}#3}% num
{\diff #4\IfValueT{#2}{^{#2}}}% den

}

The *-version delivers \dfrac (just in case one
needs it), otherwise \frac is used. The numerator
and the denominator add the exponent only if
the optional argument is specifically used. Thus
\tder{f}{t} will not add a dummy exponent.

5 Sets, bras and kets
A short note to the title. Physicists have a sense of
humor: a well-established notation for inner prod-
ucts is 〈x | y〉, called a “bracket”. A mathematician
would denote the linear or semilinear forms induced
by the bracket as 〈x | −〉 and 〈− | y〉. Physicists,
instead, use 〈x| for the former and |y〉 for the latter,
calling them “bra” and “ket”.
Since several years, LATEX has been requiring

e-TEX extensions, among which \middle is a very
useful one. For instance, we can typeset

{
x ∈ R

∣∣∣∣ −
1
2 ≤ x ≤

8
5

}

with no phantom and no null delimiter. On the
other hand, the code

\left\{x\in\mathbf{R} \;\middle|\;
-\frac{1}{2}\le x\le \frac{8}{5}\right\}

is still really ugly and something like

\set*{x\in\mathbf{R}\suchthat
-\frac{1}{2}\le x\le \frac{8}{5}}

would be much nicer. We call xparse and expl3 to
the rescue!

\documentclass[varwidth]{standalone}
\usepackage{amsmath}
\usepackage{xparse}

\ExplSyntaxOn
\NewDocumentCommand{\set}{som}
{
% limit the scope for \suchthat
\group_begin:
\cs_set_protected:Npn \suchthat
{
\tl_use:N \l__egreg_set_st_tl

}
\IfBooleanTF{#1}
{
\egreg_set_auto:n { #3 }

}
{
\egreg_set_fixed:nn { #2 } { #3 }

}
\group_end:

}

\tl_new:N \l__egreg_set_st_tl

\cs_new_protected:Nn __egreg_set_st:n
{
\tl_set:Nn \l__egreg_set_st_tl { #1 }

}

\cs_new_protected:Nn \egreg_set_auto:n
{
__egreg_set_st:n
{
\nonscript\;
\middle\vert

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

53

\nonscript\;
}

\left\{ #1 \right\}
}

\cs_new_protected:Nn \egreg_set_fixed:nn
{
\tl_if_novalue:nTF { #1 }
{
__egreg_set_st:n { \mid }
\lbrace #2 \rbrace

}
{
__egreg_set_st:n
{ \mathrel{#1\vert} }

\mathopen{#1\lbrace}
#2
\mathclose{#1\rbrace}

}
}

\ExplSyntaxOff

\begin{document}

$\set{a,b,c}\cup\set[\big]{a,b,c}$

$\set{x\suchthat a<x<b}$

$\set[\Big]{x\suchthat a<x<b}$

$\set*{x\suchthat \dfrac{1}{2}<x<3}$

\end{document}

The idea is to use a syntax familiar from math-
tools’ \DeclarePairedDelimiter. The output is
in figure 5.

{a, b, c} ∪
{
a, b, c

}

{x | a < x < b}{
x
∣∣∣ a < x < b

}
{
x

∣∣∣∣
1

2
< x < 3

}

Figure 5: Examples of set notation

In the TEXbook, Knuth recommends to add thin
spaces when the set builder notation contains a bar,
that is, it is not just a list of elements. I disagree.
How could it be implemented? It’s possible to look
for the presence of \suchthat at the outer level
and, in this case, to add the thin spaces at either
end; nested sets would examine their own contents
for the presence at the outer level.
A full implementation would also feature the

choice for the delimiter as a preamble setting. I
leave this as an exercise for whoever wants to make
a package out of this code.
There is some code duplication, but it’s un-

avoidable. The reason is that using an O{}
specifier for the optional argument would allow
\mathclose{#2\rbrace} and no case distinction.

However, one can see the difference if a subscript
is added

\rbrace_{1} \mathclose{\rbrace}_{1}
}1 }1

Different coding is possible, though. It would not
be difficult to allow | instead of \suchthat. Look
at how the macros for bras and kets can be defined.

\documentclass[varwidth{standalone}
\usepackage{amsmath}
\usepackage{xparse}

\NewDocumentCommand{\bra}{som}{%
\IfBooleanTF{#1}

{\left\langle #3 \right|}
{%
\IfNoValueTF{#2}
{\langle#3\mathclose|}
{\mathopen{#2\langle}#3\mathclose{#2|}}%

}
}
\NewDocumentCommand{\ket}{som}{%

\IfBooleanTF{#1}
{\left\langle #3 \right|}
{%
\IfNoValueTF{#2}
{\mathopen|#3\rangle}
{\mathopen{#2|}#3\mathclose{#2\rangle}}%

}
}

\NewDocumentCommand{\braket}{som}{%
\IfBooleanTF{#1}
{\extensiblebraket{#3}}
{\fixedbraket{#2}{#3}}%

}

\ExplSyntaxOn
\NewDocumentCommand{\extensiblebraket}{m}
{
\group_begin:
\char_set_active_eq:nN { ‘| } \egreg_bar_auto:
\mathcode‘|="8000 \scan_stop:
\left\langle
#1
\right\rangle
\group_end:

}

\NewDocumentCommand{\fixedbraket}{mm}
{
\group_begin:
\char_set_active_eq:nN

{ ‘| } % active char is |
\egreg_bar_fixed: % equal to

\mathcode‘|="8000 \scan_stop:
\IfNoValueTF{#1}
{ \egreg_braket:n { #2 } }
{ \egreg_braket:nn { #1 } { #2 } }

\group_end:
}

\cs_new_protected:Nn \egreg_bar_auto:
{

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

54

\nonscript\,\middle\vert\nonscript\,
}

\cs_new_protected:Nn \egreg_bar_fixed:
{
\mathinner{\egreg_size: \vert}

}
\cs_new_protected:Nn \egreg_braket:n
{
\cs_set_protected:Nn \egreg_size: { }
\langle #1 \rangle

}
\cs_new_protected:Nn \egreg_braket:nn
{
\cs_set_protected:Nn \egreg_size: { #1 }
\mathopen{\egreg_size: \langle}
#2
\mathclose{\egreg_size: \rangle}

}
\ExplSyntaxOff

\begin{document}

$\bra{x}\quad\ket{x}$

$\braket{x|y}$

$\braket[\Big]{x|y|z}$

$\braket*{a|b}$

$\braket[\Big]{a|b|\dfrac{c}{d}}$

$\braket*{a|b|\dfrac{c}{d}}$

\end{document}

I’ll not comment the code, except for mentioning
how easy is to define the value of a character when
it will be made active (math active, in this case).

〈x| |x〉
〈x | y〉〈
x
∣∣∣ y
∣∣∣ z
〉

〈a | b〉〈
a
∣∣∣ b
∣∣∣ c
d

〉

〈
a
∣∣∣ b
∣∣∣ c
d

〉

Figure 6: Examples of bras and kets

6 Numbers and units
How should numbers be typed in the LATEX doc-
ument? Knuth himself once acknowledged that
his usual practice is not very good and realized it
when writing ‘Concrete Mathematics’ (Graham
et al., 1989), were numbers are typeset with the
Euler font when they’re used in their mathematical
meaning (and not, say, as page markers).

When a number appears in text and is mentioned
as a mathematical object is should be input inside
a math formula:

a vector space of dimension~5

But what about large numbers that need to
be split in smaller units for readability? For in-
stance, can you spell out 7400043022221 without
first counting how many digits the number has?
Isn’t 7 400 043 022 221 easier to parse? Possibly
not for an American who’s more accustomed to
7,400,043,022,221 (and probably would be at stake
when people talks about meters and liters).

Now let’s face a problem: your scientific paper
has several tables with numeric data and you’re
not sure about the editorial policy of the journal
you’ll be submitting it. Will the journal require
American style or prefer thin spaces for grouping
digits?

Table 1: Tables with different formatting options for num-
bers (Source: Mr Leporello, private communication)

Nation Number
Italy 640 375
Germany 231 803
France 100 002
Turkey 91 329
Spain 1 003 000

Nation Number
Italy 640,375
Germany 231,803
France 100,002
Turkey 91,329
Spain 1,003,000

Let’s consider the two tables in table 1. They
are typeset with exactly the same input, namely

\begin{tabular}{
@{}
l
S[table-format=7.0]
@{}

}
\toprule
Nation & {Number} \\
\midrule
Italy & 640375 \\
Germany & 231803 \\
France & 100002 \\
Turkey & 91329 \\
Spain & 1003000 \\
\bottomrule
\end{tabular}

and it’s siunitx (Wright, 2018) doing all the magic.
Of course there is a catch: just before the second
copy of the table I added

\sisetup{group-separator={,}}

I could have added the option also in the bracketed
argument to the S column, which is one of the
facilities made available by the package. Similarly,
the big number above has been typeset first with
\num{7400043022221} and then with

\num[group-separator={,}]{7400043022221}

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

55

The default for the package is to use a thin space as
a group separator between digits. An S column ba-
sically applies \num to every entry, but also aligns
them at the decimal separator. In the case of our
Leporello table, all entries are integer, so they’re
right aligned.
If an entry belonging to an S column is braced,

it will be ignored as far as number alignment is
concerned and centered on the total width of the
column (options are available for left or right align-
ment). This is obviously needed in the header.
With another option we can easily scale down

the figures:

Nation Number
Italy 640 × 103

Germany 232 × 103

France 100 × 103

Turkey 91.3 × 103

Spain 1.00× 106

This is achieved with the options

\sisetup{
round-mode=figures,
round-precision=3,
scientific-notation=engineering

}

and by changing the column specifier to

S[table-format=3.2e1]

which directs to reserve space for three digits in
the integer part, two in the mantissa and one in
the exponent. The table body in the input has not
changed in any way.
One might write an entire large chapter of the

LATEX Companion about siunitx. Some time ago,
Joseph Wright took up the job of making a succes-
sor package to SIunit adding some features along
the way. For version 2 he had the idea of exploit-
ing expl3 which not only allowed for many more
features and facilities, but made him enter the
LATEX team.7 He’s into chemistry and tables with
numeric data are his staple food.
The main purpose of the package is of course

typesetting numbers with their SI unit according
to the guidelines of the Bureau International des
Poids et Mesures (BIPM). This is also part of the
ISO standard mentioned before:

\SI{1}{\newton} is defined as
\SI{1}{\kilogram\meter\per\second\squared}

will typeset “1 N is defined as 1 kg m s−2”. However,
if we prefer slashes instead of negative exponent,
we can add to the preamble

\sisetup{per-mode=symbol}

7. It seems that understanding and propagating expl3
opens a straight way to the team.

and the same text will now typeset as “1 N is de-
fined as 1 kg m/s2”. The mode can also be changed
on a local basis with an optional argument to \SI.
All SI units and prefixes are supported:

\SI{5}{\tera\meter} \SI{2}{\pico\farad}

yields 5 Tm and 2 pF. One can also print just a
unit with \si: the unit for energy is the J which
is the same as kg m2 s−2.
Going on with our fictional scientist who’s un-

certain where her breakthrough paper will be pub-
lished, decimal numbers might require the period
as separator, or the comma; if in scientific nota-
tion there could be the×10n part or En might be
asked for. How to do it? Not to mention uncer-
tainty! Let’s take as an example the rest mass of
the electron

9.109 383 701 5(28)× 10−31 kg
9.1093837015(28)× 10−31 kg
9,109 383 701 5(28)× 10−31 kg
(9.109 383 701 5± 0.000 000 002 8)× 10−31 kg
9.109 383 701 5× 10−31 kg
9.109 383 701 5(28)E−31 kg

The first line has been input with

\SI{9.1093837015(28)E-31}{\kilogram}

and the following lines by adding an option

\SI[〈option〉]{9.1093837015(28)E-31}
{\kilogram}

The used options are, in order,

output-decimal-marker={,}
group-digits=integer
separate-uncertainty
omit-uncertainty
output-exponent-marker=\mathrm{E}

and they can be combined to get the desired ef-
fect without changing the code in the document if
the settings are done with \sisetup in the doc-
ument preamble. When inputting numbers, one
can use spaces and either a decimal period or deci-
mal comma. The first mandatory argument to \SI
behaves the same as the mandatory argument to
\num, so I’ll use the latter:

\num{12345.678}
\num{12345,678}
\num{12 345.678}

will print the same

12 345.678 12 345.678 12 345.678

Very few things are hardwired in siunitx: one can in-
struct it to ignore something, for instance. Suppose
you have a set of numbers with comma separators

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

56

for groups: the big number already used might be
available as 7,400,043,022,221. Set (globally or
locally) the input-ignore option and remove the
comma from the possible decimal separators:

\num[
input-ignore={,},
input-decimal-markers={.}

]{7,400,043,022,221}

and you’ll get

7 400 043 022 221

The package is not limited to ‘standard numbers’: it
also copes with angles, time and complex numbers.
For instance, we can type

\ang{30.24}
\ang{30;12;44.375}
\num{3-4i}

to get

30.24°, 30°12′44.375′′, 3− 4i

Oh, dear! An upright ‘i’! Let’s fix it with

\sisetup{
output-complex-root=\mathnormal{i}

}

(one could also tell it to use ‘j‘, of course) and get

3− 4i

Phew! Yes, the package obviously adheres to the
ISO standard, but it’s very customizable.

7 Further reading
Twenty-two years have passed from the seminal pa-
per by Claudio Beccari: we have seen great progress
in the field of math typesetting, in particular to-
wards the uniformity that’s necessary in technical
and commercial reports.
There are other packages that can be tried for

the purpose of compliance to the ISO 80000-2:2009
standard. I would mention isomath by Günter
Milde (Milde, 2012) and also unicode-math by
Will Robertson (Robertson, 2019) that provided
facilities to the purpose; the former is for legacy
pdflatex, the latter for X ELATEX and LuaLATEX.

References
Beccari, Claudio (1997). «Typesetting mathe-
matics for science and technology according to
ISO 31/XI». TUGboat, 18 (1).

Dieudonné, Jean (1972). Treatise on Analysis.
Vol. III. Academic Press, New York-London.
Translated from the French by I. G. MacDonald,
Pure and Applied Mathematics, Vol. 10-III.

Graham, Ronald L., Donald E. Knuth and
Oren Patashnik (1989). Concrete mathematics.
Addison-Wesley Publishing Company, Advanced
Book Program, Reading, MA. A foundation for
computer science.

Gregorio, Enrico (2009). «Simboli matematici in
TEX e LATEX». ArsTEXnica, 8, pp. 7–24. http:
//www.guitex.org/home/numero-8.

Guiggiani, Massimo and Lapo F. Mori (2008a).
«Consigli su come non maltrattare le formule
matematiche». ArsTEXnica, 5, pp. 5–14. http:
//www.guitex.org/home/numero-5.

— (2008b). «Suggestions on how not to mishandle
mathematical formulae». TUGboat, 29 (2).

Milde, Günter (2012). «isomath — mathematical
style for science and technology». https://
ctan.org/pkg/isomath. Version 0.6.1, texdoc
isomath.

Robertson, Will (2019). «Experimental Unicode
mathematical typesetting: The unicode-math
package». https://ctan.org/pkg/unicode-
math. Version 0.8o, texdoc unicode-math.

Rudin, Walter (1966). Real and complex analy-
sis. McGraw-Hill Book Co., New York-Toronto,
Ont.-London.

— (1974). Analisi Reale e Complessa. Bollati
Boringhieri.

Tellechea, Christian (2019). «L’extension pour
TEX et LATEX systeme». https://ctan.org/
pkg/systeme. Version 0.32, texdoc systeme.

Wright, Joseph (2018). «siunitx — A comprehen-
sive (SI) units package». https://ctan.org/
pkg/siunitx. Version 2.7s, texdoc siunitx.

. Enrico Gregorio
Dipartimento di Informatica, Univer-
sità di Verona
enrico dot gregorio at univr
dot it

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

57

	Introduction
	A very short lead-in to math in TeX
	Fine points of mathematics typing
	Upright or italic?
	Sets, bras and kets
	Numbers and units
	Further reading

