
Graphics for LATEX users

Agostino De Marco

Abstract

This article presents the most important ways to
produce technical illustrations, diagrams and plots,
which are relevant to LATEX users. Graphics is a
huge subject per se, therefore this is by no means
an exhaustive tutorial. And it should not be so
since there are usually different ways to obtain
an equally satisfying visual result for any given
graphic design. The purpose is to stimulate read-
ers’ creativity and point them to the right direc-
tion. The article emphasizes the role of tikz for
programmed graphics and of inkscape as a LATEX-
aware visual tool. A final part on scientific plots
presents the package pgfplots.

Sommario

Questo articolo presenta gli strumenti più impor-
tanti per produrre illustrazioni tecniche, diagram-
mi e grafici, che sono rilevanti per gli utenti di
LATEX. La grafica è un argomento di per sé molto
vasto, quindi questo tutorial non ha la pretesa di
essere esauriente. Né dovrebbe esserlo poiché di
solito ci sono più modi per ottenere un risultato
visivo soddisfacente per un determinato proget-
to grafico. Il tentativo è di stimolare la creatività
del lettore e di indirizzarlo nella direzione giusta.
L’articolo sottolinea il ruolo di tikz per la grafica
realizzata con codice LATEX e di inkscape come stru-
mento visivo capace di interfacciarsi con un sistema
TEX. L’ultima parte riguarda i grafici scientifici e
presenta il pacchetto pgfplots.

1 Introduction

People writing in technical professions — whether
they are primarily technical communicators, engi-
neers, scientists, or others — spend a lot of time
describing technology, experiments, how things
work, what a project entails, and so forth.

On-the-job technical communications often use
graphics, such as the illustrations reported in Fig-
ure 1, rather than text to convey key points and
information. Graphics are photographs, drawings,
flowcharts, fancy tables, and other visual represen-
tations. As research shows, they play a critically
important role in technical and scientific writing.
Visual material convey certain kinds of information
more clearly, succinctly, and forcefully than words.

One of the golden rules of traditional typogra-
phy says that both the text and the accompanying
visual material has to be composed to create a read-

able, coherent, and visually satisfying whole that
works invisibly, without the awareness of the reader.
Typographers and graphic designers claim that an
even distribution of typeset material and graphics,
with a minimum of distractions and anomalies, is
aimed at producing clarity and transparency. This
is even more true for scientific or technical texts,
where also precision and consistency are of the
utmost importance.

Authors of technical texts are required to be
aware and adhere to all the typographical conven-
tions on symbols. The most important rule in all
circumstances is consistency. This means that a
given symbol is supposed to always be presented in
the same way, whether it appears in the text body,
a title, a figure, a table, or a formula. A number
of fairly distinct subjects exist in the matter of
typographical conventions where proven typeset-
ting rules have been established. Some examples
include: (a) the correct display of units of mea-
surement, (b) mathematical formulae, both inline
and in display, (c) chemical elements and formulae,
(d) numbers, (e) abbreviations. All the rules have
to be applied also in visual material.

When dealing with graphics, a typical anomaly
may arise when textual annotations do not match
with the general design of the main document.
This may happen because differences in font usage
are evident or because visual signs are inappro-
priately crafted. Fortunately, LATEX can be used
natively to produce all sorts of visuals, to typeset
the annotations of pictures and drawings, and to
produce professional quality graphs. More flexible
approaches are also available, with the possibility
to combine the typesetting strength of LATEX with
specialized graphical software (external to the TEX
system).

In the following sections we will focus on illus-
trations, how they are designed, how they can be
generated and handled, and how their textual anno-
tations are typeset with LATEX. In the second part
of the article we will see how scientific plots can
be produced according to the same set of quality
criteria.

2 Illustrations: general guidelines

The term illustration will refer to all kind of picto-
rial graphics — photographs, drawings, diagrams,
and schematics. As mentioned in previous section,
it is important in typography to maintain a con-
sistency between text and graphics. When this is
achieved the aesthetic result is of such a good qual-

65

ity that the fame of LATEX as a tool to produce
‘beautiful documents’ is readily confirmed.

When it comes to producing graphics in the
LATEX world the reader is referred to the book
The LATEX Graphics Companion by Goosens et al.
(2007), where many techniques can be found that
let us generate, manipulate, and integrate graphics
with texts. Due to several recent improvements in
the TEX typesetting system, that brought the users
to harness more efficiently both the features of pdf
and the resources of their operating system — such
as fonts installed outside TEX — , the Graphics
Companion does not address some techniques that
nowadays are considered standard. These rely on
the program pdflatex — or on the more recent xe-

latex and lualatex — and on the power of the pgf

package with his high-level interface tikz. One of
the aims of this article is to cover these aspects.

There are many benefits coming from a care-
ful use of visual material in technical documents.
These include the following:

• Readers look for and want graphics. They gain
more knowledge from communications with
graphics, and remember more from communi-
cations with graphics.

• Graphics enhance a communication’s visual
appeal, thereby increasing the readers’ con-
centration on its message.

• Graphics convey some kinds of information
much more efficiently than prose. An exam-
ple of what a reader perceives when flipping
through a technical publication is shown by
Figure 2. In the picture, the right-hand page
contains a detailed illustration with several
annotated indications. Well-crafted graphics
really can say more than many lines of text.

• Graphics enable writers to convey information
to readers who do not share a common lan-
guage with the writers — or with each other.
Graphics communicate information so effec-
tively that they sometimes convey the entire
message. An example is given by Figure 1a
where the concept of Reflex in modern cam-
eras is so evident.

Examples of visual material of all kinds are
shown in the book by Harris (1996), a comprehen-
sive illustrated reference on information graphics.

Generally speaking, when planning a communi-
cation, authors should look for places where graph-
ics provide the best way for them to show how
something looks (in drawings or photographs), ex-
plain a process (flowcharts), make detailed infor-
mation readily accessible (tables), or clarify the
relationship among groups of data (graphs). When
the document is typeset with LATEX, authors have a
number of options to produce and handle graphics.
Details of the most popular and up-to-date tech-
niques are going to be discussed in the following
sections.

2.1 Guidelines for illustration design

When planning to include an illustration in a docu-
ment one should keep in mind that, at some point,
readers’ attention will be going back and forth be-
tween the text and the figure, necessarily. Authors
should make the effort of having the readers feel at
ease during the process. Therefore, having chosen
the type of graphic, it must be designed appropri-
ately, with a special focus on usability. Graphics
should have the same good qualities of author’s
prose, easy for readers to understand and use. Here
are some general usability rules:

(i) It can be said that graphics have to be de-
signed to support any possible readers’ tasks. This
is a well-known reader-centered strategy: authors
should imagine their readers in the act of using
their graphic. Then they should design it to sup-
port readers’ efforts. In drawings or photographs
for step-by step instructions, for example, one
should show objects from the same angle that
readers will see them when performing the actions
described in the illustration and text. This princi-
ple is also valid for table design, where one should
arrange columns and rows in such an order that
will help readers rapidly find the particular pieces
of information they are looking for.

(ii) Another important point is about read-
ers’ knowledge and expectations; these should be
considered carefully by an author/illustrator. Of
course, readers will find graphics useful and persua-
sive only if they can understand them. Some types
of graphic are familiar to us all, but other types
can be interpreted only by people with specialized
knowledge. If one works in a field that employs
specialized graphics, then these graphics only can
be used when communicating with readers in that
particular field, who will understand and expect
them. However, when writing for a general au-
dience, authors should consider using alternative
types of graphic — or include explanations that
general readers need in order to interpret special-
use graphics. This kind of simplified visuals are
often called ‘information graphics’ or ‘infograph-
ics’; they include those images frequently used in
presentations at formal meetings or the stylized
charts and graphs used in newspapers and maga-
zines (see, for instance, Figure 1b). Many are used
for these purposes; however, for every chart, graph,
map, diagram, or table used in a presentation or
publication, there are thousands that are utilized
in other occasions, for what are called operational
purposes (Harris, 1996).

(iii) A well-known general rule-of-thumb when
designing visual material is that of seeking simplic-
ity. As seen in the preceding point, by simplifying
their graphics authors can also make their illus-
trations easy to understand and use. Simplicity
is especially important for graphics that will be
read on a computer screen or from a projected

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

66

(a) An example of technical illustration showing the
Reflex principle.

(b) A newspaper illustration. This example shows a
particular kind of artwork known as ‘infographics.’

Figure 1: Examples of on-the-job technical illustrations.

image; people have more difficulty reading from
these media than from paper. Here are some ef-
fective strategies for keeping your graphics simple:
(a) Include only a manageable amount of material.
Sometimes, it’s better to separate information into
two or more graphics than to cram it all into one.
(b) Eliminate unnecessary details. Like unneces-
sary words in prose, superfluous details in graphics
create extra, unproductive work for readers and
obscure the really important information. In many
cases the elimination of extraneous detail can sim-
plify and improve the effectiveness of a graph.

(iv) One of the most important points about
illustration design is the effectiveness of textual la-
bels. Important content should always be labelled
clearly. Labels help readers locate the information
in a graphic and understand what it shows. In dia-
grams, every part that is important to readers has
to be labelled. But authors should avoid labeling
other features because unnecessary labels clutter
a graphic, making it difficult to understand and
use. An appropriate wording should be chosen for
all labels, which should be placed where they are
easily seen. If necessary, a line can be drawn from
the label to the item it refers to. Authors have
to avoid placing a label on top of an important
part in their graphic. It has to be noted that labels
placed in a graphic are much easier than a key for
readers to use.

(v) A special mention goes to informative titles.
Titles help readers to find the graphics they are
looking for and also to know what the graphics
contain once they locate them. Typically, titles
may go in figure captions — for example, “Figure 3.
Effects of Temperature on the Strength of M312.”
Titles can be made brief and informative at the
same time. In some cases more words can be used
if they are needed in order to give readers precise

information about the graphic. For this purpose
LATEX provides the figure environment where one
can use the \caption macro. There are extension
packages, such as float and caption, that help users
customize the style of captions.

(vi) Readers might seek a specific figure whose
location is not obvious from the regular table
of contents. To help this process authors should
provide a separate list of the figures and the
pages where they can be found. Lists of fig-
ures are generated in LATEX by the native macro
\listoffigures.

2.2 Interplay between graphics and text

To enable graphics to achieve their potential for us-
ability and persuasiveness, they should be carefully
integrated with a communication’s prose. Here are
four common strategies authors can use to create
a single, unified message in which their graphics
and prose work harmoniously together.

(i) First of all, graphics have to be introduced in
the text. When people read, they read one sentence
and then the next, one paragraph and then the
next, and so on. In a manuscript, when one wants
to make sure that the next element the reader scans
is a table or a chart rather than a sentence or a
paragraph, one needs to direct people’s attention
from the prose to the graphic and tell them how the
graphic relates to the statements they just read.

(ii) Whatever kind of introduction is made
in the text, it should be placed at the exact
point where one wants the readers to focus
their attention on the graphic. For this purpose,
graphics should be placed near the point they are
referenced to in the text. When readers come to a
statement asking them to look at a graphic, they
lift their eyes from the prose and search for the
graphic. That search has to be made as short and
simple as possible. Ideally, the graphic should be

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

67

Figure 2: A technical book in the hands of a reader. The right-hand page contains a full-height annotated
illustration.

placed on the same page as the prose references to
it. If there is not enough room, the graphic should
be put on the facing page or the page that follows.
If the figure is placed farther away than that (for
instance, after two pages or in an appendix), the
text should mention the number of the page on
which the figure can be found. These strategies
are handled in LATEX by a careful positioning of
floating objects in the source file and by using
the cross-referencing mechanism (enanced with
packages like varioref, cleveref and hyperref).

(iii) Having introduced the visual material prop-
erly, one has to state the conclusions that one wants
readers to draw. One way to integrate graphics into
the text is to state explicitly those conclusions. Oth-
erwise, readers may draw conclusions that are quite
different from the ones that the author has in mind.

(iv) When appropriate, graphics may include
explanations, or longer annotations. Sometimes
illustrations designers can help readers under-
stand the message by incorporating explanatory
statements into the figures—for instance, “Counter-
clockwise moments are positive by convention.”

It has to be mentioned the existence of a well
written section entitled “Graphics guidelines” in
the pgf package documentation (Tantau, 2016),
a LATEX extension package that will be introduced
later on in this paper. This material, that we en-
courage to read, is not only about pgf, but about
general guidelines and principles concerning the
creation of graphics for scientific presentations,
papers, and books.

3 Drawing and annotating with
native LATEX extensions

In this section we introduce some facilities offered
by LATEX and its extension packages for producing
graphic material directly in the source document.

Some of the available drawing facilities are stan-
dalone, in the sense that they rely totally on the
program latex or pdflatex and do not require func-
tionalities of other programs. Some other drawing
tools, instead, rely on other programs distributed
with the standard TEX system (or publicly avail-
able).

There are several drawing tools that one can
pick up and use once a full TEX system is installed.
But we have basicly three main facilities, which
are readily listed:

(i) The package tikz, which is a high-level inter-
face to the low-level graphics package pgf. This is
considered the standard drawing facility. At the
time of writing this paper (and probably for years
to come) it is the most popular standalone tool
for producing line graphics in the LATEX world.1

tikz comes with several specialized extension pack-
ages (tikz libraries). It is a very powerful package,
flexible, easy to use, and stunning.

(ii) The package pstricks and its companion
packages. This was the tool of choice before tikz

came into the scene. pstricks is designed to em-
bed low-level picture drawing primitives available
in the PostScript language. These primitives are

1. To learn more about pgf, see the extensive documen-

tation on CTAN http://www.ctan.org/pkg/pgf and the

collection of examples on http://www.texample.net .

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

68

exposed to the user in terms of LATEX macros so
that they can work smoothly with the typesetting
engine. With an an up-to-date TEX distribution
pstricks can be used with pdflatex, provided that
the option -shell-escape has been enabled.2

(iii) The native LATEX environment picture. This
environment is part of LATEX kernel and, when
enhanced with the standard packages pict2e and
curve2e, allows for the creation of line graphics
from a number of fairly basic constructs.

The above list mentions the most important
ways to produce graphics with LATEX and they
will be treated in reverse order in next sections.
But they are not the only possible options. The
following is a list of other graphics packages and
tools included in standard TEX distributions:

• The package Xy-pic. A tool which is best
suited to graphs and diagrams, but has capabilities
for other formats.3

• The package ePiX. A tool to produce mathe-
matical figures. It creates pstricks, TikZ, or eepic

macros.4

• The program METAPOST. Similar to the pro-
gram METAFONT used to create early TEX fonts.
It outputs special PostScript files that can be im-
ported by both LATEX and pdfLATEX. it is the de-
fault drawing program used by Knuth himself. Its
source code may be included into a LATEX file and,
via the emp package, the METAPOST code is exe-
cuted and the resulting graph is imported into the
typeset document. METAPOST is now integrated
in LuaTEX via the mplib library. Using LuaTEX,
one can include METAPOST figures directly in the
TEX/LATEX file with the luamplib package, without
using any external software.5

• The program MetaFun. An extension to
METAPOST.6

• The program asymptote. A descriptive vec-
tor graphics software and language for technical
drawing. The language is inspired to METAPOST

but with an improved syntax taken from C++.7

LATEX users can use the package asymptote that
provides the environment asy to enclose Asymptote
language code into LATEX sources. See De Marco
(2009) for a presentation of this powerful tool.

This latter list of tools is reported for the sake of
completeness. They can be considered of secondary
importance for the scope of the present article and
the interested readers are referred to the suggested
links and references.

2. To learn more about pstricks, see the documentation on

CTAN http://www.ctan.org/pkg/pstricks and the dedi-

cated section on TUG website http://tug.org/PSTricks .

3. http://www.tug.org/applications/Xy-pic/Xy-

pic.html

4. http://mathcs.holycross.edu/~ahwang/current/

ePiX.html

5. http://www.tug.org/metapost.html

6. http://wiki.contextgarden.net/MetaFun

7. https://ctan.org/pkg/asymptote

Next three subsections present some selected
examples of technical illustrations made, respec-
tively, with the environments: picture (from pack-
age picture), pspicture (from package pstricks), and
tikzpicture (from package tikz).

4 The standard LATEX picture

environment

This section presents briefly the standard picture

environment. Examples of usage of this environ-
ment are reported in Figure 3, Figure 4 and Fig-
ure 5. A picture has two main dimensions, width
and height, that users can pass to the environment
as arguments. In addition to picture, macros such
as \put, \line, \vector and several other com-
mands have arguments that expect numbers that
are used as factor for \unitlength. The latter is a
TEX length that can be set by users with the macro
\setlength to scale their drawings as appropriate.

LATEX was born in 1984 with the native pic-

ture environment that allowed users to draw lines,
vectors, circles and ‘ovals’ with some limitations.
Special fonts were used to draw all graphic objects.
This was a severe limitation, because at LATEX’s
birth all fonts usable with LATEX could contain
only 128 glyphs. This was true with text fonts as
well as with LATEX special drawing fonts.

This implied that there were only two thicknesses
available for all graphic objects, and, worst of all,
the line and vector slopes and the circle diameters
were available in only a limited number. Line slope
parameters could only be integer relatively prime
numbers in the range [−6, +6], while for vectors
they could range only within [−4, +4]. This meant
that only a limited set of lines and vectors could
be drawn.

Filled circles (disks) were limited to diameters
from 1 pt to 15 pt, while unfilled circles were limited
to diameters from 1 pt to 40 pt; circles of diameter
larger than 15 pt were drawn as four quarter cir-
cles, and each of these were available also for the
rounded corners of ‘ovals.’

This environment allowed typesetting of text by
means of extensions of the \makebox macros, and
framed text by means of \framebox; fine tuning
of the position of the text allowed placement of
any text in the precise required position and, most
important of all, the fonts used were the same
ones used in the text of the document as a whole.
Typographically, this feature was and remains the
most valuable of this built-in environment.

Leslie Lamport, in his second edition of the
LATEX handbook (Lamport, 1994) fixed the syn-
tax of a new extended picture environment, where
most if not all limitations of the standard imple-
mentation could be overcome: unlimited slopes of
lines and vectors, any circle radius, arbitrary line
thickness also for curved lines, real third order
Bézier curves, et cetera (see for example Figure 3).

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

69

cm 1 2 3 4 5

✍✌
✎☞

✍✌
✎☞✉ ✉

car

❍
❍

❍❨

\setlength{\unitlength}{1mm}

% in preamble

\newcounter{cms}

% ...

\begin{picture}(50,39)

\put(0,7){\makebox(0,0)[bl]{cm}}

\multiput(10,7)(10,0){5}{%

\addtocounter{cms}{1}\makebox(0,0)[

b]{

\arabic{cms}}}

\put(15,20){\circle{6}}

\put(30,20){\circle{6}}

\put(15,20){\circle*{2}}

\put(30,20){\circle*{2}}

\put(10,24){\framebox(25,8){car}}

\put(10,32){\vector(-2,1){10}}

\multiput(1,0)(1,0){49}{\line(0,1)

{2.5}}

\multiput(5,0)(10,0){5}{\line(0,1)

{3.5}}

\thicklines

\put(0,0){\line(1,0){50}}

\multiput(0,0)(10,0){6}{\line(0,1)

{5}}

\end{picture}

Figure 3: Lamport used this drawing in his hand-
book to describe his picture environment.

These extensions are nowadays incorporated in the
package pict2e.

In addition to the standard pict2e package, users
may rely on the curve2e package developed by Clau-
dio Beccari.8 This extension to pict2e enhances the
syntax of the \line command and introduces two
new commands: \Line, which allows the user to
specify the relative x and y displacements from the
current point, and \LINE, which has two absolute
coordinates as its arguments. Similarly, \Vector

and \VECTOR are defined and extend the \vector

command. The package also defines a \polyline

command for drawing polylines between two (min-
imum) or more vertices that are specified as argu-
ments, as well as a \Curve command for drawing
third-order Bézier curves. This macro needs a se-

8. See the documentation on CTAN: https://ctan.org/

pkg/curve2e .

A

B

x

y

% in preamble

\usepackage{pict2e}

% ...

\begin{picture}(120 ,80)

\put(30,30){\circle*{3}}

\put(30,33){\makebox(0,0)[br]{A}}

\put(90,43){\circle*{3}}

\put(88,47){\makebox(0,0)[bl]{B}}

\linethickness{1.2pt}

\Line(30,30)(90,43)

\put(10,10){\vector(1,0){100}}

\put(110,14){\makebox(0,0)[b]{x}}

\put(10,10){\vector(0,1){60}}

\put(14,70){\makebox(0,0)[l]{y}}

% dashed box

\put(0,0){\dashbox{5}(120,80){}}

\end{picture}

Figure 4: An example showing some basic com-
mands offered by the standard picture environment
enhanced by the pict2e package.

ries of nodes on the curve together with the tangent
at each node. Finally, curve2e introduces an \Arc

command and some variants for drawing circular
arcs of any radius and any angular aperture.

Recently the pict2e package has incorporated
some features proposed by curve2e and some draw-
ings are made possible by simply including pict2e.
Figure 4 shows an example of a very simple illus-
tration and the related LATEX code. The example
in Figure 5 demonstrates the use of tension pa-
rameters that modify the shape of a Bezier curve
connecting two points.

For more details on the use of the picture envi-
ronment the reader might want to consult refer-
ence Beccari (2011) for a review of the available
commands and for examples of graphics with this
native drawing tool.

5 Using pstricks

The pstricks package is presented very briefly in this
section. Explaining all the features of the package
is beyond the scope of this article. For an extended
treatment of the subject we encourage to consult
the LATEX Graphics Companion (Goosens et al.,
2007), which contains an entire chapter on pstricks,
and the book by Herbert Voß on graphics and
PostScript for TEX and LATEX (Voß, 2011).

The extension package pstricks provides the envi-
ronment pspicture that will contain all commands

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

70

(0, 0) (70, 0)

τ = (1.0, 1.0)

τ = (1.0, 2.5)

τ = (1.0, 4.5)

τ = (4.5, 4.5)

% in preamble

\usepackage{pict2e}

\usepackage{curve2e}

% ...

\begin{picture}(80,70)

\put(0,0){\GraphGrid(70,70)}

\put(0,0){\circle*{1}}

\put(70,0){\circle*{1}}

\put(0,0){\makebox(0,-1)[ct]{$(0,0)$}}%

\put(70,0){\makebox(0,-1)[rt]{$(70,0)$}}%

\thicklines

% Default tension

\put(0,0){\color{blue}

\Curve(0,0)<1,1>(70,0)<1,-1>

\put(0,0){\Vector(10,10)}

\put(70,0){\Vector(10,-10)}

\put(35,10){\makebox(0,0)[ct]{$\tau

=(1.0,1.0)$}}%

}

\put(0,0){\color{magenta}

\Curve(0,0)<1,1>(70,0)<1,-1;1.0,2.5>

\put(30,23){\makebox(0,0)[ct]{$\tau

=(1.0,2.5)$}}%

}

\put(0,0){\color[rgb]{0.65,0.15,1.0}

\Curve(0,0)<1,1>(70,0)<1,-1;1.0,4.5>

\put(15,47){\makebox(0,0)[ct]{$\tau

=(1.0,4.5)$}}%

}

\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>

\put(35,69){\makebox(0,0)[ct]{$\tau

=(4.5,4.5)$}}%

\end{picture}

Figure 5: An example showing some basic com-
mands offered by the standard picture environment
enhanced by the curve2e package.

% arara: latex

% arara: dvips

% arara: ps2pdf

\documentclass[%

border={0.6cm 0.6cm 0.6cm 0.6cm}% lbrt

]{standalone}

\usepackage[pdf]{pstricks}

\begin{document}

\begin{pspicture}(4,5)

\psgrid

\end{pspicture}

\end{document}

0 1 2 3 4

0

1

2

3

4

5

Figure 6: The basic command \psgrid offered by
the pspicture environment.

necessary to produce a drawing. One important
tool for drawing pictures with pstricks is the grid.
It can be activated with the \psgrid macro. If no
further arguments are given in the command it pro-
duces a grid with width and height as determined
by the size of the enclosing pspicture. Figure 6
shows the basic commands offered by the pspicture

environment. Thanks to the class standalone the
output document is a PDF containing the cropped
diagram. The work flow that produces the final
PDF is handled by the editor texworks coupled
with arara.9

The way pstricks works is an example of a draw-
ing package where some of the functionalities are
provided by an external program, in this case dvips.
The set of macros that are collectively known as
pstricks exploit the PostScript language to a great
degree by writing to the output file — a .dvi file
in this case — the raw PostScript code necessary
to draw all of the required objects.

The most important basic geometric objects
are produced by the macros \psline, \psdots,
\pspolygon, \pscircle, \psellipse, \psarc,

9. http://texdoc.net/texmf-dist/doc/support/

arara/arara-usermanual.pdf

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

71

-1 0 1

0

1

2

3

4

5 b

b

b

b

Center,Middle

bottom,left
︸ ︷︷ ︸

Really!

Baseline,right
︸ ︷︷ ︸

Really!

R
ot
at
ed

by
45
◦

% arara: latex

% arara: dvips

% arara: ps2pdf

\documentclass[%

border={0.6cm 0.6cm 0.6cm 0.6cm}% l b r t

]{standalone}

\usepackage[pdf]{pstricks}

\usepackage{pst-all}

\usepackage{pstricks-add}

\begin{document}

\begin{pspicture}(-1,0)(1,5)

\psgrid[griddots=10,subgriddots=3,

gridlabelcolor=blue](-1,0)(1,5)

\psdots[linecolor=red,dotsize=10pt]

(0,5)(-1,3)(1,2)(0.5,1)

\rput(0,5){Center,Middle}

\rput[bl](-1,3){%

$\underbrace{\text{bottom,left}}_{\text{Really!}}$}

\rput[Br](1,2){%

$\underbrace{\text{Baseline,right}}_{\text{Really!}}$}

\rput[tr]{45}(0.5,1){

\parbox{5cm}{\flushright Rotated\\ by 45°}

}

\end{pspicture}

\end{document}

Figure 7: Placing whatever,wherever in pspicture environment.

\pscurve, \psbezier, whose names are self-
explanatory. Figure 7 shows a possible customiza-
tion of the grid made by passing a number of
arguments to \psgrid. The same diagram con-
tains a few examples of how a text box can
be placed on the canvas. Figure 8 demonstrates
the use of \psline and \pscurve with their
arguments to obtain simple lines with various
line endings.

A showcase of graphics produced with pstricks

and other companion packages is given by Fig-
ure 9.10 Figure 9a represents a power balance in
a form known as Sankey diagram and is made
by coupling to pstricks the package pst-node. Fig-
ure 9b shows a three-dimensional scene produced
with the package pst-solides3d. In Figure 9c the
power of the package pst-plot is demonstrated by
plotting the diagram of a mathematical function
using 4000 connected points. In Figure 9d pst-plot

is used to illustrate the construction of a hypocy-
cloid curve. Finally, Figures 9e and 9f demonstrate
the potential of package pst-3dplot.11

6 Using pgf/tikz

This is an introduction to drawing diagrams/pic-
tures using the tikz package, which is built on top

10. For an extensive gallery of examples visit this link

http://tug.org/PSTricks/main.cgi?file=examples .

11. http://texdoc.net/texmf-dist/doc/generic/pst-

3dplot/pst-3dplot-doc.pdf .

of pgf, a platform- and format-independent macro
package for creating graphics. The pgf package is
smoothly integrated with TEX and LATEX and, as
a result, tikz also lets users incorporate text and
mathematics in their diagrams. The tikz package
also supports the beamer class, which is used for
creating incremental computer presentations.

The main purpose here is to emphasize the po-
tential of tikz and inspire a creative use of this pow-
erful extension. The interested reader is referred to
the excellent package documentation itself (Tan-
tau, 2016) for more detailed information.

The pgf package, where ‘pgf’ means ‘portable
graphics format,’ is a package for creating inline
graphics, that is, it defines a number of TEX com-
mands that can draw graphics within the typeset-
ting process. Graphics objects are put into boxes
and treated as normal items to be taken care of
by the LATEX output routine.

As occurs with the environments picture and
pspicture, when one uses pgf the graphics are pro-
gramed, just as documents are programed when
TEX is used. The package users get all the advan-
tages of the TEX-approach to typesetting for their
graphics: quick creation of simple graphics, pre-
cise positioning, the use of macros, often superior
typography. But also all the disadvantages are in-
herited: steep learning curve, no wysiwyg, small
changes require a recompilation, and the code does
not really show how things will look like.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

72

\begin{pspicture}(5,5)

\psgrid[griddots=10,subgriddots=3,

gridlabelcolor=blue]

\psline{-*}(1,4)(2,4)

\psline{-,linewidth=3pt}(3,4)(4,4)

\psline{->,linecolor=magenta,

linewidth=2pt}(2.5,4)(2.5,2.5)

\pscurve{|-|}(1,2)(2.5,1)(4,2)

\end{pspicture}

0 1 2 3 4 5

0

1

2

3

4

5

Figure 8: Lines and line endings with pstricks.

The pgf system is designed as a combination
of three software layers sitting one on top of each
other. The lower layer, called by the author the
“system layer,” is in charge of low-level tasks re-
lated to the production of the final output. In
practice, the generic user will never be using the
TEX macros provided by the system layer. Next,
we have the “basic layer,” providing a set of basic
commands that allow to produce complex graphics
in a much easier manner than by using the system
layer directly. However, also this layer of drawing
macros is not conceived to be used directly by the
generic user. Finally, the pgf exposes a “frontend
layer,” i. e. a set of commands or a special syntax
that makes using the functionalities implemented
by basic layer easier. This frontend is what is called
“TikZ” — hence the double possibility to name the
package. The name tikz is an acronym of ‘tikz ist
kein Zeichenprogramm’ (German for ‘tikz is not a
drawing program’) and provides commands and en-
vironments for specifying and “drawing” graphical
objects in a document.

6.1 Command \tikz and environment
tikzpicture

Once \usepackage{tikz} is used in the preamble,
LATEX users have two options to produce a diagram
with the tikz frontend:

(a) The command \tikz as the following exam-
ple

\tikz \draw (0pt,0pt) -- (20pt,6pt);

that yields the line , or

\tikz\fill[orange] (1ex,1ex) circle(1ex);

that yields the orange circle . Observe that the
argument passed to \tikz is a string terminated
by a semicolon.

(b) The environment tikzpicture to embed more
elaborated graphic commands, as the following
example

\begin{tikzpicture}

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

\end{tikzpicture}

that gives the triangle

Both the command \tikz and the environment
tikzpicture can be used in running text for simple
drawings. For instance, the following draws a 0.4×
0.2 crossed rectangle: .

The following draws a 0.4×0.2

crossed rectangle:

\begin{tikzpicture}

\draw (0.0,0.0) rectangle (0.4,0.2);

\draw (0.0,0.0) -- (0.4,0.2);

\draw (0.0,0.2) -- (0.4,0.0);

\end{tikzpicture}\,.

Although there is the chance to use or implement
other types of frontend layers to the pgf system,
the tikz frontend is by far the most popular.

6.2 Grids

Grids, as in all programmed drawing environments,
are the most important support of the trial-and-
error process occurring when users develop their
pictures. In tikz the simple code

\begin{tikzpicture}

\draw[line width=0.1pt,gray!30,step=5mm]

(0,0) grid (3,2);

\draw[help lines]

(0,0) grid (3,2);

\draw[thick] (1,1) -- (2,2) -- (2,1)

-- cycle;

\end{tikzpicture}

draws a grid and a triangle:

This example demonstrates how to draw a basic
3×2 grid, relative to the origin. The grid consists of
two superimposed grids, the coarser of which (help
lines) is drawn on top of the other. The option
gray!30 in the style of the fine grid defines the
colour for the grid: one gets it by mixing 30% grey
and 70% white. Of course, a grid becomes part of
a picture in all cases where a scientific plot has to
be represented.

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

73

Pe

Rs I
2
s

GFe E
2
s

RR I 2
r

Ptr =
ω

n
Ce

attr

ωm

n
Ce Pu

(a) Power balance represented as a Sankey diagram.

x

y

z

(b) A 3D scene drawn with PSTricks

extended with the package pst-

solides3d.

0.2 0.4 0.6 0.8
0

−1

1

x

y

f(x) = sin
1

x

(c) Mathematical function plot obtained with the extension package
pst-plot connecting 4000 points.

(d) Construction of a hypocycloid
obtained with the extension package
pst-plot.

x y

z

�

(e) A function z = f(x, y) plotted with pst-plot3d. Reproduced
from Goosens et al. (2007).

x y

z

1

-1

-2

1

-1

1

2

-1

bxy

bxz

byz

(f) A 3D plot obtained with the ex-
tension package pst-plot3d.

Figure 9: Examples of advanced illustrations made with PSTricks.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

74

6.3 Paths

Inside a tikzpicture environment everything is
drawn by starting a path and by extending the
path. Paths are constructed using the \path com-
mand. In its basic form, a path is started with a
coordinate that becomes the current coordinate
of the path. Next the path is extended with other
coordinates, line segments, nodes or other shapes.
Line segments may be straight line segments or cu-
bic spline segments, which are also known as cubic
splines. Each line segment extension operation adds
a line segment starting at the current coordinate
and ending at another coordinate. Path extension
operations may update the current coordinate.

The optional argument of the \path command
is used to control if, and how the path should be
drawn. Adding the option draw forces the drawing
of the path. By default the path is not drawn. A
semicolon indicates the end of the path. This code

\begin{tikzpicture}

\path[draw] (0,0) -- (2,0);

\path (2.5,0) -- (3,0);

\end{tikzpicture}

renders as follows:

The first \path command in the above tikzpicture

draws a line segment from (0, 0) to (2, 0). The
second \path command draws an invisible line
segment. Both line segments are considered part
of the picture, so the picture has a width of 3 cm.
The following variant

\begin{tikzpicture}

\path[draw] (0,0) -- (2,0);

\path[draw, red, thick] (2.5,0) --

(3,0);

\end{tikzpicture}

renders both lines:

and modifies their thickness and color.
The command \draw is a shorthand for \path

[draw]. The tikz package has many shorthand
notations like this. The following example draws a
path that starts at position (0, 0).

\begin{tikzpicture}

\draw[help lines] (0,0) grid (3,4);

\draw (0,0) circle (2pt)

-- (1,1) rectangle (2,3)

-- (3,4)

-- (2,4) circle (2pt);

\end{tikzpicture}

First the path is extended by adding a circle. Next
the path is extended with a line segment leading
to (1, 1). Next it is extended with a rectangle, and

so on. Except for the circle extension operation,
each operation changes the current position of the
path. The result is:

It has to be observed that the examples given so
far violate every rule of the maintainability. For ex-
ample, what if the rectangle’s size were to change,
what if its position were to change, what if its
colour were to change? Fortunately, tikz provides
users a range of commands and techniques for main-
taining their diagrams. One of the cornerstones is
the ability to label nodes and coordinates and use
the labels to construct other nodes and shapes. In
addition the packages upports hierarchies. Parent
settings may be inherited by descendants in the
hierarchy.

6.4 Coordinate labels

Maintaining complex diagrams defined entirely in
terms of absolute coordinates is virtually impos-
sible. Fortunately, tikz provides many techniques
that help maintain a diagram. In one of these
techniques relies on the possibility to you define
coordinate labels associated to coordinates. The
resulting labels can be effectively used instead of
the coordinates to build up even the most a com-
plicated diagrams.

User defines a coordinate label by the chosen la-
bel name after the coordinate keyword. Defining
coordinates this way is possible at (almost) any
point in a path. Once the label of a coordinate
is defined, it can be used as a coordinate. The
following, which draws a crossed rectangle (),
demonstrates the mechanism.

The following, which draws a

crossed rectangle

(\begin{tikzpicture}

\draw (0.0,0.0) coordinate(lower left)

-- (0.4,0.2) coordinate(upper right);

\draw (0.0,0.2) -- (0.4,0.0);

\draw (lower left) rectangle (upper

right);

\end{tikzpicture}), demonstrates

the mechanism.

A label name may contain spaces.

6.5 Types of path extensions

Paths are constructed by extending them. There
are several different kinds of path extension opera-

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

75

tions. The majority of these extension operations
modify the current coordinate, but some don’t. In
the remainder of this section it is therefore assumed
that an extension operation modifies the current
coordinate unless this is indicated otherwise. For
the moment it is assumed that none of the coordi-
nates are relative or incremental coordinates.

6.5.1 The move-to operation

The move-to operation is the most intuitive and
adds a coordinate to the path, making it the cur-
rent coordinate. The following example uses three
move-to operations. The first move-to operation
defines the lower left corner of the grid. The re-
maining move-to operations define the starts of
two line segments. The code

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1) % then move-to

(2,1) -- (3,2);

yields:

6.5.2 The line-to operation

The line-to operation is represented by the -- di-
rective and adds a straight line segment to the path.
The line segment is from the current coordinate
and ends in the given coordinate. The example
code

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1) --

(2,0) -- (3,2);

yields:

6.5.3 The curve-to operation

The curve-to operation is represented by the ..

directive and adds a cubic Bézier spline segment
to the path. The start point of the curve is the
current point of the path. The end point is last
given coordinate, and the control points are all the
intermediate coordinates passed to the operation.
The following example code

% grid

\draw[help lines] (-2,-4) grid (2,4);

% define labels (nodes)

\path (-2, 0) coordinate(c1)

(-1, 3) coordinate(c2)

(0,-3) coordinate(c3)

(2,-1) coordinate(c4);

% segments connecting nodes

\draw[dashed] (c1) -- (c2) -- (c3) -- (c

4);

% control points

\draw (c1) circle (2pt)

(c2) circle (2pt)

(c3) circle (2pt)

(c4) circle (2pt)

(c1);

% the curve

\draw[thick] (c1) .. controls (c2)

and (c3) .. (c4);

% text labels

\path

(c1) node[anchor=west] {\texttt{c1}}

(c2) node[anchor=west] {\texttt{c2}}

(c3) node[anchor=east] {\texttt{c3}}

(c4) node[anchor=east] {\texttt{c4}};

yields:

c1

c2

c3

c4

The above drawing demonstrates the operation.
The curve starts at c1 and ends at c4. The control
points are given by c2 and c3. The tangent of the
spline segment at c1 is equal to the tangent of
the line segment c1 -- c2. Likewise, the tangent
at c4 is given by the tangent of the line segment
c3 -- c4.

As an alternative, in the this curve-to operation
the and can be replaced by .. directives.

6.5.4 The cycle operation

The cycle operation closes the current path by
adding a straight line segment from the current

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

76

point to the most recent destination point of a
move-to operation. The cycle operation has three
applications. First it closes the path, which is re-
quired if one wishs to fill the path with a colour.
Second, it connects the start and end line segments
in the path. Third, it avoids the need to reference
the start point of the path. The following example
code

\draw (0,0) -- (1,1)

(2,0) -- (3,0) --

(3,1) -- cycle;

yields:

6.5.5 Connecting points with horizontal/vertical
lines

This operation is equivalent to two line-to opera-
tions connecting the current coordinate and the
given coordinate. It may follow the -| directive,
that is, the first operation adds a horizontal and
the second a vertical line segment. The following
example code

\draw (0.0,0.0) -| (2.0,0.5)

(1.0,1.0) -| (3.0,0.0);

yields:

As an alternative, the operation may follow the
|- directive. This time, however, the first opera-
tion adds a vertical and the second a horizontal
line segment, as in the following example

\draw (0.0,0.0) |- (2.0,1.0)

(1.0,0.5) |- (3.0,0.0);

resulting in:

6.5.6 The rectangle operation

The rectangle operation adds a rectangle to the
path. The rectangle is constructed by making the
current coordinate and the given coordinate, re-
spectively, the lower left and upper right corners
of the rectangle. The following example

\draw (0,0) rectangle (1,1)

rectangle (3,2);

yields:

The given coordinate in the first rectangle oper-
ation here becomes the current coordinate in the
next one.

6.5.7 The circle operation

The circle operation adds a circle to the path.
The centre of the circle is given by the current
coordinate of the path and its radius is the dimen-
sion passed as argument. This operation does not
change the current coordinate of the path. The
following example

\draw (0,0) circle (2pt)

rectangle (3,1)

circle (4pt);

yields:

6.5.8 The ellipse operation

The ellipse operation adds an ellipse to the path.
The centre of the ellipse is given by the current
coordinate of the path and its semi-width and semi-
height are passed as arguments. This operation
does not change the current coordinate of the path.
The following example

\begin{tikzpicture}[scale=0.85]

\draw[help lines] (0,0) grid (6,4);

\draw (2,2) ellipse (1cm and 1cm)

(3,2) ellipse (3cm and 2cm);

\end{tikzpicture}

yields:

6.5.9 The arc operation

The arc operation adds an arc to the path. The arc
starts at the current point, P . The user supplies
two angles, α and β, and a radius r. The arc is
determined by a circle of radius r. The centre of the
circle, C, is determined by the equation P = C +
R × (cos α, sin α). The end point of the arc is given
by P = C + R × (cos β, sin β). The arc is drawn
in counterclockwise direction from the start point
to the end point, which becomes the new current
coordinate of the path. The following example
illustrates the construction. Only the upper half
of the circle is drawn. The resulting arc is drawn
with a continuous line. The code

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

77

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (4,2);

\draw[dashed] (4,0) coordinate(p0)

arc (0:180:2cm);

\draw[fill=black] (2,0) coordinate(c)

circle(1pt)

node[anchor=south east] {C};

\path (p0) arc (0:30:2cm)

coordinate(p30);

\draw[fill=black] (p30) circle(1pt)

node[anchor=south west] {P_1};

\draw[thick] (p30) arc (30:120:2cm)

coordinate(p120)

circle (2pt)

node[anchor=north west] {P_2};

\draw[->,thick] (c) --

node[anchor=south east] {r} (p30);

\end{tikzpicture}

yields:

C

P1

P2

r

Further examples of arcs are drawn with the
following code

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (3,2);

\draw[dashed] (1,1) circle (1cm);

\draw (1,2) coordinate(a) circle (2pt)

(2,1) coordinate(b) circle (3pt)

(1,0) coordinate(c) circle (4pt);

\draw[->,thick] (a) arc (90:180:1cm);

\draw[->,thick] (b) arc (0:45:1cm);

\draw[->,thick] (c) arc (270:225:1cm);

\end{tikzpicture}

resulting in:

The arc operation can be performed along an
ellipse as well. It adds an ellipse segment to the
path. The construction of the ellipse segment is
similar to the construction of the arc segment. In
this case, instead of passing the radius, the user
must provide the half width and the half height of
the ellipse. The following code

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,-1) grid (3,1);

\draw[dashed] (1.5,0) circle (1.5cm and

1cm);

\draw[fill=black] (1.5,0) coordinate(c)

circle(1pt);

\draw (3,0) coordinate(a) circle (2pt);

\draw (0,0) coordinate(b) circle (2pt);

\draw[->,thick] (a) arc (0:90:1.5cm and

1cm);

\draw[->,thick] (b) arc (180:340:1.5cm

and 1cm);

\end{tikzpicture}

demonstrates the elliptical arcs:

6.6 Actions on paths

Most of the examples shown so far are conceived
to emphasize the default path style. This may not
always be what users want. For example, one may
want to draw a line in a certain colour, change the
default line width, fill a shape with a colour, and
so on. In tikz terminology this is achieved with
path actions, which are operations acting on an
existing path. The user first constructs the path
and then apply the action. At the basic level the
command \draw is defined in terms of an action on
a path: the action results in the path being drawn.
As pointed out before \draw is a shorthand for
\path[draw].

The following are some other shorthand com-
mands that are defined in terms of path actions
inside the tikzpicture environment.

\draw Shorthand for \path[draw].

Example:

\draw (0,0) -- (3,0);

\fill Shorthand for \path[fill].

Example:

\fill[gray!30] (0,0) rectangle (3,0.5);

\filldraw Shorthand for \path[filldraw].

Example:

\filldraw[fill=gray!30,draw=black,thick]

(0,0) rectangle (3,0.5);

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

78

\shade Shorthand for \path[shade].
Example:

\shade[left color=black,right color=gray]

(0,0) rectangle (3,0.5);

\shadedraw Shorthand for \path[shadedraw].
Example:

\shadedraw[left color=black,right color=

white,thick]

(0,0) rectangle (3,0.5);

6.7 Colour

The tikz package knows several colours. Some
colours are inherited from the xcolor package.12

There are several techniques to define a new name
for a colour. To learn more, the reader is referred
to the documentation of xcolor.

Some path actions also let users define a colour.
For example, one may draw a path with the given
colour. There are different ways to control the
colour. The option color determines the colour for
drawing and filling, and the colour of text in nodes.
(Nodes are explained later on in this section.) One
may set the colour of the whole tikzpicture or set
the colour of a given path action. Setting the colour
of the whole picture is done by passing a color

option to the environment. Setting the colour of a
path action is done by passing the option to the \

path command (or derived shorthand commands).
The following is an example that draws three lines:
one in red, one in green, and one in 60% cyan and
40% white.

\begin{tikzpicture}[thick,color=red]

\draw (0,2) -- (2,2);

\draw[color=green] (0,1.5) -- (2,1.5);

\draw[color=cyan!60]

(0,1) -- (2,1);

\end{tikzpicture}

It is usually possible to omit the color= part
when one specifies colour options.

6.8 Line width

In tikz there are several path actions affecting the
line style, including the style that determines the
line width, the line cap, and the line join. The
following code provide some examples.

12. http://texdoc.net/texmf-dist/doc/latex/

xcolor/xcolor.pdf

\draw[very thin] (0,3.5) -- (3,3.5)

node[anchor=west] {(0.2pt)};

\draw[thin] (0,3) -- (3,3)

node[anchor=west] {(thin, default)};

\draw[line width=0.4pt] (0,2.5) --

(3,2.5)

node[anchor=west] {(0.4pt, default)};

\draw[semithick] (0,2) -- (3,2)

node[anchor=west] {(0.6pt)};

\draw[thick] (0,1.5) -- (3,1.5)

node[anchor=west] {(0.8pt)};

\draw[very thick] (0,1.0) -- (3,1.0)

node[anchor=west] {(1.2pt)};

\draw[ultra thick] (0,0.5) -- (3,0.5)

node[anchor=west] {(1.6pt)};

\draw[line width=8pt] (0,0) -- (3,-4pt)

node[anchor=west] {(8.0pt)};

(0.2pt)

(thin, default)

(0.4pt, default)

(0.6pt)

(0.8pt)

(1.2pt)

(1.6pt)

(8.0pt)

6.9 Dash patterns

The drawing of lines inb tikz also depends on the
dash pattern and dash phase settings. The dash
pattern determines a basic pattern for the line
that is repeated cyclicly. The dash phase shifts the
dash pattern. By default the dash pattern is solid.
The following shows the relevant path actions that
affect dash patterns.

\draw[loosely dotted] (0,3.5) -- (3,3.5)

node[anchor=west] {(loosely dotted)};

\draw[dotted] (0,3) -- (3,3)

node[anchor=west] {(dotted)};

\draw[densely dotted] (0,2.5) -- (3,2.5)

node[anchor=west] {(densely dotted)};

\draw[solid] (0,2.0) -- (3,2.0)

node[anchor=west] {(solid)};

\draw[loosely dashed] (0,1.5) -- (3,1.5)

node[anchor=west] {(loosely dashed)};

\draw[dashed] (0,1.0) -- (3,1.0)

node[anchor=west] {(dashed)};

\draw[densely dashed] (0,0.5) -- (3,0.5)

node[anchor=west] {(densely dashed)};

\draw[densely dashed,

dash phase=3pt] (0,0.0) -- (3,0.0)

node[anchor=west] {(phase 3pt)};

\draw[dash pattern=on 7pt off 2.5pt

on 1pt off 2.5pt] (0,-0.5) -- (3,-0.5)

node[anchor=west] {(custom pattern)};

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

79

(loosely dotted)

(dotted)

(densely dotted)

(solid)

(loosely dashed)

(dashed)

(densely dashed)

(phase 3pt)

(custom pattern)

6.10 Predefined styles

Hard-coding a line width or a dash pattern com-
mand is not always a good idea. It is usually better
to define a style for a certain line width, for a dash
style, or a combination of the two. The advantages
of doing this are that you only have to define the
style once and can use it several times. Using styles
gives you a consistent appearance for the resulting
lines, and if you want to make a global change to
the style then you only have to make one change
in your LATEX file. Later on in this section it will
be explained how users can define their own styles.

Several previous examples given so far make use
of some predefined line width and dash pattern
styles. The default line width is thin. The default
dash pattern is solid.

6.11 Line caps and joins

The drawing of a path depends on several parame-
ters. The line cap determines how lines start and
end. The line join determines how line segments
are joined.

The following examples demonstrates different
line cap types.

\begin{tikzpicture}[line width=8pt]

\draw[help lines] (0,0) grid (3,4);

\draw[line width=2pt,dashed,gray!75]

(1,0) -- (1,4) (2,0) -- (2,4);

\draw[line cap=round] (1,3) -- (2,3);

\draw[line cap=rect] (1,2) -- (2,2);

\draw[line cap=butt] (1,1) -- (2,1);

\end{tikzpicture}

The following examples demonstrates different
line join types.

\begin{tikzpicture}[line width=8pt]

\draw[line join=round]

(0.0,.8)--(0.3,.0)--(0.6,.8);

\draw[line join=miter]

(0.9,.0)--(1.2,.8)--(1.5,.0);

\draw[line join=bevel]

(1.8,.8)--(2.1,.0)--(2.4,.8);

\end{tikzpicture}

To avoid sharp-angled miter joins that protrude
too far beyond the joining point, tikz provides the
control option miter limit. It poses a limit on
how far the miter join may protrude the joining
point. If the join protrudes beyond the limit then
the join style is changed to bevel. The limit is
equal to a fraction of the line width. An example
of use is the following.

\begin{tikzpicture}

[line width=8pt,line join=miter]

\draw (0,0) -- (0.25,2) -- (0.5,0);

\draw[miter limit=8]

(1,0) -- (1.25,2) -- (1.5,0);

\end{tikzpicture}

6.12 Arrows

Arrows are also drawn using path actions. The fol-
lowing example demonstrates some common ways
to how to draw them.

\begin{tikzpicture}[thick]

\draw[->] (0,1.0) -- (2,1.0);

\draw[<-] (0,0.5) -- (2,0.5);

\draw[<->] (0,0.0) -- (2,0.0);

\end{tikzpicture}

Several arrow head styles are available besides
the default one shown above. Some of the styles are
provided by the tikz extension library arrows.meta.
The following code demonstrates a small selection
of arrow types.

% in preamble

\usepackage{tikz}

\usetikzlibrary{arrows.meta}

\begin{tikzpicture}[thick]

\draw[>=to,->] (0,1.0) -- (2,1.0)

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

80

node[anchor=west] {(to)};

\draw[>=stealth,->] (0,0.5) -- (2,0.5)

node[anchor=west] {(stealth)};

\draw[>=latex,->] (0,0.0) -- (2,0.0)

node[anchor=west] {(latex)};

\draw[>=Triangle,->] (0,-0.5) --

(2,-0.5)

node[anchor=west] {(Triangle, arrows)

};

\draw[Stealth-Circle] (0,-1.0) --

(2,-1.0)

node[anchor=west] {(Stealth \& Circle

, arrows)};

\draw[{Diamond[open]}-{Kite[fill=green

]}] (0,-1.5) -- (2,-1.5)

node[anchor=west] {(Diamond \& Kite,

arrows)};

(to)

(stealth)

(latex)

(Triangle, arrows)

(Stealth & Circle, arrows)

(Diamond & Kite, arrows)

6.13 Nodes and node labels

Diagrams with lines only are rare. Usually, they
also contain text, math, or both. Fortunately, tikz

has a mechanism for adding text, math, and other
material to paths. This is done with the node path
extension operation.

The node path extension operation allows to
place a given content (delimited by curly brackets)
at the current position in the path using some
given options, and associates a label to the node.
Each node added to a path has an outer shape.
The outer shape is only drawn if draw is part of
the options. The default node shape is a rectangle
but other shapes are also defined.

The following example draws a circle at posi-
tion (1, 0) and at the same time places a diamond-
shaped node at the current point on the path. The
node contains the words ‘my content’ and shape
boundaries have a distance of 10 pt from the text.
The fill operation is applied both to the circle
and to the diamond, giving them, respectively, a
green and a light blue background.

% in preamble

\usepackage{tikz}

\usetikzlibrary{shapes.geometric}

\draw (0,1) % current position.

[fill=green] % options for circle

circle (4pt) % draw shape circle

node[anchor=south, % node options

diamond,

fill=blue!20,

inner sep=10pt,draw]

(c) % node label

{my content}; % content

my content

When adding a node to a path, it is not manda-
tory to have a label and a set of options. In fact,
the simple code

\draw (0,1) circle (8pt) node {Circle};

just draws a circle and puts the word ‘Circle’ on
top of it:

Circle

Observe that the default behaviour puts the word’s
center at the current coordinate.

When a node receives a label, 〈 label 〉, then
usually the additional labels 〈 label 〉.center,
〈 label 〉.north, 〈 label 〉.north east, . . . , and
〈 label 〉.north west are also defined. The posi-
tions of these labels correspond to their names, so
〈 label 〉.north is to the north of the node having
label 〈 label 〉. This holds for the most common
node shapes. Next example involves all these aux-
iliary labels, except for 〈 label 〉.center. The op-
tion anchor in the example is a way to override
the node’s default insertion point.

\begin{tikzpicture}

\draw (0,0)

node (hello)

[scale=2.0,

inner sep=0pt,outer sep=0pt,

draw=red]

{\fbox{\textbf{Hello \GuIT}}};

\draw (hello.north east) circle (2pt)

node[anchor=south west] {north east};

\draw (hello.north) circle (2pt)

node[anchor=south] {north};

\draw (hello.north west) circle (2pt)

node[anchor=south east] {north west};

\draw (hello.west) circle (2pt)

node[anchor=east] {west};

\draw (hello.south west) circle (2pt)

node[anchor=north east] {south west};

\draw (hello.south) circle (2pt)

node[anchor=north] {south};

\draw (hello.south east) circle (2pt)

node[anchor=north west] {south east};

\draw (hello.east) circle (2pt)

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

81

node[anchor=west] {east};

\end{tikzpicture}

Hello guIt
north eastnorthnorth west

west

south west south south east

east

Observe in the above example that the options
inner sep and outer sep are both set to 0 pt.
This means that the default rectangular shape con-
taining the words ‘Hello guIt’ is the actual bound-
ing box of the text and that the anchor points
are precisely located at the boundary of the box.
A nonzero inner sep (inner separation) makes
the shape larger than the actual bounding box. A
nonzero outer sep (outer separation) offsets the
anchor points outwards of the given dimension.

6.14 Predefined node shapes

Nodes have a shape/style and content. The default
node shape is rectangular but tikz also predefines
the shapes coordinate, rectangle, circle, and
ellipse. The option shape=〈 shape 〉 determines
the node shape.

The following example shows some of the differ-
ent node shape options and low-level control.

\begin{tikzpicture}[scale=1.5]

\draw (0,0) grid (3,2);

\draw (1.5,1.5)

node (a)

[draw,inner sep=0pt,outer sep=5pt]

{xx};

\draw (2.5,0.5)

node (b)

[draw,inner sep=5pt,outer sep=0pt]

{yy};

\draw (0.5,0.5)

node(c)

[draw,shape=circle] {zz};

\draw (a.north) circle (2pt);

\draw (b.north) circle (2pt);

\draw (c.north) circle (2pt);

\end{tikzpicture}

xx

yyzz

The difference in the inner separations of the rect-
angular nodes manifests itself in different sizes for
the rectangular shapes. Differences in the outer
separations result in different distances of labels
such as north. The higher the outer separation of
a node, the further its north label is away from its
rectangular shape.

6.15 Node placement

Several node options exist that permit a low-level
control of all graphical aspects. Here we show some
of these node options with an example.

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (3,4);

\draw (0,1) coordinate(a)

node[anchor=north west] {a}

-- (3,1) coordinate(b)

node[anchor=north east] {b}

node[pos=0.3,anchor=north] {0.3}

node[pos=0.5,anchor=north] {0.5}

(a) .. controls (1,4) and (2,4) .. (b

)

node[pos=0.2,sloped,anchor=south] {$

0.2$}

node[pos=0.8,sloped,anchor=north] {$

0.8$};

\end{tikzpicture}

a b0.3 0.5

0.
2 0.8

Notice that several nodes can be placed with pos

options for the same path segment.

6.16 Connecting nodes

The tikz package is well-behaved. It will not cross
lines unless user says so. This includes the crossing
of borderlines of node shapes. For example, let us
assume the user created two nodes. One of them
is a circle, which is labelled c, and the other is a
rectangle, which is labelled r. When user draws a
line using the command \draw (c) -- (r); then
the resulting line segment will not join the centres
of the two nodes. The actual line segment will
be shorter because the line segment starts at the
circle shape and ends at the rectangle shape. In
most cases this is the desired behaviour. If one
needs a line between the centres then .center

notation must be used. The following code provides
an example.

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid (3,3);

\path (1,1) node(a)[draw,shape=circle]

{a};

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

82

\path (1,2) node(b)[shape=rectangle] {$

b$};

\path (2,2) node(c)[shape=circle] {c

};

\path (2,1) node(d)[draw,shape=

rectangle] {d};

\draw (a) -- (b) -- (c.center) -- (d)

-- (a.center);

\end{tikzpicture}

a

b c

d

6.17 Coordinate systems

Specifying coordinates is the key to effective, ef-
ficient, and maintainable picture creation. Coor-
dinates may be specified in different ways each
coming with its own specific coordinate system.
Within a coordinate system you specify coordi-
nates using explicit or implicit notation.

Explicit — Explicit coordinate specifications
are verbose. To specify a coordinate, users write
(〈 system 〉 cs: 〈 coord 〉), where 〈 system 〉 is
the name of the coordinate system and where
〈 coord 〉 is a coordinate whose syntax depends
on 〈 system 〉. For example, to specify the point
having x-coordinate 〈 x 〉 and y-coordinate 〈 y 〉 in
the canvas coordinate system one writes (canvas

cs:x=〈 x 〉, y=〈 y 〉).
Implicit — Implicit coordinates specifications

are shorter than explicit coordinate specifications.
Users specify coordinates using some coordinate
system-specific notation inside parentheses. Most
examples so far have used the implicit notation for
the canvas coordinate system.

Canvas coordinate system — The most widely
used coordinate system is the canvas coordinate
system. It defines coordinates in terms of a horizon-
tal and a vertical offset relative to the origin. The
implicit notation (〈 x 〉, 〈 y 〉) is the point with
x-coordinate 〈 x 〉 and y-coordinate 〈 y 〉.

Xyz coordinate system — The xyz coordinate
system defines coordinates in terms of a linear
combination of an x-, a y-, and a z-vector. By
default, the x-vector points 1 cm to the right, the
y-vector points 1 cm up, and the z-vector points to
(−

√
2/2, −

√
2/2). However, these default settings

can be changed. The implicit notation (〈 x 〉, 〈 y 〉,
〈 z 〉) is used to define the point at 〈 x 〉 times the x-
vector plus 〈 y 〉 times the y-vector plus 〈 z 〉 times
the z-vector.

Polar coordinate system — The canvas polar
coordinate system defines coordinates in terms of
an angle and a radius. The implicit notation (α:r)

corresponds to the point (r cos α, r sin α). Angles
in this coordinate system, as all angles in tikz,
should be supplied in degrees.

Node coordinate system — The node coordi-
nate system defines coordinates in terms of a label
of a node or coordinate. The implicit notation
(〈 label 〉) is the position of the node or coordi-
nate that was given the label 〈 label 〉.

The following example demonstrates the previ-
ous four coordinate systems in action. The optional
argument of the tikzpicture sets the arrow head
style to the predefined style named latex.

\begin{tikzpicture}[>=latex]

\draw[help lines] (-1,-1) grid (2,3);

\draw[red] (canvas cs:x=1cm,y=2cm) --

(0,3);

\draw[blue,->] (0,0) -- (xyz cs:x=1,y

=0,z=0);

\draw[blue,->] (0,0) -- (0,1,0);

\draw[blue,->] (0,0) -- (0,0,1);

\draw (canvas polar cs:radius=2cm,angle

=30)

-- (90:2);

\path (0,0) coordinate (origin);

\draw (origin) circle (2pt);

\end{tikzpicture}

Users can freely mix the coordinate systems.
For example \draw (0,0) -- (0,1); and \draw

(0,0) -- (90:1); are equivalent.

6.18 Relative and incremental
coordinates

Specifying diagrams in terms of absolute coordi-
nates is cumbersome and prone to errors. What
is worse, diagrams defined in terms of absolute
coordinates are difficult to maintain. For example,
changing the position of an n-agon that is defined
in terms of absolute coordinates requires changing
n coordinates. Fortunately, tikz provides a coordi-
nate computation mechanism based on previously
defined coordinates. Used intelligently, this reduces
the maintenance costs of diagrams.

Relative and incremental coordinates are com-
puted from the current coordinate in a path. The
first doesn’t change the current coordinate whereas
the second does change it.

Relative coordinate — A relative coordinate con-
structs a new coordinate at an offset from the cur-

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

83

rent coordinate without changing the current coor-
dinate. The notation +〈 offset 〉 specifies the rela-
tive coordinate that is located at offset 〈 offset 〉
from the current coordinate.

Incremental coordinate — An incremental coor-
dinate also constructs a new coordinate at an offset
from the current coordinate. This time, however,
the new coordinate becomes the current coordi-
nate. One uses the implicit notation ++〈 offset 〉
for incremental coordinates.

The following example draws three squares. The
first square is drawn with absolute coordinates, the
second with relative coordinates, and the last with
incremental coordinates.

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid +(3,2);

\draw (0,0) -- (+1,0) --

(1,1) -- (+0,1) -- cycle;

\draw (1,1) -- +(+1,0) --

+(1,1) -- +(+0,1) -- cycle;

\draw (2,0) -- ++(+1,0) --

++(0,1) -- ++(-1,0) -- cycle;

\end{tikzpicture}

Clearly, the relative and incremental coordinates
should be preferred because they improve the main-
tenance of the picture. For example, moving the
first square requires changing four coordinates,
whereas moving the second or third square requires
changing only the start coordinate. The relative
coordinate in the grid also improves the maintain-
ability.

6.18.1 Complex coordinate calculations

Finally, tikz offers complex coordinate calculations.
However, these calculations are only available if the
tikz extension library calc is loaded in the preamble.

Generally, coordinate computations based on
previously defined points are enclosed in the special
syntax

($ 〈coordinate modifiers 〉 $)

where coordinate modifiers are a set of possible
constructs that usually manipulate two existing
points to produce a new one.

The following examples present several coordi-
nate computations involving distance modifiers.

The code

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid +(3,2);

\path (0,0) coordinate (A)

[fill]circle (2pt) node[anchor=south

east] {A};

\path +(3,2) coordinate (B)

[fill]circle (2pt) node[anchor=south

west] {B};

\draw (A) -- (B);

\path ($(A)!0.5!(B)$) coordinate (M)

[fill=red]circle (2pt) node[anchor=

south] {M};

\end{tikzpicture}

A

B

M

calculates the halfway point (M) between two co-
ordinates, (A) and (B), using the special syntax
($(A)!0.5!(B)$).

The last example can be elaborated further by
extracting the x- and y-coordinate of (M) using
the special path operation \let, see the package
documentation (Tantau, 2016) for a detailed ex-
planation of this handy feature. Finally, a point
N0 is taken on segment AB at 3

4
|AB| from A and

a point N1 is calculated such that segment N0N1

is normal to AB and |N0N1| = 1.5 cm.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick,>=latex]

\draw[help lines] (0,0) grid +(3,2);

\path (0,0) coordinate (A)

[fill]circle (2pt) node[anchor=south

east] {A};

\path +(3,2) coordinate (B)

[fill]circle (2pt) node[anchor=south

west] {B};

\draw (A) -- (B);

\path ($(A)!0.5!(B)$) coordinate (M)

[fill=red]circle (2pt) node[anchor=

south] {M};

% extract M.x

\draw[dashed,red]

% point register <-- M coordinates

let \p{M}=(M) in

(M) -- (\x{M},0) % extract M.x

[fill=red]circle(1pt)

(M) -- (0,\y{M}) % extract M.y

[fill=red]circle(1pt);

% point N0

\path ($(A)!0.75!(B)$) coordinate (N0)

[fill=blue]circle (2pt) node[anchor=

north west] {N_0};

% point N1: N0--N1 normal to N0--B

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

84

\path ($(N0)!1.5cm!90:(B)$) coordinate

(N1);

\path (N1) [fill=blue]circle (2pt) node

[anchor=south west] {N_1};

\draw[->] (N0) -- (N1);

\end{tikzpicture}

A

B

M N0

N1

The following example demonstrates more com-
putations with partway and distance modifiers.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick,>=latex]

\draw[help lines] (-3,0) grid +(3,4);

% define origin O

\path (0,0) coordinate (O)

[fill] circle (1pt)

node[anchor=north west] {O};

% define point N

\path (0,4) coordinate (N)

[fill] circle (1pt)

node[anchor=south west] {N};

% point computation helpers

\draw[dashed,blue] (0,4) arc (90:140:4)

;

\draw[|->|,blue] (0,4.8) arc

(90:120:4.8)

node[pos=0.5,anchor=south east]

{\small 30\,deg};

% compute A, B, C, D

\draw (O)

% connect the origin

-- % with next point

% define A:

% on segment ON,

% at N,

% then rotate of 30deg about O

($(O)!1.0!30:(N)$)

coordinate (A)

[fill] circle (1pt)

node[anchor=south east] {A}

% define B:

% on segment OA,

% at 2cm from O

($(O)!2.0cm! (A)$)

coordinate (B)

[fill] circle (1pt)

node[anchor=north east] {B}

% define C:

% on segment OA,

% at 2.5cm from O

% then rotate of -15deg about O

($(O)!2.5cm!-15:(A)$)

coordinate (C)

[fill] circle (1pt)

node[anchor=south] {C}

% define D:

% on segment OA,

% at 2cm from O,

% then rotate of -30deg about O

($(O)!2cm!-30:(A)$)

coordinate (D)

[fill] circle (1pt)

node[anchor=west] {D};

% draw a bezier

\draw[-latex,red]

(B) .. controls (C) .. (D);

\end{tikzpicture}

O

N

30 deg

A

B

C

D

Finally, next example demonstrate coordinate
computations with projection modifiers.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[scale=1.5,

thick,>=latex,line join=round]

\draw[help lines] (0,0) grid +(3,4);

\draw[red] (1,1) coordinate (A)

node[anchor=north west,orange] {A}

% segment AB

-- (1,2) coordinate (B)

node[anchor=south east,orange] {B

};

\draw[green] (B)

% segment BC

-- (2,3) coordinate (C)

node[anchor=south west,orange] {C

};

% segment CA

\draw[blue] (C) -- (A);

% connect points with their projections

% on opposite segments

% B on segment AC

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

85

\draw[->] (B) -- ($(A)!(B)!(C)$)

coordinate (Bp);

\draw[fill,gray] (Bp) circle (1pt);

% C on segment BA

\draw[->] (C) --

($(B)!(C)!(A)$) coordinate (Cp);

% construction helpers

\draw[dashed,orange] (B)

-- ($(B)!1.2!(Cp)$);

\draw[fill,gray] (Cp) circle (1pt);

% A on segment CB

\draw[->] (A) --

($(C)!(A)!(B)$) coordinate (Ap);

% construction helpers

\draw[dashed,orange] (B)

-- ($(B)!1.2!(Ap)$);

\draw[fill,gray] (Ap) circle (1pt);

\end{tikzpicture}

A

B

C

In the last drawing three vertices of a triangle
ABC are first defined, annotated, and connected.
Successively, some helper lines and dots are repre-
sented as aids to the reader. Finally, each vertex
V is projected onto the opposite segment S1S2

according to the sintax ($(S1)!(V)!(S2)$).

6.19 What else?

Making graphics with pgf is a huge subject. There-
fore, this section does not claim to serve as an
exhaustive tutorial on programmed illustrations
with tikz. There are several aspects that have been
left out of this presentation to save space and re-
main on the essential commands and options.

For a comprehensive explanation of tikz styles,
scopes, options, advanced path operation, cus-
tomization possibilities, and extension libraries the
interested readers are referred to the excellent user
guide (Tantau, 2016) and to the book LATEX and
Friends (van Dongen, 2012).

All tikz examples given in previous subsections
are viewable on Overleaf website.13 These are pro-
vided mainly to facilitate new users in their further
explorations.

13. https://www.overleaf.com/read/mgskyfdpttzt

6.20 Advanced examples

In this final subsection on tikz three advanced
examples are reported to demonstrate the possi-
bilities of the package. The examples are adapted
from the website http://texample.net , which
exhibits a gallery containing a large number of
high quality illustrations and graphics made with
tikz and pgf.

The LATEX code reported in Figure 10 produces
the example of Figure 11, a nice block diagram
obtained with tikz. The diagram is constructed
with the aid of the tikz library positioning, which
facilitates the relative positioning of the various
nodes on the canvas. The code also demonstrates
the definition of custom node styles.

Figure 12 shows the geometry of hydrogen and
oxygen atoms in the water molecule. The example
demonstrates the use of shading options to obtain
a three-dimensional effect.

Figure 13 demonstrates the way a submatrix
can be highlighted within a mathematical formula.
In this example some advanced features of pgf are
used in order to produce rectangle nodes that fit
the desired areas. The drawing requires a double
compilation.

7 LATEX-aware graphic software

The approach to graphic work production discussed
in this section relies on available visual tools and
is very different from the ‘programmed graphics’
approach presented in the previous section.

There are many ‘LATEX-aware’ computer programs,
with sophisticated graphical user interfaces (GUI),
not included in standard TEX distributions, which are
capable of producing professional-quality graphics.
The following is a list of the most popular ones:

• Xfig,14 is one of the first visual tools of this
type, an X Window drawing software available for
Unix and Linux that saves graphics in its own
format (.fig files), but exports to many other for-
mats, including Encapsulated PostScript (EPS).
An improved version named WinFig15 is available
for MS Windows. This software has been tradition-
ally used in conjunction with the LATEX package
psfrag that can remove labels and other text from
.eps graphics and replace them with LATEX labels.
Although this approach still works perfectly, it has
become somewhat obsolete with respect to other
recently introduced workflows.

• Ipe,16 is a powerful vector graphics editor,
with several snapping modes that make it espe-
cially suitable for a variety of technical illustrations.
The application saves graphics in its own .ipe file
format, but outputs PDF and EPS for inclusion in
LATEX documents. Ipe uses LATEX to typeset text,

14. http://xfig.org

15. http://winfig.com

16. http://ipe7.sourceforge.net

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

86

%in preamble

\usepackage{relsize,calc,paralist,tikz}

\usetikzlibrary{calc,arrows,decorations.pathmorphing,backgrounds,fit,positioning,shapes.symbols,chains}

\definecolor{mydarkgreen}{rgb}{0.03,0.47,0.03} \definecolor{mydarkblue}{rgb}{0.07,0.08,0.4}

\definecolor{mylightblue}{rgb}{.8, .8, 1} \definecolor{mylightgray}{rgb}{0.95,0.95,0.95}

\definecolor{mydarkgray}{rgb}{0.35,0.35,0.35} \definecolor{myblue}{rgb}{.4,.4,1}

\tikzstyle{line} = [draw,>=latex’, shorten >=0pt, shorten <=0pt,line width=2pt]

% in document ---

\begin{tikzpicture}

[node distance = 1cm, auto, font=\footnotesize,

% STYLES

every node/.style={node distance=3cm},

% The comment style is used to describe the characteristics of each force

comment/.style={

rectangle, inner sep= 2pt, text width=5cm, node distance=0.25cm,

font=\relsize{0}\sffamily

},

% The discipline style is used to draw the disciplines’ name

discipline/.style={

rectangle, draw, fill=black!10, inner sep=5pt, text width=4cm, text badly centered,

minimum height=1.2cm, font=\relsize{0}\bfseries

},

% The topic style

topic/.style={

rectangle, draw, top color=white, bottom color=mylightblue,very thick,

inner sep=5pt, text width=3.5cm, text badly centered,

minimum height=1.7cm, font=\relsize{0}\bfseries

},

% the mycircled node type

mycircled/.style={

circle, draw, fill=black!10, inner sep=2pt,font=\relsize{0}\bfseries

}

]% end of tikzpicture global options

% Draw forces

\node [discipline] (FD) {\relsize{1}Flight Dynamics};

\node [mycircled, left of=FD] (plus) {$\boldsymbol{+}$};

\node [discipline, left of=plus] (MechElasStru) {Mechanics of Elastic Structures};

\node [discipline, above of=MechElasStru,yshift=-1cm] (MechRigiBodi) {Mechanics of Rigid Bodies};

\node [discipline, above of=MechRigiBodi,yshift=-1cm] (Aero) {Aerodynamics};

\node [discipline, below of=MechElasStru,yshift=+1cm] (HumaPiloDyna) {Human Pilot Dynamics};

\node [discipline, below of=HumaPiloDyna,yshift=+1cm] (ApplMathMachComp) {Applied Mathematics Machine Computation};

\node [discipline, right of=FD,xshift=3cm] (VehiOper) {Vehicle Operation};

\node [discipline, above of=VehiOper,yshift=-1cm] (VehiDesi) {Vehicle Design};

\node [discipline, below of=VehiOper,yshift=+1cm] (PiloTrai) {Pilot Training};

\node [topic, below of=FD,xshift=-5.98cm, yshift=-3.8cm] (P) {Performance (trajectory, maneuverability)};

\node [topic, right of=P,xshift=1cm] (SC) {Stability \& Control (handling qualities, airloads)};

\node [topic, right of=SC,xshift=1cm] (AE) {Aeroelasticity (control, structural integrity)};

\node [topic, right of=AE,xshift=1cm] (NG) {Navigation and Guidance};

% Comments

\node [comment, above=0.25 of FD] (comment-FD) {

\begin{compactitem}% needs paralist

\item Flight Simulator mathematical model \item Aircraft representation

\end{compactitem}

};

% Draw the links between nodes

\path[line,->] (plus) edge (FD);

\path[line,->] (MechElasStru) edge (plus);

\path[line,->] (MechRigiBodi.east) -- ++(0.3cm,0) -- (plus.120);

\path[line,->] (Aero) -| (plus);

\path[line,->] (HumaPiloDyna.east) -- ++(0.3cm,0) -- (plus.240);

\path[line,->] (ApplMathMachComp) -| (plus);

\path[line,->] (FD) -- (VehiOper);

\path[line,->] (FD.east) ++(1cm,0) |- (VehiDesi);

\path[line,->] (FD.east) ++(1cm,0) |- (PiloTrai);

\path[line,<-] (P.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (SC.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (AE.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (NG.north) -- ++(0,0.6cm) -| (FD);

\end{tikzpicture}

Figure 10: Source code of diagram reported in Figure 11.

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

87

Flight Dynamics+
Mechanics of Elastic

Structures

Mechanics of Rigid
Bodies

Aerodynamics

Human Pilot
Dynamics

Applied Mathematics
Machine Computation

Vehicle Operation

Vehicle Design

Pilot Training

Performance
(trajectory,

maneuverability)

Stability & Control
(handling qualities,

airloads)

Aeroelasticity
(control, structural

integrity)

Navigation and
Guidance

• Flight Simulator

mathematical model

• Aircraft representation

Figure 11: Block diagram of disciplines involved in Flight Dynamics. All graphic elements are placed on
the canvas with intuitive tikz commands. See code in Figure 10.

both simple labels and larger paragraphs. Supports
layers and views, which make it possible to ‘build’
illustrations incrementally in a presentation.

• Asymptote,17 is a vector graphics language
and compiler. This software has been mentioned
earlier in this article because code snippets in
Asymptote language can be embed in LATEX
sources. Asymptote compiler can be used as a
standalone tool as well (comes also with its own
GUI) for generating both 2D and 3D figures. 3D
figures can be included in a pdf file in the PRC
(Product Representation Compact) format which
allows them to be manipulated when viewed in
Adobe Reader.

• LaTeXPiX,18 is a Windows GUI capable of
exporting pgf/LATEX code.

• TPX,19 is a Windows GUI similar to LaTeX-

PiX, but more flexible.
• Sweave,20 is a tool that allows users to include

R code directly into their LATEX files. It does much
more than just generate graphics, but it makes
inclusion of R generated graphics into LATEX docu-
ment very easy.

• KtikZ/QtikZ,21 is a pgf/tikz real-time open
source compiler that runs on Linux and Windows.

17. http://asymptote.sourceforge.net

18. http://latexpix.comyr.com/latexpix.htm

19. http://tpx.sourceforge.net

20. http://www.stat.uni-muenchen.de/~leisch/

Sweave

21. http://www.hackenberger.at/blog/ktikz-editor-

for-the-tikz-language

It can speed up the drawing effort while at the
same time allowing to code directly in tikz language.
It has a template option which allows to define
user commands in an easy way as well as a menu
with many common (and not so common) tikz

constructs.

• LatexDraw,22 is a very useful open source mul-
tiplatform GUI capable of generating pstricks code.

• Dia,23 is a multiplatform open source GUI
that supports both pgf/tikz and pstricks output.

• Sketch,24 is a language and compiler that al-
lows users to create vector drawings of 3D scenes.
It generates pgf/tikz or pstricks code. A detailed
presentation of this software can be found in
De Marco (2007).

• Inkscape,25 is an open source and well-
supported vector graphics/SVG editor available for
all major operating systems. Due to its popularity,
and being by far the most powerful and impor-
tant application among those mentioned here, we
will discuss the LATEX-related capabilities of this
graphics software in the rest of this section.

7.1 Using Inkscape

Inkscape is an open source vector graphics editor
using the W3C standard Scalable Vector Graph-
ics (SVG) file format, with capabilities similar to

22. http://latexdraw.sourceforge.net

23. http://live.gnome.org/Dia

24. http://www.frontiernet.net/~eugene.ressler

25. http://www.inkscape.org

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

88

p

105◦

H+ H−

O2−

(a) The diagram by Jimi Oke shows the geometry of
hydrogen and oxygen atoms in the water molecule, and
the position of the dipole (p).

\begin{tikzpicture}[>=latex,scale=1.3]

\shade[ball color=gray!10!] (0,0)

coordinate(Hp) circle (0.9);

\shade[ball color=gray!10!] (2,-1.53)

coordinate(O) circle (1.62);

\shade[ball color=gray!10!] (4,0)

coordinate(Hm) circle (0.9);

\draw[thick,dashed] (0,0) -- (2,-1.53)

-- (4,0) ;

\draw[thick] (2,.2) -- (2,1.5) node[

right]{\mathbf{p}};

\draw (2.48,-1.2) arc (33:142:.6);

\draw (2,-.95) node[above]{$105^{\circ}

$};

\draw (0,.2) node[left]{H$^+$};

\draw (4,.2) node[right]{H$^-$};

\draw (2,-1.63) node[below]{O$^{2-}$};

\foreach \point in {O,Hp,Hm}

\fill [black] (\point) circle (2pt);

\end{tikzpicture}

(b) The tikz code of the above drawing.

Figure 12: Example of graphics made with tikz.

commercial applications such as Adobe Illustrator,
CorelDRAW, or Xara X.

Inkscape supports many advanced SVG features,
moreover, developers took great care in designing
a streamlined interface, that allows user to edit
nodes, perform complex path operations, trace
bitmaps, and much more in a very easy way. A
well written documentation and many tutorials are
available online. For a guide on this application
the reader is referred to Bah (2011).

Inkscape provides a large API (Application Pro-
gramming Interface) and a Python scripting ca-
pability. These features have encouraged the de-
velopment of several third-party extension plugins.
One of these plugins is TexText,26 a particularly
important extension for TEX users because it gives

26. https://textext.github.io/textext

them the possibility to add and re-edit (multi-
line) LATEX/X ELATEX/LuaLATEX generated SVG
elements to a drawing. It offers a multi-line editor,
optionally with syntax highlighting.

SVG elements created with TexText are enriched
with special additional information containing the
LATEX code used to generate all text and symbols
prior to be traced into SVG vector graphics. The
additional information allow users to re-edit the
original LATEX commands.

TexText is written in Python and uses ei-
ther pdf2svg (or a combination of pstoedit and
ghostscript) as converter for producing SVG code
from the generated PDF (or PostScript). Detailed
installation instructions for all major platforms are
found on the project website.

Once TexText and its dependencies are correctly
installed, a menu entry Extensions → Tex Text will
appear in Inkscape. See Figure 15a. When this
menu item is selected, a TexText dialog window
appears to assist the user to input the desired
LATEX content.

The TexText input dialog window is shown in
Figure 15b. LATEX code is entered into the edit box
5 . In the case PyGTK is installed, it will show
line and column numbers. If PyGTKSourceView

has been additionally installed, the edit box will
also highlight the syntax with colors. The user can
add any valid and also multi-line LATEX code. The
plugin provides additional settings which can be
adjusted to the user’s needs:

• The group box 1 controls the TEX command
to be used for compiling the code. Possible options
are: pdflatex, xelatex, lualatex.

• The group box 2 points to a custom pream-
ble file that the user might need in order to have
his LATEX input compiled successfully.

• The group box 3 regulates a scale factor to
be applied to the final SVG element.

• The button 4 becomes active only when the
user re-edits the code of the enriched SVG element,
and controls the alignment relative to the previous
state of the same graphic object.

• Menu items 7 control the default math envi-
ronment in new nodes and the appearance of the
editor.

The LATEX code and the accompanying settings
will be stored within the new SVG node in the
Inkscape document. This allows the user to re-edit
the ‘LATEX node’ later by selecting it and running
the TexText extension (which will then show the
dialog containing the saved values).

The TexText dialog window provides also a pre-
view button 6 as well, which shortens the feedback
cycle from entry to result considerably. Once the
user is happy with the previewed LATEX object the
Save button can be clicked to get the resulting SVG
object of Figure 16. The final traced result of the
intermediate temporary PDF produced with the

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

89

M =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

MT =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Transpose

N
NT

(a) An example by Stefan Kottwitz. A submatrix within a matrix is highlighted with tikz. The same
is done in the transposed matrix. tikz and some advanced features of pgf are used in order to produce
rectangle nodes that fit the desired areas. The drawing requires a double compilation.

% in preamble

\usepackage{tikz}

\usetikzlibrary{fit}

% ...

\tikzset{highlight/.style={rectangle

,rounded

corners,fill=red!15,draw,fill

opacity=0.3,thick,inner

sep=0pt}}

\newcommand{\tikzmark}[2]{\tikz[

overlay,remember

picture,baseline=(#1.base)] \

node (#1) {#2};}

\newcommand{\Highlight}[1][

submatrix]{\tikz[overlay,

remember

picture]{

\node[highlight,fit=(left.north

west) (right.south east)] (#1)

{};}}

\begin{document}

\[

M = \left(\begin{array}{*5{c}}

\tikzmark{left}{1} & 2 & 3 & 4 &

5\\ 6 & 7 & 8 & 9 & 10 \\

11 & 12 & \tikzmark{right}{13} &

14 & 15 \\

16 & 17 & 18 & 19 & 20 \end{

array}\right)

\Highlight[first]

\qquad

M^T = \left(\begin{array}{*5{c}}

\tikzmark{left}{1} & 6 & 11 & 16

\\ 2 & 7 & 12 & 17 \\

3 & 8 & \tikzmark{right}{13} &

18 \\ 4 & 9 & 14 & 19 \\

5 & 10 & 15 & 20 \end{array}\

right)

\]

\Highlight[second]

\tikz[overlay,remember picture] {

\draw[->,thick,red,dashed] (first)

to[out=30,in=140]

node[above] {Transpose} (second

);

\node[above of=first] {N};

\node[above of=second] {N^T};

}

\end{document}

(b) The tikz code of the above drawing.

Figure 13: Example of nice graphics made with tikz.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

90

Figure 14: A screenshot of Inkscape with TexText extension in use.

(a) Selecting TexText from Inkscape Extensions menu. (b) The TexText dialog window.

Figure 15: Using TexText extension plugin in Inkscape.

input LATEX code is visible in Figure 17 where the
highlighted nodes of the SVG element are shown.

TexText is a very powerful tool when coupled
with the potential of Inkscape itself. Yet the user
have to be aware of including the required pack-
ages in the preamble file if special commands are
used in LATEX code that rely on such packages. The
preamble file can be chosen by the selector men-
tioned above. The default preamble file shipped
with TexText is the following:

% default_packages.tex

\usepackage{amsmath,amsthm,amssymb,

amsfonts}

\usepackage{color}

Basically, user’s LATEX code will be inserted into
this template:

\documentclass{article}

% ===> preamble file content <===

% default:

% \input{default_packages}

\pagestyle{empty}

\begin{document}

% ==> User’s code <===

\end{document}

This will be typeset in a separate system thread,
the PDF result will be converted to SVG and

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

91

Figure 16: SVG element resulting from input of
Figure 15b.

Figure 17: Nodes highlighted in the SVG element
of Figure 16.

the vector object will be inserted into the current
Inkscape document.

In conclusion of this section, a fairly elaborated
illustration is displayed in Figure 18. The vector
image has been produced using Inkscape with the
TexText extension. The preamble file has been cus-
tomized to load the package mt2pro and use the
commercial font MathTime Professional 2.

8 Presenting data with plots

This section studies the presentation of data with
“data plots” using LATEX. Usually one shall use
the word ‘graph’ instead of data plot. The main
focus of this final part of the article is the package
pgfplots, which creates astonishingly beautiful data
plots in a consistent style with great ease.

The package pgfplots is built on top of pgf and
is designed to draw graphs in a variety of formats,
with a consistent, professional look and feel. The
package also allows to import data stored in files
in tabular format via the package pgfplotstable.27

27. https://ctan.org/pkg/pgfplotstable

As is usual with the pgf family, their manuals are
impressive (Feuersänger, 2018).

8.1 The axis environment

The workhorse of the pgfplots package is an environ-
ment called axis, which may define one or several
plots (graphs). Each plot is drawn with the com-
mand \addplot. When the graphs are drawn the
environment also draws a 2- or 3-dimensional axis.
The axis environment is used inside a tikzpicture

environment, so one can also use tikz commands.
The options of the axis environment specify the
type of the plot, the width, the height, and so on.

Typically, one or more plots are created in LATEX
following the template:

% in preamble

\usepackage{pgfplots}% loads tikz

...

\begin{tikzpicture}

\begin{axis}[〈graphic options 〉]
...

〈pgfplots or tikz commands 〉
...

\end{axis}

\end{tikzpicture}

The simplest possible graph with pgfplots is
given by the code

\begin{tikzpicture}

\begin{axis}

\end{axis}

\end{tikzpicture}

that is, an empty axis environment, with default
formatting options. The result is:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

This can be customized, for example, changing
the ranges of x- and y-axis, introducing a grid,
and defining axis labels. This is done by passing
the following self-explanatory options to the axis

environment

\begin{axis}[

xmin = -1, xmax = 1,

ymin = 0, ymax = 2,

grid = major,

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

92

Figure 18: A fairly elaborated illustration representing an aircraft in a spin manoeuvre. The image has
been made using Inkscape with the TexText extension. The preamble file has been customized to load
the package mt2pro and use the commercial font MathTime Professional 2.

xlabel = x, ylabel = y

]

\end{axis}

The customized axes now appear as follows:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

y

The package pgfplot, as also pgf and tikz do,
provides a way to change default settings at a
global level. For plots this feature is given by the
command \pgfplotsset. The following example
enlarges the default font size in axis labels and
rotates the y-axis label.

% in preamble

\usepackage{pgfplots,relsize}

...

% pgfplots styles

\pgfplotsset{

every axis x label/.append style = {

font = \relsize{2}

},

every axis y label/.append style = {

font = \relsize{2},

rotate = -90,

xshift = 0.5em

}

}

\begin{tikzpicture}

\begin{axis}[

xmin = -1, xmax = 1,

ymin = 0, ymax = 2,

grid, xlabel = x, ylabel = y

]

\end{axis}

\end{tikzpicture}

The above code yields:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

y

The macro \pgfplotset acts on predefined
styles, as, for instance, in the last example on those
labelled every axis x label as well as every

axis y label. The usual approach is to change
style parameters by appending customized settings
to the defaults, such as font, rotate, xshift, and
several others. The user provided settings overwrite

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

93

the default ones. To learn more on style customiza-
tions available for pgf and pgfplots the reader might
want to look at the remaining examples in this sec-
tion and at the package documentation.

The following example demonstrates further cus-
tomizations. The style of grid lines is changed and
axis labels are formatted with the help of macro
\si provided by the package siunitx.

% in preamble

\usepackage{pgfplots,relsize,siunitx}

...

% pgfplots styles

\pgfkeys{

/pgf/number format/.cd,

use comma

}

\pgfplotsset{

every axis/.append style={

font=\relsize{0},

line width=1.0pt,

tick style={line width=1.0pt}

},

every axis x label/.append style={

font=\relsize{1},

yshift=0pt,

xshift=0em

},

every axis y label/.append style={

font=\relsize{1},

rotate=-90,

xshift=-0.7em,

yshift=-1.4em,

},

major grid style={

line width = 0.8pt,

black,

dash pattern=on 8pt off 4pt

},

every axis title/.append style={

font=\relsize{1}

}

}

\begin{tikzpicture}

\begin{axis}[

xmin=-1, xmax=1,

ymin=0, ymax=10,

xtick={-1,-0.5,...,1},

ytick={0,2,...,10},

minor x tick num = 1,

minor y tick num = 1,

grid=major,

xlabel={x (\si{\meter})},

ylabel={

\parbox{2cm}{%

\centering

$\dfrac{\partial T}{\partial x}$

\\[0.7em]

\centering

(\si{\celsius/\meter})

}

},

title=Gradiente di temperatura,

axis on top=true

]

% the shaded rectangle

\fill[blue!40]

(axis cs:-0.5,0) --

(axis cs:0.5,0) --

(axis cs:0.5,10) --

(axis cs:-0.5,10) --

cycle;

\end{axis}

\end{tikzpicture}

The macro pgfkeys, similar to pgfplotsset, is
provided by pgf and is used to change the default
decimal separator in numbers from ‘.’ (dot) to
‘,’ (comma). This example demonstrates also the
use of tikz drawing commands inside the axis

environment. The above code yields:

−1 −0,5 0 0,5 1
0

2

4

6

8

10

x (m)

∂T

∂x

(◦C/m)

Gradiente di temperatura

Next example evolves from the previous one. It
demonstrates the use of a second y-axis on the
right side of the plot bounding box. The second
axis has different range and scaling with respect
to the default one on the left side, and is used
typically when multiple sets of data with values
in different ranges have to be represented in the
same plot.

\begin{tikzpicture}

% same initial settings

% of previous example

\begin{axis}[

height=6cm,% <==

% same initial settings

% of previous example

]

% same drawing commands

% of previous example

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

94

% add plot data #1 here <==

\end{axis}

% second axis

\begin{axis}[

height=6cm,% <==

xmin=-1, xmax=1,

axis x line=none, % <==

axis y line*=right,% <==

ymin=-5, ymax=80,

ytick={-10,0,...,80},

minor y tick num = 1,

ylabel={

\parbox{2cm}{%

\centering

T

\\[0.0em]

\centering

(\si{\celsius})

}

},

]

% add plot data #2 here

\end{axis}

\end{tikzpicture}

The new y-axis is obtained by superimposing a
second reference frame on the first one. This is done
by giving a second axis environment in the same
tikzpicture. The second environment has an hidden
x-axis and an axis y line set to right. All data
whose y-values are conveniently represented with
the new axis range should be provided in the second
axis environment. The above code yields:

−1 −0,5 0 0,5 1
−15

−10

−5

0

5

10

15

x (m)

∂T

∂x

(◦C/m)

Gradiente e temperatura

0

10

20

30

40

50

60

70

80

T
(◦C)

The code of a more elaborated multiple axis
example is shown in Figure 19. The product is that
of Figure 20 showing three y-axes conveniently
positioned on the left- and right-hand sides of
the main area of the plot. Various tikz drawing
commands are used in this case to annotate and
decorate the graph for a refined visual result.

8.2 The macro \addplot

The command \addplot is used within an axis envi-
ronment to define the lines in a graph. The command
accepts a number of options and an argument that
specifies the set of data to be represented on canvas.

The following example contains two line graphs
with two different markers and a legend. No op-
tions are passed to the two \addplot commands to
customize their behaviour. Yet, two different types
of data sources are chosen: the first is a mathemat-
ical function, f(x) = −x5 − 242; the second is a
discrete set of (x, y)-coordinates.

\begin{tikzpicture}

\begin{axis}[

grid=major,

xlabel={x}, ylabel={y},

y tick label style={

/pgf/number format/.cd,

set thousands separator={},

/tikz/.cd}

]

% a function of x

\addplot {-x^5 - 242};

\addlegendentry{model}

% a discrete set of coordinates

\addplot coordinates {

(-4.77778, 2027.60977)

(-3.55556, 347.84069)

(-2.33333, 22.58953)

(-1.11111, -493.50066)

(0.11111, 46.66082)

(1.33333, -205.56286)

(2.55556, -341.40638)

(3.77778, -1169.24780)

(5.00000, -3269.56775)

};

\addlegendentry{estimate}

\end{axis}

\end{tikzpicture}

The above code yields:

−6 −4 −2 0 2 4 6

−2000

0

2000

x

y

model
estimate

The mathematical function is defined intuitively
at high-level as -x^5 - 242 and is parsed by the
powerful low-level \pgfmathparse feature of pgf.
By default, the function is evaluated at 25 points
equally spaced between two automatically calculated
x-axis limits — in this example [−5, 5]. Data points
are connected with a blue solid line and marked
by default with dots of the same color. The second
set of data is manually given with a coordinates

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

95

%in preamble

\usepackage{pgfplots}

\usetikzlibrary{calc,arrows,decorations.pathmorphing,

backgrounds,fit,positioning,shapes.symbols,shapes.

geometric,shapes.misc,chains}

% ...

\begin{tikzpicture}

\pgfplotsset{compat=1.3}

\pgfkeys{

/pgf/number format/.cd,

set decimal separator={,{\!}},

set thousands separator={}}

\pgfplotsset{

every axis/.append style={

font=\relsize{2},

line width=1.0pt,

tick style={line width=1.0pt}},

every axis x label/.append style={

font=\relsize{4},

yshift=0pt,

xshift=0em},

every axis y label/.append style={

font=\relsize{3},

rotate=-90,

xshift= 0.8em,

yshift=-1.4em},

major grid style={

line width = 0.8pt,

black,

dash pattern=on 8pt off 4pt},

every axis title/.append style={

font=\relsize{3}},

no markers

}

% the left y-axis #1

\begin{axis}[

clip=false,

scale only axis,

width=2cm, xshift=-0.4cm,

xmin=-1, xmax=1,

hide x axis,

axis y line*=left,

ymin=-15, ymax=15,

ytick={-15,-10,...,15},

minor y tick num = 1]

\node [above, yshift=6pt] at (rel axis cs:0,1)

{$\dfrac{\partial T}{\partial x}$ (\si{\celsius/\meter

})};

\end{axis}

% the unique x-axis

\begin{axis}[

scale only axis,

height=2cm, yshift=-0.4cm,

xmin=-1, xmax=1,

xtick={-1,-0.5,...,1},

minor x tick num = 1,

xlabel={x (\si{\meter})},

axis x line*=bottom,

hide y axis,

ymin=-15, ymax=15,

]

\end{axis}

% the curve #1

\begin{axis}[

scale only axis,

xmin=-1, xmax=1,

hide x axis,

ymin=-15, ymax=15,

hide y axis,

title=\parbox{8cm}{\centering Trasmissione del calore

attraverso una parete},

]

\fill[blue!40]

decorate [decoration={random steps,segment length=2mm

}] { [very thick] (axis cs:-0.5,-14.8) -- (axis cs

:0.5,-14.8) } -- (axis cs:0.5,14.8)

decorate [decoration={random steps,segment length=2mm

}] { [very thick] -- (axis cs:-0.5,14.8)}

-- cycle;

\draw[very thick] (axis cs:-0.5,-15) -- (axis cs:-0.5,15)

;

\draw[very thick] (axis cs:0.5,-15) -- (axis cs:0.5,15);

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.125,0.94)

{1};

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.50,0.94) {2};

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.875,0.94)

{3};

% \addplot of temperature gradients here

\end{axis}

\pgfplotsset{

every axis y label/.append style={

xshift= -2.4em

}

}

% the right y-axis 1

\begin{axis}[clip=false, scale only axis,

xshift=0.4cm, xmin=-1, xmax=1, hide x axis,

axis y line*=right,

ymin=-5,ymax=80, ytick={-10,0,...,80},

minor y tick num = 1,

]

\node [above, yshift=6pt] at (rel axis cs:1,1)

{T (\si{\celsius})};

% \addplot of temperatures here

\end{axis}

\pgfplotsset{every axis y label/.append style={xshift

=-1.3em}}

% the right y-axis 2

\begin{axis}[clip=false, scale only axis,

xshift=2.4cm,

xmin=-1, xmax=1,

axis x line=none, hide x axis,

axis y line*=right,

ymin=-5, ymax=500,

ytick={0,50,...,500},

minor y tick num = 1,

]

\node [above, yshift=6pt, xshift=16pt] at (rel axis cs

:1,1) {q (\si{\kcal/\meter^2})};

% \addplot of heat fluxes here

\end{axis}

\end{tikzpicture}

Figure 19: Source code of diagram reported in Figure 20.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

96

−15

−10

−5

0

5

10

15

∂T

∂x
(◦C/m)

−1 −0,5 0 0,5 1

x (m)

1 2 3

Trasmissione del calore

attraverso una parete

0

10

20

30

40

50

60

70

80

T (◦C)

0

50

100

150

200

250

300

350

400

450

500

q (kcal/m2)

Figure 20: Example of multiple y-axes obtained with pgfplots. See source code in Figure 10.

directive to \addplot as a sequence of couples
(〈x 〉,〈y 〉). This second set of data points are
connected with a red solid line and marked by
default with boxes filled with the same color.

The following example demonstrates the use of
logarithmic scales for the axes within the environ-
ment loglogaxis. The markers of the line graphs are
controlled by specific settings passed as options to
the \addplot commands.

% in preamble

\usepackage{filecontents}

\begin{filecontents*}{data1.txt}

Level Cost Error

1 7 8.47178381e-02

2 31 3.04409349e-02

3 111 1.02214539e-02

4 351 3.30346265e-03

5 1023 1.03886535e-03

6 2815 3.19646457e-04

7 7423 9.65789766e-05

8 18943 2.87339125e-05

9 47103 8.43749881e-06

\end{filecontents*}

% ...

\begin{tikzpicture}

\begin{loglogaxis}[

xlabel=Cost, ylabel=Error]

\addplot[color=red,mark=x] coordinates {

(5, 8.31160034e-02)

(17, 2.54685628e-02)

(49, 7.40715288e-03)

(129, 2.10192154e-03)

(321, 5.87352989e-04)

(769, 1.62269942e-04)

(1793, 4.44248889e-05)

(4097, 1.20714122e-05)

(9217, 3.26101452e-06)

};

\addplot[color=blue,mark=*]

table[x=Cost,y=Error]

{data1.txt};

\legend{Case 1,Case 2}

\end{loglogaxis}

\end{tikzpicture}

The second line graph is constructed by reading
coordinates from a conveniently formatted text
file, data1.txt. The file contains three columns
of data and a first row that provides the labels
for each column. Options x= and y= in the second
\addplot command select the desired x- and y-
coordinate sets according to the column names.
The above code yields:

101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

Cost

E
rr

o
r

Case 1
Case 2

The example below demonstrates the use of a
logarithmic scale for the y-axis only.

\begin{tikzpicture}

\begin{semilogyaxis}[

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

97

\begin{tikzpicture}

\tikzset{

every pin/.style={

fill=yellow!50!white,

rectangle, rounded corners=3pt,

font=\tiny},

small dot/.style={

fill=black, circle,

scale=0.3}

}

\begin{axis}[

clip=false,

title=How \texttt{axis description cs} works

]

\addplot {x^3};

% annotations

\node[small dot,

pin={[pin distance=2cm]20:{$(0,0)$}}]

at (axis description cs:0,0) {};

\node[small dot,

pin=-30:{$(1,1)$}]

at (axis description cs:1,1) {};

\node[small dot,

pin=-90:{$(1.03,0.5)$}]

at (axis description cs:1.03,0.5) {};

\node[small dot,

pin=125:{$(0.5,0.5)$}]

at (axis description cs:0.5,0.5) {};

\end{axis}

\end{tikzpicture} −6 −4 −2 0 2 4 6
−150

−100

−50

0

50

100

150

(0, 0)

(1, 1)

(1.03, 0.5)

(0.5, 0.5)

How axis description cs works

Figure 21: An example showing how, with the special coordinates system named axis description, in
pgfplots it is possible to define points relative to the bounding box of a plot.

ymin=1, ymax=1000,

xlabel=Index,ylabel=Value]

\addplot[color=blue,mark=*]

coordinates {

(1,8) (2,16) (3,32)

(4,64) (5,128) (6,256)

(7,512)

};

\end{semilogyaxis}

\end{tikzpicture}

The above code yields:

2 4 6
100

101

102

103

Index

V
al

u
e

The package pgfplots defines special coordinate
systems (cs) that make it easy to add annotations
to the plots. One of these reference systems is

named axis description. It has its point of co-
ordinates (0, 0) in the bottom left corner of the plot
bounding box, and its point (1, 1) at the top right
corner of the frame. A demonstration of this coor-
dinate system is shown in Figure 21. The annota-
tions of the plot are made by defining a style/shape
named small dot, and using the pin option of the
tikz \node operation.

A fairly elaborated example of line graph an-
notation is provided by Figure 22. Thanks to the
tikz library intersection, the pgf macro named
linelabel is defined in such a way that it can
be used as an option to \addplot. The option re-
ceives three arguments: the first is the normalized
ascissa (in range [0, 1]) of the point along the path
where the annotation is pinned (0 for the leftmost
point, 1 for the rightmost); the second argument
specifies the angle and the length of the pin line;
the third argument is the content of the annota-
tion (a formula or even a multi-line text). This
customization, too, is possible thanks to the node

and pin features in tikz.

8.3 The macro \addplot3

The command \addplot3 within an axis environ-
ment creates a three-dimensional plot. According
to the option and arguments, it can display a line
graph or a shaded surface.

The following example plots a helical curve:

\begin{tikzpicture}

\pgfplotsset{

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

98

\begin{tikzpicture}

% needs tikzlibrary: intersections

\pgfkeys{/pgfplots/linelabel/.style args

={#1:#2:#3}{

name path global=labelpath,

execute at end plot={

\path [name path global =

labelpositionline] (rel axis cs:#1,0)

-- (rel axis cs:#1,1);

\draw [help lines, text=black,

inner sep=0pt,

name intersections={

of=labelpath and labelpositionline}]

(intersection-1) -- +(#2)

node [label={#3}] {};

}

}}

\pgfplotsset{%

every axis legend/.append style={

cells={anchor=west},%

fill=gray!10,

font=\relsize{1},

at={(0.97,0.03)},

anchor=south east,thin,draw=none},

every axis title/.append style={font=\

relsize{1}},

every axis/.append style={font=\relsize{0}},

every axis x label/.append style={

font=\relsize{1},

yshift=0pt,xshift=0em},

every axis y label/.append style={

font=\relsize{2},

rotate=-90},

every axis/.append style={

thick,

tick style={thick}}

}

\tikzstyle{every pin}=[fill=white,draw=none,

font=\relsize{2}]

\begin{axis}[xlabel={x}]

\addplot [thick,

linelabel=0.8:{135:1.75cm}:

{[black]above left:x^2}] {x^2};

\addplot [thick,

blue,

densely dashed,

linelabel=0.85:{135:0.50cm}:

$\frac{3}{2}x^2$] {1.5*x^2};

\addplot [thick,

red,

dash pattern=on 5pt off 2pt,

linelabel=0.7:{135:1.25cm}:

$\frac{1}{10}x^3$] {0.1*x^3};

\addplot [thick,

dash pattern=on 1.2pt off 2pt on 5pt off 2pt,

linelabel=0.80:{-135:0.75cm}:{left:

\makebox[0pt][r]{$\left.

\begin{array}{rl}

\frac{1}{2}x^2 &\text{if }x\le 0\\[6pt]

-\frac{1}{5}x^3 &\text{if }x> 0

\end{array}

\right\}$}

}

]

{(x<0)*0.5*x^2 + (x>0)*(-0.20*x^3)};

\end{axis}

\end{tikzpicture}

−6 −4 −2 0 2 4 6

−20

0

20

40
x2

3

2
x2

1

10
x3

1

2
x2 if x ≤ 0

− 1

5
x3 if x > 0

}

x

Figure 22: An example of line graph annotations obtained introducing a customized option linelabel

to the command \addplot. The option works as a macro and is based on the tikz extension library
intersections.

every axis/.append style={

font=\relsize{-1},

line width=0.8pt,

tick style={line width=0.8pt}

},

major grid style={

line width = 0.4pt,

gray,

dash pattern=on 16pt off 4pt

}

}

\begin{axis}[

view={60}{20},% <== view point

xmin=-1.2, xmax=1.2,

ymin=-1.2, ymax=1.2,

grid = major,

xlabel=x, ylabel=y, zlabel=z,

every axis x label/.style={

at={(rel axis cs:0.5,-0.15,-0.15)},

font=\relsize{0}},

every axis y label/.style={

at={(rel axis cs:1.15,0.5,-0.15)},

font=\relsize{0}},

every axis z label/.style={

at={(rel axis cs:-0.15,-0.15,0.5)},

font=\relsize{0}},

variable=\t]

% the helix

\addplot3+[

domain=0:5.5*pi,

samples=70,

samples y=0,

no marks,

line width=1.5pt]

({sin(deg(t))}, % <== x(t)

{cos(deg(t))}, % <== y(t)

{2*t/(5*pi)}); % <== z(t)

% a line in 3d

\addplot3 +[->,no marks,line width=1.5pt]

coordinates {

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

99

(0,0,0)

(0,0,2)

(0,1.1,2)};

% a line in 3d with a tikz command

\draw[->,line width=1.5pt]

(axis cs:0,-1,0)

-- (axis cs:0,-1,1.5)

-- (axis cs:-1,-1,1.5);

\end{axis}

\end{tikzpicture}

The helix is defined as

x(t) = sin t , y(t) = cos t , z(t) =
2

5π
t

with 0 ≤ t ≤ 11

2
π (see domain option). The line

graph is made by connecting 70 three-dimensional
data points (see samples option). The mathemati-
cal expression of the curve is passed to \addplot3

as a triplet of functions of t after having declared
variable=\t as an option of the axis environment.
Two more lines are represented in the diagram.
One is made with the \addplot3 command it-
self (hence, by default is red) by connecting three
points: (0, 0, 0), (0, 0, 2), and (0, 1.1, 2). The other
line is made using the tikz command \draw by con-
necting three points: (0, −1, 0), (0, −1, 1.5), and
(−1, −1, 1.5).

The above code yields:

−1

0

1 −1
0

1

0

1

2

x
y

z

The following final example creates the plot
of a three-dimensional shaded surface. The sur-
face is constructed by evaluating the function
f(x, y) = x2 − y2 in a set of points on the xy-
plane. The shading algorithm is provided by the
pgfplots extension library patchplots.

\begin{tikzpicture}

\begin{axis}[width=0.98\linewidth,

ymin=-2.5, ymax=2.5,

xlabel={x}, ylabel={y}, zlabel={z

}

]

\addplot3[

% needs pgfplotslibrary: patchplots

patch, patch refines=3,

shader=faceted interp,

patch type=biquadratic]

table[z expr=x^2-y^2] {

x y

-2 -2

2 -2

2 2

-2 2

0 -2

2 0

0 2

-2 0

0 0};

\end{axis}

\end{tikzpicture}

The above code yields:

−2 −1 0 1 2 −2

0

2−4

−2

0

2

4

x
y

z

8.4 What else?

In this final part we really have only scratched
the surface of what can be done with pgfplots.
A more in-depth presentation of both basic and
advanced features of the package can be found in
De Marco and Giacomelli (2011). Examples
of quality manuscripts including several fine tuned
technical illustrations, diagrams and scientific plots
can be found on the author’s page of his course on
Flight Dynamics and Simulation at the University
of Naples Federico II.28

Scientific writers nowadays can rely on several
different applications and data visualization tech-
nologies for producing their own two- and three-
dimensional graphs. These include, to name a few:
Gnuplot, the Python libraries Matplotlib, Seaborn,
ggplot, Bokeh, and Plotly, the R libraries ggplot2

and Lattice, the Javascript libraries D3 and Plotly.js,
the numerical computing environments Matlab and
Mathematica, and the highly specialized software
Tecplot. Some of these tools provide their users
with the possibility to export their plots as tikz

or pgfplots code, e. g. the Gnuplot lua tikz termi-
nal29 or the Matlab script matlab2tikz.30

28. http://wpage.unina.it/agodemar/DSV-DQV/

#materiale-didattico

29. http://gnuplot.info/documentation.html

30. https://github.com/matlab2tikz/matlab2tikz

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

100

The strength of pgfplots combined with tikz is
the excellent typographical quality of their graphi-
cal outputs. Apart from those given in this article
and the pgfplots online gallery,31 the reader can
find several online examples of publication quality
graphs.32 Being pgfplots able to parse the definition
of mathematical functions as well as to import nu-
merical data produced with third-party software, a
production work flow based on this package is prob-
ably the way to go for the majority of LATEX users.
Moreover, this approach promotes the automation
of production processes — from the collection of
data, to their import in pgfplots, to the drawing
and typesetting of the final image (in raster or
vector format), up to the inclusion of the image
in the master document. Experience confirms that
this approach brings about a tremendous speed up
of graphics production.

In cases where a certain third-party technol-
ogy must be used to produce graphic works, still
these can be successively annotated with LATEX
content. The suggested approach is to import them
in Inkscape and add LATEX objects with the Tex-

Text plugin. Examples of quality graphics match-
ing the style of websites with a lot of LATEX con-
tent are given by the flight simulation software li-
brary JSBSim documentation project,33 and by the
online teaching material of the Flight Mechanics
course for the Italian Air Force Academy student
pilots.34

9 Conclusion

This paper describes the most common scenar-
ios encountered by LATEX users when they face
the problem of producing quality graphics to in-
clude in their documents. In cases of diagrams,
pictures and more or less complicated illustrations
the two approaches based on package tikz and on
the Inkscape graphics vector software have been
presented. The last part of the article introduces
the package pgfplots for making scientific plots.

The paper is example driven and aims at stimu-
lating readers’ creativity, providing them as well
with several online references.

31. http://pgfplots.sourceforge.net/gallery.html

32. From the author, see also these sample projects on

Overleaf: https://www.overleaf.com/read/mgskyfdpttzt ,

https://www.overleaf.com/read/kqkvsrfjxnmz ,

https://www.overleaf.com/read/rcbqhpqqhccn .

33. https://jsbsim-team.github.io/jsbsim-

reference-manual

34. https://agodemar.github.io/

FlightMechanics4Pilots

References

Bah, Tavmjong (2011). Inkscape. Guide to a Vec-
tor Drawing Program. Prentice-Hall, Upper Sad-
dle River, NJ, USA, 4th edition.

Beccari, Claudio (2011). «The unknown
picture environment». ArsTEXnica, (11),
pp. 57–64. http://www.guitex.org/home/it/

numero-11.

De Marco, Agostino (2007). «Illustrazioni tridi-
mensionali con Sketch/LATEX/PSTricks/TikZ
nella didattica della Dinamica del Volo».
ArsTEXnica, (4), pp. 51–68. http://www.

guitex.org/home/numero-4.

— (2009). «Produrre grafica vettoriale di alta
qualità programmando asymptote». ArsTEXnica,
(8), pp. 25–39. http://www.guitex.org/home/

numero-8.

De Marco, Agostino and Roberto Gia-
comelli (2011). «Creare grafici con pgfplots».
ArsTEXnica, (12), pp. 12–38. http://www.

guitex.org/home/it/numero-12.

Feuersänger, Christian (2018). «Manual for
package pgfplots». https://ctan.org/pkg/

pgfplots.

Goosens, Michel, Frank Mittelbach, Sebas-
tian Rahtz, Denis Roegel and Herbert Voß
(2007). The LATEX Graphics Companion.
Addison-Wesley Publishing Company, Reading,
Mass.

Harris, Robert L. (1996). Information Graphics.
A Comprehensive Illustrated Reference. Manage-
ment Graphics, Atlanta, GA, USA.

Lamport, Leslie (1994). LATEX, a document prepa-
ration system. Addison-Wesley, Reading, MA,
2nd edition.

Tantau, Till (2016). «The pgf package». http:

//ctan.org/pkg/pgf.

van Dongen, Marc (2012). LATEX and Friends.
Springer-Verlag, Berlin, Heidelberg.

Voß, Herbert (2011). PSTricks – Graphics and
PostScript for TEX and LATEX. UIT – Cambridge,
Cambridge, UK, 1st edition.

⊲ Agostino De Marco
Università degli Studi di Napoli
Federico II
agostino dot demarco at unina

dot it

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

101

	Introduction
	Illustrations: general guidelines
	Guidelines for illustration design
	Interplay between graphics and text

	Drawing and annotating with native LaTeX extensions
	The standard LaTeX picture environment
	Using pstricks
	Using pgf/tikz
	Command `tikz and environment tikzpicture
	Grids
	Paths
	Coordinate labels
	Types of path extensions
	The move-to operation
	The line-to operation
	The curve-to operation
	The cycle operation
	Connecting points with horizontal/vertical lines
	The rectangle operation
	The circle operation
	The ellipse operation
	The arc operation

	Actions on paths
	Colour
	Line width
	Dash patterns
	Predefined styles
	Line caps and joins
	Arrows
	Nodes and node labels
	Predefined node shapes
	Node placement
	Connecting nodes
	Coordinate systems
	Relative and incremental coordinates
	Complex coordinate calculations

	What else?
	Advanced examples

	LaTeX-aware graphic software
	Using Inkscape

	Presenting data with plots
	The axis environment
	The macro `addplot
	The macro `addplot3
	What else?

	Conclusion

