
Axessibility 2.0: creating tagged PDF documents
with accessible formulae

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov,
A. Kozlovskiy, N. Murru

Abstract
PDF documents containing formulae generated by
LATEX are usually not accessible by assistive tech-
nologies for visually impaired people (i.e., by screen
readers and Braille displays). The LATEX package
axessibility.sty that we developed manages
this issue, allowing to create PDF documents where
the formulae are read by such assistive technolo-
gies, through the insertion of hidden comments. In
this paper we describe the evolution of the package,
that in the latest version automatically generates
also the tagging of the formulae. The package how-
ever does not generate documents tagged according
to the PDF/UA standard.

Sommario
I documenti PDF contenenti formule generati da
LATEX non sono solitamente accessibili mediante
tecnologie assistive per persone con disabilità vi-
sive (i.e., screen reader e display Braille). Il pac-
chetto LATEX axessibility.sty da noi sviluppato
risolve questo problema, permettendo di creare do-
cumenti PDF in cui le formule vengono lette da
tali tecnologie assistive, tramite l’inserimento di
commenti nascosti. In questo articolo descriviamo
l’evoluzione del pacchetto, che nella più recente
versione genera automaticamente anche il tagging
delle formule. Il pacchetto però non genera docu-
menti etichettati secondo lo standard PDF/UA.

1 Introduction
PDF documents are widely used to digitally pub-
lish scientific content, such as papers or text-
books. Mathematical formulae, frequently con-
tained within such documents, are not accessible
by screen reader users because they are commonly
rendered as bi-dimensional images. The burden of
making digital documents accessible to visually-
impaired persons is often left to the document
author, who needs to provide descriptions for each
visual content in the form of alternate text. This
procedure is time consuming, error-prone and it
needs to be done by a sighted person. Additionally,
in the case of mathematical formulae, a verbal de-
scription does not provide the same information as
the original mathematical notation. In many cases
no alternate text is even provided because authors

are not aware of the accessibility needs of screen
reader users.

In this paper, we show the features of the pack-
age axessibility.sty (whose first version is also
described in Armano et al. (2018)) that provides
the first method for an automatised production
of accessible PDF documents with mathematical
contents through LATEX. We would like to highlight
that this package does not produce fully tagged
PDF, such as the standard PDF/UA, but it al-
lows to obtain a PDF where formulae are marked
and described using the /Alt and /ActualText
attributes.

2 Related Work
Assistive technologies for people with visual impair-
ments (e.g., screen readers, Braille displays, mag-
nifiers) are used effectively and proficiently to read
and edit digital documents containing structured
text. Instead, still many accessibility issues remain
for what concerns documents including mathemat-
ical formulae and images (e.g., diagrams, graphs,
technical drawings; Archambault et al. (2007);
Armano et al. (2014)). A number of studies have
been conducted to improve non-visual access to
scientific content, mainly along two research lines:
to facilitate editing of scientific documents through
non-visual tools, and to enable people with sight
impairments to read scientific documents in digital
formats.
The former research work has led to different

multimodal systems that are now available to au-
thor scientific documents through non-visual tools.
For instance, the LAMBDA editor (Bernareggi,
2010) is used mostly by blind people to write and
process text and mathematical formulae through
Braille display and speech output. This system
adopts a sequential code to represent mathemati-
cal notation, specifically designed for blind people
and usable only in this editor. Hence, it has got
widespread only among some communities of blind
people and it cannot become a mainstream tool
to produce accessible scientific content by sighted
people, too. A different approach consists in edit-
ing LATEX documents through speech and Braille
support (Pepino et al., 2006; Melfi G., 2018;
Yamaguchi et al., 2008; Manzoor et al., 2018,
2019; Sorge, 2016). This approach has the advan-
tage to rely on LATEX, which is a de facto standard

138

for authoring scientific documents. Unfortunately,
since these tools are produced for a small commu-
nity, due to the rapid evolution of technology, they
often incur in maintainance and compliance issues.
For what concerns reading digital scientific

documents, many studies have been undertaken
to create non-visual reading tools for the most
widespread digital formats. In particular, research
has focused on web publishing Microsoft Word,
LATEX and PDF documents. In recent years,
mathematical content has been published on the
web through images of formulae, by embedding
MathML in the web page or through MathJax, a
JavaScript display engine for mathematical formu-
lae. Images of formulae are inaccessible to screen
readers, hence they can be adapted to be read by
screen readers only through a proper alternative
text (e.g., the LATEX equivalent). On the contrary,
MathML and MathJax can be used to create ac-
cessible web pages. MathML, especially the con-
tent markup, can be interpreted by most common
screen readers to generate a verbal description of
the formula (Bernareggi and Archambault,
2007; Sorge et al., 2014). Moreover, MathPlayer, a
web browser plug-in for rendering MathML on the
screen, through speech output and on Braille de-
vices, enables hierarchical navigation of mathemat-
ical formulae, including bi-dimensional notations
such as matrices (Soiffer, 2018). MathJax can
be embedded in web pages making available adapt-
able accessibility features for representing and nav-
igating formulae (e.g., LATEX, ASCIIMath or CSS
representation; Cervone et al. (2016); Cervone
and Sorge (2019)). Taking Microsoft Word into
account, mathematical formulae can be read by the
speech synthesizer or on a Braille display through
MathPlayer. Nonetheless, due to the visual fea-
tures of Microsoft Word, interaction with screen
readers is often not easy. LATEX documents can be
read by people with sight impairments either read-
ing the source file on the Braille display or through
editors that support speech reading of LATEX (e.g.,
ChattyInfty by Science Access Net; Pepino et al.
(2006); Melfi G. (2018); Yamaguchi et al. (2008);
Manzoor et al. (2019)). Furthermore, also con-
verters from LATEX to some national Braille codes
for mathematics are available (Papasalouros and
Tsolomitis, 2017). Since national Braille codes
can represent only a limited amount of mathemat-
ical notations, these converters can transform only
a subset of the source LATEX document.

For PDF files, frequently used as a medium for
publishing digital scientific documents, the acces-
sibility of mathematical content has been devel-
oped in the scope of the so-called Tagged PDF,
which embeds the document semantics directly
into the visual representation of the page. Both
ISO 32000-1:2008 (specifying PDF 1.7) and the
recent ISO 32000-2:2017 (for PDF 2.0) suggest the

use of MathML syntax for describing the semantics
of mathematical formulae. In addition, PDF 2.0
standard opens the door for any alternative syntax
(for example, the original LATEX representation of
the formula), which can be associated with any
structure element in Tagged PDF. However, due
to the novelty of this approach, it is not yet sup-
ported by the screen readers and, thus, may be
considered only in the long-term scope.

Another approach widely supported by the ma-
jority of the screen readers is to add accessibil-
ity features to mathematical content as alternate
text. It can be specified manually using, for exam-
ple, a proprietary editor such as Adobe Acrobat.
Guidelines have been produced to create accessible
PDF according to this procedure (Uebelbacher
et al., 2014) with a focus on mathematical content
(Moore, 2009, 2014; Borsero et al., 2016).

However, this approach requires the availability
of a suitable editor, and it entails additional labor
from the document author. Furthermore, alternate
text most often does not carry the same semantic
value as the original mathematical content. Yet
another approach consists in transforming PDF
files into LATEX or HTML+MathML documents
by performing OCR (Baker et al., 2010; Suzuki
and Yamaguchi, 2017). However, the resulting
document has to be proofread because of possible
recognition errors. Proofreading process is usually
time consuming and it has to be done by a sighted
person who can compare the PDF document with
the OCR result.

3 The axessibility LATEX package
We provided a solution to the problem described
above through our package axessibility, see, e.g.,
Ahmetovic et al. (2018a,b); Armano et al.
(2018). In its most recent version, release 2.0, which
will soon be available in CTAN, we employed the
tagpdf package, created by Ulrike Fischer (see Fis-
cher (2019)), replacing the accsupp package, on
which the 1.x versions of the axessibility package
relied. The package implements insertion of the
original LATEX formulae as properties of the Span
elements containing visual representation of the
mathematical content in the resulting PDF docu-
ment, by means of the commands provided by the
tagpdf package.
In more detail, each inline or display formula

in the source LATEX document is wrapped into
a marked content sequence (see the documenta-
tion of the tagpdf package for more details on the
difference between structure elements and marked
content sequences in Tagged PDF). In addition, the
original formula is added to this marked content
sequence as /ActualText and /AltText. These
properties are read by screen readers and braille
displays instead of the ASCII representation of the
formula, which is often incorrect. Additionally, the

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

139

package adds a minimal Tagged PDF structure
to the output PDF. This includes at the moment
the top level Document structure element to mark
the beginning and the end of the document and
the P (paragraph) tag for each formula. Further
extension of this set of tags (like automatic tagging
of all paragraphs, section headers, etc) is still a
work in progress. For details about the structure
of a PDF document, we refer to the ISO standards
32000-1:2008 (2008); 32000-2:2017 (2017).

As the tagpdf package, the axessibility 2.0 pack-
age is currently experimental and it is aimed for
individual tests and experiments.

3.1 Usage
To create an accessible PDF document for visually
impaired people, the authors just need to include
the axessibility package into the preamble of their
LATEX project. The supported mathematical en-
vironments will then automatically produce the
/ActualText and /AltText contents and include
them in the produced PDF file. Formulae will also
be automatically tagged, as well as the document
environment. The tagging of other text tokens
(paragraphs, sections, etc.), at the moment, has to
be inserted manually, under the guidelines of the
tagpdf package.
The environments for writing formulae which

are presently supported are \(, \[, equation*,
equation, align*, and align. Hence, any formula
inserted using one of these environments is acces-
sible and tagged in the corresponding PDF doc-
ument. The click-copy of the formula LATEX code
from the PDF reader, to be pasted elsewhere, is
presently not working with this new release.
Inline and displayed mathematical modes acti-

vated by the old syntaxes $. . . $ and $$. . . $$ are
not supported by the axessibility package (as in
the previous versions). However, external scripts
provided as companion software can address, at
some extent, the problem of source files where the
old TEX syntax is used (see Section 4 below).
Below, an example of LATEX code, illustrating

the usage of axessibility, jointly with tagpdf.
\ documentclass { article }
\ usepackage {etoolbox , axessibility }

\begin{ document }

\ tagstructbegin {tag=P}
\ tagmcbegin {tag=P}

A simple displayed formula :
\ tagmcend

\ tagstructend

\begin{ equation *}
x=\ frac {3a^2}{n+m}
\end{ equation *}

\ tagstructbegin {tag=P}
\ tagmcbegin {tag=P}

A multiline formula , aligned ,
with label:

\ tagmcend
\ tagstructend
\begin{align}
70xy ^2+105 x^2y -35 xy7
& = 35\ left (2xy ^2+3x^2y-xy7\ right) =

\\
& = 35x\left (2y^2+3xy -y7\ right) =

\\
& = 35xy\left (2y+3x -7\ right)
\end{align}

\end{ document }

We observe that, in these cases, the author can
write the formulae without adding anything else.
Moreover, inside the source code of the PDF file,
we find /ActualText and /AltText contents, with
the (Hex) LATEX code inside, automatically gener-
ated by the axessibility.sty package, as well
as the equation tags, namely:

/P
<</MCID 1
/Alt <FEFF 002000200078003 D005C

00660072006100630020007 B
00330061005 E 0032007 D007B
006E002B006D007D0020 >

/ ActualText <FEFF 002000200078003 D005C
00660072006100630020007 B
00330061005 E 0032007 D007B
006E002B006D007D0020 >

>>

and

/P
<</MCID 3
/Alt <FEFF 0037003000780079005 E

0032002 B 0031003000350078
005E 00320079002 D 00330035
007800790037002000260020
003D 002000330035005 C006C
006500660074002000280032
00780079005 E 0032002 B0033
0078005 E 00320079002 D0078
00790037005 C 007200690067
00680074002000290020003 D
0020005 C005C 002000260020
003D 0020003300350078005 C
006C 00650066007400200028
00320079005 E 0032002 B0033
00780079002 D 00790037005 C
007200690067006800740020
00290020003 D 0020005 C005C
002000260020003 D 00200033
003500780079005 C006C0065
006600740020002800320079
002B 00330078002 D 0037005 C
007200690067006800740020
0029 >

/ ActualText <FEFF 0037003000780079005 E
0032002 B 0031003000350078
005E 00320079002 D 00330035

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

140

007800790037002000260020
003D 002000330035005 C006C
006500660074002000280032
00780079005 E 0032002 B0033
0078005 E 00320079002 D0078
00790037005 C 007200690067
00680074002000290020003 D
0020005 C005C 002000260020
003D 0020003300350078005 C
006C 00650066007400200028
00320079005 E 0032002 B0033
00780079002 D 00790037005 C
007200690067006800740020
00290020003 D 0020005 C005C
002000260020003 D 00200033
003500780079005 C006C0065
006600740020002800320079
002B 00330078002 D 0037005 C
007200690067006800740020
0029 >

>>

respectively. Here the /Alt and /ActualtText
keys are followed by the UTF-16 encoded values
in the Hexadecimal format. So, this makes our
solution fully Unicode compliant.

We note that such use of /Alt and /ActualText
keys is not fully aligned with the best practices of
PDF accessibility techniques. But it does open the
door for real world tests and further experiments.
In particular, the screen reader will read correctly
the LATEX commands. Moreover, the JAWS and
NVDA dictionaries that we created provide the
reading in the natural language, in the case that
the user does not know the LATEX commands. It
is strongly recommended to use the most recent
version of tagpdf (available through the GitHub
website), as well as the most updated versions of
the TexLive distribution.

3.2 Technical Overview
In axessibility we first load the requested packages,
configure tagpdf, and define a pair of internal vari-
ables.

\ NeedsTeXFormat {LaTeX2e}
\ ProvidesPackage { axessibility }

\ RequirePackage { tagpdf }
\ tagpdfsetup { tabsorder =structure ,

uncompress ,activate -all ,
interwordspace =true}

\ tagpdfifpdftexT
{

\ pdfcompresslevel =0
%set language / can also be done

with hyperref
\ pdfcatalog {/ Lang (en -US)}
\ usepackage [T1]{ fontenc }
\input glyphtounicode
\ pdfgentounicode =1

}
\ tagpdfifluatexT

{

%set language / can also be done
with hyperref

\ pdfextension catalog {/ Lang (en -US)}
\ RequirePackage { fontspec }
\ RequirePackage { luacode }
\ newfontface \ zerowidthfont { freeserif

}
\ directlua {
pdf. setcompresslevel (0)
pdf. setmajorversion (2)
pdf. setminorversion (0)
}
}

\ RequirePackage { amsmath }
\ RequirePackage { amssymb }
\ RequirePackage { xstring }

\ newtoks \ @mltext
\ newtoks \ @mltexttmp

Then, we redefine the document environment, so
that the PDF file is automatically tagged at the
Document level.

\ makeatletter
\let\ begin@document =\ document
\let\ end@document =\ enddocument
\ renewcommand {\ document }{\

begin@document \ tagstructbegin {tag=
Document }}

\ renewcommand {\ enddocument }{\
tagstructend \ end@document }

\ makeatother

Subsequently, we redefine the inline formula envi-
ronment, to make it accessible, inserting its (hid-
den) LATEX code. We also define an internal com-
mand to produce a space (which is useful in passing
parameters to some of our redefined environments).

\ makeatletter
\ newenvironment { temp@env }{%

\relax\ ifmmode \ @badmath \else $\fi%
\ collect@body \wrap }{%

\relax\ ifmmode \ ifinner $\ else\
@badmath \fi\else \ @badmath \fi}

\ protected \def \(#1\) {\ begin{ temp@env
}#1\ end{ temp@env }}

\ makeatother

\ newcommand {\ auxiliaryspace }{ }

The core of the package is represented by the
wrapping procedures. The first one, \wrap, is used
for both the inline, as well as the displayed single
line, formulae environments (numbered and un-
numbered), which we redefine in order to obtain
their automatic tagging and insertion of the cor-
responding LATEX code in the /ActualText and
/AltText contents. The wrapper receives as pa-
rameter the code within the environment, obtained
by means of the \collect@body command (from
the amsmath package), and passes it to the tagging
commands defined in tagpdf.

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

141

\ makeatletter
\long\def\wrap #1{
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {#1} ,
actualtext -o=\ detokenize \
expandafter {#1}}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {#1} ,
actualtext -o=\ detokenize \
expandafter {#1}}

#1
\ tagmcend

\ tagstructend
}
\ makeatother

\ makeatletter
\ renewenvironment { equation }{%

\ incr@eqnum
\ mathdisplay@push
\ st@rredfalse \ global \ @eqnswtrue

\ mathdisplay { equation }%
\ collect@body \wrap\ auxiliaryspace }{%
\ endmathdisplay { equation }%
\ mathdisplay@pop
\ ignorespacesafterend

}
\ makeatother

\ makeatletter
\ renewenvironment { equation *}{%

\ mathdisplay@push
\ st@rredtrue \ global \ @eqnswfalse
\ mathdisplay { equation *}%
\ collect@body \wrap\ auxiliaryspace }{%
\ endmathdisplay { equation *}%
\ mathdisplay@pop
\ ignorespacesafterend

}
\ makeatother

\ makeatletter
\ protected \def \[#1\]{\ begin{ equation

*}#1\ end{ equation *}}
\ makeatother

The next two procedures, \wrapml and
\wrapmlstar, perform the same task for
the multiline environments. We need a different
routine here, due to the more involved typesetting
procedure of multiline environments like align and
align*, which are likewise redefined.
\ makeatletter
\long\def\ wrapml #1{
\def\ @mltext {\ detokenize \ expandafter

{#1}}
\def\ @mltexttmp {}
\ StrBehind [6]{\ @mltext }{ }[\ @mltexttmp

]
\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

#1
}
\ makeatother

\ makeatletter
\long\def\ wrapmlstar #1{
\def\ @mltext {\ detokenize \ expandafter

{#1}}
\def\ @mltexttmp {}
\ StrBehind [5]{\ @mltext }{ }[\ @mltexttmp

]
\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

#1
}
\ makeatother

\ makeatletter
\ renewenvironment {align }{%

\ collect@body \ wrapml \ auxiliaryspace
\ start@align \@ne\ st@rredfalse \m@ne

}{%
\ math@cr \ black@ \ totwidth@
\ egroup

\ ifingather@
\ restorealignstate@
\ egroup
\ nonumber
\ifnum 0= ‘{\ fi\ iffalse }\fi

\else
$$%

\fi
\ ignorespacesafterend
\ tagmcend
\ tagstructend

}

\ renewenvironment {align *}{%
\ collect@body \ wrapmlstar \

auxiliaryspace
\ start@align \@ne\ st@rredtrue \m@ne

}{%
\ endalign

}

\ makeatother

\ endinput

We are presently working to make \wrapml and
\wrapmlstar more flexible, so that they will work
correctly with all the other multiline environments
provided by the amsmath package. This will make

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

142

all of them accessible and tagged, as those illus-
trated above. At the moment, the package works
correctly when typesetting with both pdfLATEXas
well as LuaLATEX.

4 Supporting Software
In addition to the axessibility package, we developed
additional software to address two use cases: 1) Pre-
processing Scripts for the application of axessibility
on existing documents, and 2) Screen Reader Dic-
tionaries for natural language reading of formulae
made accessible with axessibility. We are currently
working on these supporting software, to fix some
of the issues we detected through user’s reports
and suggestions, and to expand their applicability
range.

4.1 Preprocessing Scripts
axessibility restricts the syntax that can be used to
write mathematical formulae to specific environ-
ments and math mode syntax. Instead, existing
documents may contain unsupported syntax, and
therefore cannot be used with axessibility without
being first opportunely edited. We provide Axess-
cleaner, an external script written in Python and
Perl, through which it is possible to substitute
unsupported commands and environments with
suitable replacements, thus enabling the use of
axessibility on existing LATEX documents.
An additional issue lies in the usage of user-

defined macros in the LATEX code. While this is
a common practice to avoid code repetitions and
simplify document authoring, it can limit the ac-
cessibility of formulae with axessibility. Indeed,
axessibility is transparent to commands used in
math environments, which means that it will in-
clude standard LATEX as well as custom macros
within the PDF replacement text. However, cus-
tom commands used by an author may bear no
meaning for other readers. Thus, Axesscleaner also
replaces user defined macros with their content, in
order to only contain standard LATEX code within
the PDF replacement text.

4.2 Screen reader dictionaries
Mathematical formulae included as PDF replace-
ment text using axessibility are easy to read by
LATEX proficient users, using either a screen reader
or a braille display. However, for novice users, the
LATEX code read by a screen reader may be difficult
to comprehend.
To address this problem, we also provide dic-

tionaries for NVDA and JAWS screen readers,
which convert LATEX commands contained within
the PDF replacement text created by axessibil-
ity into their natural language counterparts (e.g.,
’\frac{2}{3}’ becomes “two thirds”). We are cur-
rently developing additional screen reader scripts
to enable interactive navigation of formulae, and

we are exploring more sophisticated natural lan-
guage processing techniques to personalize formula
reading considering their complexity and context,
as well as user’s proficiency with math.

5 Acknowledgements
The authors wish to thank the several volunteers
with visual impairment who provided their funda-
mental contribution.

References
32000-1:2008, ISO (2008). «Document man-
agement - Portable document format - Part
1: PDF 1.7». International standard, ISO.
Https://www.iso.org/standard/51502.html.

32000-2:2017, ISO (2017). «Document man-
agement - Portable document format - Part
2: PDF 2.0». International standard, ISO.
Https://www.iso.org/standard/63534.html.

Ahmetovic, Dragan, Tiziana Armano, Cris-
tian Bernareggi, Michele Berra, Anna Capi-
etto, Sandro Coriasco, Nadir Murru, Al-
ice Ruighi and Eugenia Taranto (2018a).
«Axessibility: a LATEX Package for Mathemati-
cal Formulae Accessibility in PDF Documents».
In Conference on Computers and Accessibility.
ACM.

Ahmetovic, Dragan, Tiziana Armano,
Michele Berra, Cristian Bernareggi,
Anna Capietto, Sandro Coriasco,
Nadir Murru and Alice Ruighi (2018b).
«Axessibility: creating PDF documents with ac-
cessible formulae». ArsTEXnica, (26), pp. 50–54.
https://www.guitex.org/home/it/numero-
26-ottobre-2018.

Archambault, D., B. Stoger, D. Fitzpatrick
and K.: Miesenberger (2007). «Access to
scientific content by visually impaired people».
Upgrade.

Armano, T., A. Capietto, M. Illengo,
N. Murru and R. Rossini (2014). «An overview
on ict for the accessibility of scientific texts by
visually impaired students». In SIREM/SIE-L
Conference.

Armano, T., A. Capietto, S. Coriasco,
N. Murru, A. Ruighi and E. Taranto (2018).
«An automatized method based on LATEX for the
realization of accessible PDF documents contain-
ing formulae». In Proc. ICCHP. Lecture Notes
in Computer Science, Springer.

Baker, Josef B., Alan P. Sexton and
Volker Sorge (2010). «Faithful Mathematical
Formula Recognition from PDF Documents». In

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

143

Proceedings of the 9th IAPR International Work-
shop on Document Analysis Systems. ACM, New
York, NY, USA, DAS ’10, pp. 485–492. http:
//doi.acm.org/10.1145/1815330.1815393.

Bernareggi, C. (2010). «Non-sequential mathe-
matical notations in the LAMBDA system». In
Proc. ICCHP. Springer.

Bernareggi, C. and D. Archambault (2007).
«Mathematics on the web: emerging opportuni-
ties for visually impaired people». In Conference
on Web accessibility. ACM.

Borsero, M., N. Murru and A. Ruighi (2016).
«Il LATEX come soluzione al problema dell’accesso
a testi con formule da parte di disabili visivi».
ArsTeXnica. https://www.guitex.org/home/
it/numero-22-ottobre-2016.

Cervone, Davide and Volker Sorge (2019).
«Adaptable Accessibility Features for Mathemat-
ics on the Web». In Proceedings of the 16th Web
For All 2019 Personalization - Personalizing
the Web. ACM, New York, NY, USA, W4A ’19,
pp. 17:1–17:4. http://doi.acm.org/10.1145/
3315002.3317567.

Cervone, Davide, Peter Krautzberger and
Volker Sorge (2016). «Towards Universal Ren-
dering in MathJax». In Proceedings of the 13th
Web for All Conference. ACM, New York, NY,
USA, W4A ’16, pp. 4:1–4:4. http://doi.acm.
org/10.1145/2899475.2899494.

Fischer, U. (2019). «The tagpdf package, v0.61».
CTAN repository. https://ctan.org/pkg/
tagpdf.

Manzoor, Ahtsham, Murayyiam Parvez, Sule-
man Shahid and Asim Karim (2018). «As-
sistive Debugging to Support Accessible LATEX
Based Document Authoring». In Proceedings of
the 20th International ACM SIGACCESS Con-
ference on Computers and Accessibility. ACM,
New York, NY, USA, ASSETS ’18, pp. 432–
434. http://doi.acm.org/10.1145/3234695.
3241013.

Manzoor, Ahtsham, Safa Arooj, Shaban Zul-
fiqar, Murayyiam Parvez, Suleman Shahid
and Asim Karim (2019). «ALAP: Accessible
LATEX Based Mathematical Document Author-
ing and Presentation». In Proceedings of the
2019 CHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA,
CHI ’19, pp. 504:1–504:12. http://doi.acm.
org/10.1145/3290605.3300734.

Melfi G., Stiefelhagen R., Schwarz T. (2018). «An
Inclusive and Accessible LATEX Editor». In Proc.
ICCHP. Lecture Notes in Computer Science,
Springer.

Moore, R.: (2009). «Ongoing efforts to generate
tagged PDF using pdfTEX». TUGboat, Vol.30,
No 2.

— (2014). «PDF/A-3u as an Archival Format for
Accessible Mathematics». In Watt, CICM.

Papasalouros, A. and A.: A Tsolomitis (2017).
«Direct TeX-to-Braille transcribing method».
Science Education for Students with Disabilities.

Pepino, Alessandro, Corinna Freda,
Fiorentino Ferraro, S Pagliara and
Francesco Zanfardino (2006). «“BlindMath”
a new scientific editor for blind students». In
Proc. ICCHP. Lecture Notes in Computer
Science, Springer.

Soiffer, N. (2018). «Mathplayer: web-based math
accessibility». In Conference on Computers and
Accessibility. ACM.

Sorge, Volker (2016). «Supporting Visual Im-
paired Learners in Editing Mathematics». In
Proceedings of the 18th International ACM
SIGACCESS Conference on Computers and Ac-
cessibility. ACM, New York, NY, USA, ASSETS
’16, pp. 323–324. http://doi.acm.org/10.
1145/2982142.2982212.

Sorge, Volker, Charles Chen, T. V. Raman and
David Tseng (2014). «Towards Making Mathe-
matics a First Class Citizen in General Screen
Readers». In Proceedings of the 11th Web for All
Conference. ACM, New York, NY, USA, W4A
’14, pp. 40:1–40:10. http://doi.acm.org/10.
1145/2596695.2596700.

Suzuki, Masakazu and Katsuhito Yamaguchi
(2017). «ChattyBooks and ChattyBook Ser-
vice». In Proceedings of the 14th Web for All
Conference on The Future of Accessible Work.
ACM, New York, NY, USA, W4A ’17, pp. 30:1–
30:2. http://doi.acm.org/10.1145/3058555.
3060619.

Uebelbacher, A., R. Bianchetti and M. Ri-
esch (2014). «Pdf Accessibility Checker (PAC
2): The First Tool to Test PDF Documents for
PDF/UA Compliance». In Proc. ICCHP. Lec-
ture Notes in Computer Science, Springer.

Yamaguchi, Katsuhito, Toshihiko Komada,
Fukashi Kawane and Masakazu Suzuki (2008).
«New features in math accessibility with infty
software». In International Conference on Com-
puters for Handicapped Persons. Springer, pp.
892–899.

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

144

. D. Ahmetovic
Dipartimento di Informatica,
Università degli Studi di Milano
dragan dot ahmetovic at unito dot it

. T. Armano
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
tiziana dot armano at unito dot it

. C. Bernareggi
Dipartimento di Informatica,
Università di Milano
cristian dot bernareggi at
unimi dot it

. A. Capietto
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
anna dot capietto at unito dot it

. S. Coriasco
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
sandro dot coriasco at unito dot it

. B. Doubrov
Dual Lab, Belgium
boris dot doubrov at duallab dot com

. A. Kozlovskiy
Dual Lab Bel, Belarus
k dot sasha1994 at gmail dot com

. N. Murru
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
nadir dot murru at unito dot it

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

145

	Introduction
	Related Work
	The axessibility LaTeX package
	Usage
	Technical Overview

	Supporting Software
	Preprocessing Scripts
	Screen reader dictionaries

	Acknowledgements

