
Numero 28
Ottobre

2019

guIt

ArsTEXnica
Rivista italiana di TEX e LATEX

http://www.guitex.org/arstexnica/

TEX
ni

caArs
guIt – Gruppo Utilizzatori Italiani di TEX

ArsTEXnica è la pubblicazione ufficiale del guIt

Comitato di Redazione

Claudio Beccari – Direttore
Roberto Giacomelli – Comitato scientifico
Enrico Gregorio – Comitato scientifico
Ivan Valbusa – Comitato scientifico
Lorena Rachele Badile, Renato Battistin,
Riccardo Campana, Massimo Caschili,
Gustavo Cevolani, Massimiliano Dominici,
Tommaso Gordini, Carlo Marmo,
Gianluca Pignalberi, Ottavio Rizzo,
Gianpaolo Ruocco, Enrico Spinielli,
Emiliano Vavassori

ArsTEXnica è la prima rivista italiana dedicata a
TEX, a LATEX ed alla tipografia digitale. Lo scopo
che la rivista si prefigge è quello di diventare uno
dei principali canali italiani di diffusione di infor-
mazioni e conoscenze sul programma ideato quasi
trent’anni fa da Donald Knuth.

Le uscite avranno, almeno inizialmente, caden-
za semestrale e verranno pubblicate nei mesi di
Aprile e Ottobre. In particolare, la seconda uscita
dell’anno conterrà gli Atti del Convegno Annuale
del guIt, che si tiene in quel periodo.

La rivista è aperta al contributo di tutti coloro
che vogliano partecipare con un proprio artico-
lo. Questo dovrà essere inviato alla redazione di
ArsTEXnica, per essere sottoposto alla valutazione
di recensori. È necessario che gli autori utilizzino la
classe di documento ufficiale della rivista; l’autore
troverà raccomandazioni e istruzioni più dettaglia-
te all’interno del file di esempio (.tex). Tutto il
materiale è reperibile all’indirizzo web della rivista.

Gli articoli potranno trattare di qualsiasi argo-
mento inerente al mondo di TEX e LATEX e non
dovranno necessariamente essere indirizzati ad un
pubblico esperto. In particolare tutorials, rassegne
e analisi comparate di pacchetti di uso comune,
studi di applicazioni reali, saranno bene accetti, co-
sì come articoli riguardanti l’interazione con altre
tecnologie correlate.

Di volta in volta verrà fissato, e reso pubblico
sulla pagina web, un termine di scadenza per la pre-
sentazione degli articoli da pubblicare nel numero
in preparazione della rivista. Tuttavia gli articoli
potranno essere inviati in qualsiasi momento e tro-
veranno collocazione, eventualmente, nei numeri
seguenti.

Chiunque, poi, volesse collaborare con la rivista a
qualsiasi titolo (recensore, revisore di bozze, grafico,
etc.) può contattare la redazione all’indirizzo:

arstexnica@guitex.org.

Nota sul Copyright

Il presente documento e il suo contenuto è distri-
buito con licenza c Creative Commons 2.0 di tipo
“Non commerciale, non opere derivate”. È possi-
bile, riprodurre, distribuire, comunicare al pub-
blico, esporre al pubblico, rappresentare, esegui-
re o recitare il presente documento alle seguenti
condizioni:

b Attribuzione: devi riconoscere il contributo
dell’autore originario.

e Non commerciale: non puoi usare quest’ope-
ra per scopi commerciali.

d Non opere derivate: non puoi alterare,
trasformare o sviluppare quest’opera.

In occasione di ogni atto di riutilizzazione o
distribuzione, devi chiarire agli altri i termini della
licenza di quest’opera; se ottieni il permesso dal
titolare del diritto d’autore, è possibile rinunciare
ad ognuna di queste condizioni.

Per maggiori informazioni:

http://www.creativecommons.org

Associarsi a guIt

Fornire il tuo contributo a quest’iniziativa come
membro, e non solo come semplice utente, è un
presupposto fondamentale per aiutare la diffusione
di TEX e LATEX anche nel nostro paese. L’adesione
al Gruppo prevede una quota di iscrizione annuale
diversificata: 30,00 e soci ordinari, 20,00 (12,00)
e studenti (junior), 75,00 e Enti e Istituzioni.

Indirizzi

Gruppo Utilizzatori Italiani di TEX
c/o Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Industriale
Via Claudio 21
80125 Napoli – Italia
http://www.guitex.org

guit@guitex.org

Redazione ArsTEXnica:
http://www.guitex.org/arstexnica/

arstexnica@guitex.org

Codice ISSN 1828-2369

15 Ottobre 2019

guItmeeting
2019

SEDICESIMO CONVEGNO NAZIONALE
SU TEX, LATEX E TIPOGRAFIA DIGITALE

26 ottobre 2019
Politecnico di Torino

Sala Consiglio di Facoltà,
Corso Duca degli Abruzzi 24, Torino

Programma del convegno
Sessione mattutina (corso introduttivo a LATEX)
9:00 Benvenuto.
9:10 Introduction to LATEX and to some of its tools. G. Pignalberi andM. Dominici.
9:50 TEX, LATEX and math. E. Gregorio.
10:30 — Pausa caffè (15min).
10:45 Bibliographies, LATEX and friends. G. Milanese.
11:15 Graphics for LATEX users. A. DeMarco.
12:00 Presentations with Beamer. G. Messineo and S. Vassallo.
12:30 The Toptesi package. Typesetting a PhD thesis with LATEX. C. Beccari.

Sessione pomeridiana
14:30–16:00 Help Desk a cura di volontari del Gruppo Utilizzatori Italiani di TEX.

Traccia A

14:30 Creating accessible pdfs with LATEX. U. Fischer.
15:00 Axessibility 2.0: creating tagged PDF documents with accessible formulae. D. Ahmetovic,

T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy and
N.Murru.

15:30 Uno script bash di ausilio alla redazione di manoscritti. G. Pignalberi.

Traccia B

14:30 ADirect Bibliography Style for ArsTEXnica. J.-M. Hufflen.
15:00 Smartdiagram: The Package and Its Journey. C. Fiandrino.
15:30 Metamorfosi dei tipi sublacensi. C. Vincoletto.

16:00 — Pausa caffè (15min).
16:15 Riunione annuale del gruppo.
17:30 Chiusura dei lavori.

La partecipazione è libera e gratuita, previa registrazione entro il 20 ottobre.
Registrazione online: www.guitex.org/home/meeting

G r u

p
p

o
U

t
il

iz
zatoriIta

lia
n

i
d
i

T
EX

⋆

Igut

www.guitex.org

ArsTEXnica
Rivista italiana di TEX e LATEX

Numero 28, Ottobre 2019

Claudio Beccari
Editoriale . 5
Gianluca Pignalberi, Massimiliano Dominici
Introduction to LATEX and to some of its tools 8
Enrico Gregorio
TEX, LATEX and math . 47
Guido Milanese
Bibliographies, LATEX and friends . 58
Agostino De Marco
Graphics for LATEX users . 65
Grazia Messineo, Salvatore Vassallo
Presentations with Beamer . 102
Claudio Beccari
The Toptesi package — Typesetting a PhD thesis with LATEX 110
Ulrike Fischer
Creating accessible pdfs with LATEX 135
D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco,
B. Doubrov, A. Kozlovskiy, N. Murru
Axessibility 2.0: creating tagged PDF documents with accessible
formulae . 138
Gianluca Pignalberi
Uno script bash di ausilio alla redazione di manoscritti 146
Jean-Michel Hufflen
A Direct Bibliography Style for ArsTEXnica 157
Claudio Fiandrino
Smartdiagram: The Package and Its Journey 160
Claudio Vincoletto
Metamorfosi dei tipi sublacensi . 164

Gruppo Utilizzatori Italiani di TEX

Editoriale

Claudio Beccari

Questo numero di ArsTEXnica è decisamente par-
ticolare. Il Meeting nel quale vengono presentati
questi lavori è ospitato per la prima volta al Po-
litecnico di Torino, l’Ateneo dove ho lavorato per
45 anni prima di andare in pensione e a cui sono
evidentemente affezionato. La Scuola di Dottorato
di questo Ateneo non mi ha mai visto come docente,
ma per la Scuola avevo già da tempo predisposto
un modello e una classe per la composizione delle
tesi dottorali. In occasione di questo Meeting la
Scuola ha chiesto al guIt di tenere una specie di
corso di approfondimento per i dottorandi.

Con il supporto del Politecnico e della sua Scuola
di Dottorato la prima metà di questo Meeting è
dedicata ad un ciclo di “lezioni” da presentare ai
dottorandi partendo dall’inizio per finire con l’uso
avanzato della classe per la composizione delle tesi
di dottorato, che raccoglie un po’ tutti gli aspetti
di un uso abbastanza approfondito di LATEX.

Ringrazio quindi il Politecnico di Torino, nelle
persone del suo Rettore Guido Saracco e del Vi-
cerettore addetto alla didattica Sebastiano Foti,
e la sua Scuola di Dottorato, nella persona del
Direttore Stefano Grivet Talocia, per il supporto
fornito al guIt.

In questa occasione la CLUT, la Cooperativa
Libraria Universitaria di Torino, che ha sede presso
il Politecnico, ha fornito i suoi servizi per la stam-
pa del volume che contiene sia ArsTEXnica 27 sia
ArsTEXnica 28; quest’ultimo numero raccoglie sia le
lezioni in inglese per la Scuola di dottorato, sia agli
articoli normali presentati nella seconda metà del
Meeting. La CLUT, che ringrazio nella persona del
suo Direttore Michele Ruffino, è una delle poche
case editrici che richiede ai suoi autori di consegna-
re i testi da pubblicare composti preferibilmente
con LATEX; da più di venti anni essa fornisce ai suoi
autori la propria classe clut.cls con tutta la docu-
mentazione del caso, in modo che essi non debbano
preoccuparsi d’altro che scrivere il loro testo.

Questo è anche l’ultimo numero che curo come
Direttore di questa rivista; compiendo gli ottanta
anni ritengo che sia giunta l’ora di lasciare il po-
sto ad un nuovo Direttore più giovane di me; egli
dovrebbe venire nominato dal Consiglio Direttivo
del guIt durante questo stesso Meeting o nei giorni
successivi. Ringrazio quindi il guIt per avere avuto
fiducia in me affidandomi l’onore e l’onere di ge-
stire la pubblicazione degli ultimi dodici numeri
della rivista.

Ringrazio inoltre tutti gli autori, e tutti coloro
che hanno collaborato per la realizzazione non

solo di questo numero di ArsTEXnica, ma anche di
tutti i numeri precedenti: la Redazione, il Consiglio
Scientifico, e i numerosi revisori editoriali.

Comincio quindi a presentare le lezioni per i
dottorandi della Scuola di Dottorato; esse sono
esposte con la stessa sequenza temporale con cui
sono presentate ai dottorandi.

Gianluca Pignalberi e Massimiliano Dominici
presentano un’introduzione iniziale a LATEX dove
mostrano le differenze che si ottengono componen-
do con LATEX rispetto a quello che si può ottenere
con i vari word processor, che sono tanto di moda
ma che non si avvicinano al risultato ottenibile con
LATEX nemmeno usandoli in modo professionale.
L’articolo è accompagnato da molte figure di libri
composti dagli autori dalle quali si possono rilevare
le numerose possibilità di composizione offerte da
questo sistema.

Per gli allievi della scuola di dottorato che si
occupano di discipline tecnico/scientifiche la com-
posizione della matematica è di fondamentale im-
portanza. Farlo con LATEX non è difficile, casomai
è difficile il linguaggio della matematica. Enrico
Gregorio fornisce i fondamenti della composizio-
ne mediante LATEX, ma insiste molto sulle cose
da non fare. Certi errori sono comunissimi e per
comporre bene bisogna conoscerli per evitarli. Ac-
cenna alle norme ISO relative alla matematica delle
grandezze e cita le norme del Sistema Internazio-
nale senza scendere in troppi dettagli; in fondo la
documentazione è abbondante, e gli allievi sono
abituati a leggere testi contenenti matematica del-
le grandezze; con questa lezione riescono anche a
individuare gli errori commessi da professionisti in
queste discipline.

La bibliografia nelle tesi di laurea e di dottorato
è una parte essenziale, qualunque sia la disciplina
su cui la tesi verte. Guido Milanese è un letterato
e in tale qualità sa bene come ricavare le infor-
mazioni necessarie e complementari di numerosi
archivi bibliografici a disposizione; conosce bene i
modi di citare le opere e di presentare nell’elenco
bibliografico tutte le informazioni necessarie per
la corretta informazione per i lettori delle opere
stampate, comprese le tesi, che spesso sono il punto
di partenza per altri laureandi o dottorandi per
proseguire le ricerche su determinati argomenti.

Va da sé che ogni tesi nelle discipline tecnico/
scientifiche è corredata da immagini di vario gene-
re; il disegno programmato permette di comporre
disegni molto più professionali di quanto si può
ottenere con una semplice interfaccia grafica che si

5

affidi solo al mouse. Agostino De Marco ha una va-
sta esperienza in merito, sia per quello che riguarda
i programmi di disegno facenti parte del sistema
TEX, sia per un certo numero di programmi libe-
ri o commerciali che però hanno la possibilità di
esportare i loro risultati in formato compatibile
con il sistema TEX. Le informazioni e gli esempi
mostrati sono molto validi e permettono di guidare
l’utente verso le soluzioni più idonee.

Grazia Messineo e Salvatore Vassallo hanno una
lunga esperienza alle spalle con la divulgazione
di LATEX; essi quindi hanno sviluppato un’ottima
esperienza con le presentazioni da proiettare in
aule o sale di conferenze; ovviamente le loro pro-
iezioni sono realizzate con i mezzi stessi di LATEX,
fra i quali spicca la classe beamer. Anche i lau-
reandi e i dottorandi ad un certo punto del loro
percorso di studi devono discutere la loro tesi ed
hanno bisogno di un mezzo per proiettare la lo-
ro presentazione che non abbia i limiti consueti
dei programmi WYSIWYG, generalmente ottimi e
pieni di effetti speciali, ma lacunosi per quel che ri-
guarda la matematica. La loro esperienza didattica
traspare in questa lezione dedicata ai dottorandi.

Claudio Beccari mette insieme tutte le infor-
mazioni precedenti per descrivere la composizione
delle tesi di vario tipo che debbono essere composte
dagli studenti alla fine di ogni loro ciclo di studi;
egli dedica una particolare attenzione alle tesi dot-
torali da svolgere presso la Scuola di Dottorato
del Politecnico di Torino che preferisce che siano
composte con LATEX con la prerogativa di essere
conformi alle norme ISO per l’archiviabilità a lun-
go termine; le norme ISO sono molto stringenti e
non sono facili da rispettare per una quantità di
motivi che vengono illustrati e discussi. In conclu-
sione Beccari suggerisce di servirsi del programma
di composizione LuaLATEX: inoltre raccomanda di
usare il pacchetto TOPtesi che contiene anche un
modello (template) già configurato sia per rispetta-
re i requisiti richiesti dalla Scuola di Dottorato sia
quelli richiesti dalle norme ISO per l’archiviabilità.

Passo ora a presentare i lavori presentati da
utenti di LATEX in ordine alfabetico degli autori.

Presso l’Università di Torino un gruppo di ri-
cerca, confluente nel Laboratorio Polin coordinato
dalla professoressa Anna Capietto, si occupa da
anni del problema di rendere accessibili i testi che
contengono della matematica agli studenti affetti
da disabilità visive di vario genere compresa la ceci-
tà totale. Questo gruppo ha già presentato diversi
suoi lavori sia nei Meeting del guIt, sia nelle Confe-
renze internazionali del TUG (TEX Users Group)
in merito al progredire dei loro lavori. Questo arti-
colo descrive lo stato dell’arte alla luce degli ultimi
risultati ottenuti, che permettono ai disabili visivi
di ascoltare la lettura ad alta voce ottenibile con
gli specifici programmi dei vari sistemi operativi
quando i file PDF sono stati composti con le esten-

sioni create dal gruppo di ricerca per la lettura
anche della matematica composta con LATEX.

Claudio Fiandrino negli anni ha sviluppato una
competenza particolare per gestire la grafica me-
diante le funzionalità del sistema TEX costituite
dai pacchetti TikZ e pgfplots. In questo articolo
egli presenta un modulo di libreria TikZ adatto
per comporre certi diagrammi di flusso che richie-
dono configurazioni speciali per connettere fra loro
diversi blocchi secondo alcuni schemi predefiniti.
La particolarità di questo modulo è che bastano
poche parole chiave per descrivere il tipo di schema
e il modulo fa tutto da solo. Gli esempi riportati
sono decisamente interessanti e dimostrano con
chiarezza le funzionalità del modulo.

Ulrike Fischer è il membro del LATEX Team che
si occupa della creazione dei file tagged PDF e
dell’accessibilità. Il suo lavoro prevede diversi anni
di studi e prove di modifiche dei file che costitui-
scono il nucleo di LATEX e delle principali classi. La
proprietà tagged dei file PDF allo stato attuale non
è realizzata con i motori di composizione pdftex, e
xetex, ma è meno difficile da implementare se si usa
come motore luatex. Questa proprietà rende possi-
bile l’accessibilità ai documenti PDF sia ai disabili
che necessitano di dispositivi di screen reading, sia
per altre funzioni che richiedono di accedere a certi
dati contenuti dentro il file. Il breve e interessan-
tissimo articolo contenuto in questo numero della
rivista va completato con l’esposizione orale e con
un altro articolo più approfondito che l’autrice ci
ha promesso per il prossimo numero di ArsTEXnica.

Jean-Michel Hufflen si occupa da molto tempo
delle bibliografie composte usando il programma
di estrazione MLBibTEX (Multi Language BibTeX)
insieme a certi pacchetti di stile tipografico adat-
ti allo scopo. In questo articolo egli presenta un
adattamento delle sue procedure per comporre le
bibliografie di questa rivista ArsTEXnica, in mo-
do da superare i limiti dell’attuale procedura che
si affida al tradizionale programma BibTEX ac-
compagnato da uno specifico pacchetto di stile
bibliografico arstexnica.bst.

Gianluca Pignalberi da tempo si occupa dell’im-
paginazione con LATEX di testi da pubblicare presso
case editrici, che nella maggior parte dei casi rice-
vono i testi da pubblicare mediante file composti
con vari word processor, e quasi sempre non strut-
turati mediante gli appositi stili di quei programmi.
Il lavoro necessario per strutturare questi file con-
vertendoli in file .tex adatti per la composizione
mediante i tre programmi principali di composizio-
ne basati sul linguaggio LATEX richiede un lungo
lavoro monotono e specialmente soggetto a sviste
ed errori, che si può evitare mediante script di vario
genere (per macchine UNIX o Windows; rispetti-
vamente procedure bash o bat) che permettono
di eseguire le necessarie correzioni, o, almeno, di
segnalare punti dei testi sorgente in cui il redattore

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

6

debba guardare con particolare attenzione. È chia-
ro che per realizzare questi script e/o per estenderli
ad altri casi è necessaria la conoscenza delle loro
sintassi unita a quella del linguaggio LATEX.

Claudio Vincoletto da tempo si occupa dei ca-
ratteri da stampa, moderni e antichi, e del loro
studio. In questo articolo descrive gli studi che
lui ha fatto sul font storico Subiaco, inizialmen-
te realizzato dagli incisori tedeschi Sweynheym e
Pannartz, già allievi di Fust e Schöffer, a loro volta
allievi e soci di Gutenberg, trasferitisi prima a Su-
biaco poi a Roma. Questo font imita la scrittura
manuale usata dagli amanuensi nel monastero di
Subiaco. Nonostante l’origine tedesca degli inci-
sori e del loro apprendistato in Germania, il font
da essi creato è ispirato alla calligrafia umanistica
italiana e rappresenta una anticipazione rispetto
ai caratteri tondi e corsivi sviluppati successiva-

mente nel Nord Italia. Vincoletto ne ha ricreato la
versione elettronica di tipo vettoriale, usando prin-
cipalmente il programma METAFONT, e poi uno
dei vari programmi di conversione per ottenere dal
file sorgente contenente il codice METAFONT diret-
tamente le forme vettoriali comuni ai font Type 1
e OpenType. L’analisi storica, estetica e program-
matica di questo articolo è molto interessante ed
estende in modo insolito le conoscenze degli utenti
di LATEX.

⊲ Claudio Beccari
Professore emerito
Politecnico di Torino
claudio dot beccari at gmail

dot com

ArsTEXnica Nº 28, Ottobre 2019 Editoriale

7

Introduction to LATEX and to some of its tools

Gianluca Pignalberi, Massimiliano Dominici

Abstract
Writing has a long history. Shorter is the history
of typesetting and even shorter is the history of
digital typography. Nevertheless, the latter gained
an unprecedented importance because of its capa-
bility to speed up the process of feeding human
being with well-composed information.

Our lessons, of which this is the number zero,
are focused on a digital typesetting system that
has come to light in the late 70s of 1900. It was
intended to typeset scientific books; it is used to
typeset nearly everything. It is TEX.

In this short course we will give an overview
on how TEX and its most famous macro package
LATEX helps engineers, scientists and professionals
to compose their documents, being them books,
papers, reports, presentations, posters.

Sommario
La scrittura ha una lunga storia. Più breve è la

storia della composizione tipografica e ancor più
breve è quella della tipografia digitale. Ciò nono-
stante, quest’ultima ha guadagnato un’importanza
senza precedenti per la sua capacità di velocizzare il
processo di rifornire l’essere umano di informazione
ben composta.

Le nostre lezioni, di cui questa è la numero zero,
sono incentrate su un sistema di composizione di-
gitale venuto alla luce nei tardi anni ’70 del 1900.
Questo era pensato per comporre libri scientifici;
è usato per comporre quasi tutto. È TEX.

In questo breve corso daremo una panoramica
di come TEX e il suo più famoso pacchetto di
macro LATEX aiuta gli ingegneri, gli scienziati e i
professionisti a comporre i loro documenti, siano
essi libri, articoli, relazioni, presentazioni, poster.

Part I:
Digital Typography and Not
1 Typesetting Systems vs Word

Processors
Computers have often been (and currently are)
used as typewriters, i.e., to edit text. Text editing
has evolved: from the simple words juxtaposition
with no hyphenation, monolingual spell check,
monospaced font and fixed spacing (between words
and lines) and dimensions (for the document) to
character kerning, spell and grammar check in

different languages, fancy OpenType fonts with
contextual shapes and better page and document
setup.

Text processing is wonderfully performed by
word processors (WPs from now on): Word, Writer
and, back in time, DecWrite, WordPerfect, Let-
terPerfect, WordStar… But, while WordStar and
LetterPerfect were not that fancy (they existed
when printers were light years far from the Ap-
ple LaserWriter), the others listed after Word and
Writer were closer to modern WPs. While ancient
WPs just allowed text arrangement on the page (no
external elements were allowed; no font selection;
no fanciness) and spell check, modern WPs are
capable of much, much more. They have partially
invaded the world of typesetting systems: some
minor publishing houses use WPs to create their
camera-ready books and journals and we person-
ally set up a LATEX class for such a publishing house
that used to typeset an academic journal in Word.
Even a Mid-Pharma company used Word to pro-
duce its official reports… until someone discovered
that Word was not able to include something like
800 PDF automatically-generated tables into the
same report and tried to switch to LATEX through
LYX. Since WPs and typesetting systems have
different targets, WPs are not yet as sharp and
versatile as typesetting systems are and typesetting
systems do not see text as their “core business”, i.e.,
they are not intended as “click-and-type” programs.

Nobody less than insane would pretend to com-
pare the performances of such different tools. WPs
are programs mainly intended to process text and
to let unskilled users produce reports and other
documents with a decent look. Typesetting sys-
tems (once named DTP after DeskTop Publishing)
are powerful and highly specialized tools to pro-
fessionally produce newspapers, magazines, books,
journals, fliers, banners, you name it. They just
process text as one of the zillions tasks they do
but have to typeset it the best way as possible.
LATEX is a typesetting system and so it is its type-
setting engine: TEX. As we will see in the next
section, being LATEX a command line system, it
even has to rely on an external text editor. The
aforementioned target difference and the LATEX
lack of a built-in text editor turns useless those
endless discussions about “Is it LATEX better than
Word?”, as in OETIKER et al. (2018, pp. 3–4) (that
shows pros and cons), KNAUFF and NEJASMIC
(2014) and BLANCO (2015) (that advise Word) or
BLOCH (2017) (that explains why LATEX should be

8

better). It is pointless to compare two programs
that perform different, though partially superim-
posed, tasks. It is pointless to measure how fast
users input text and tables when the hardware
is not the same and you do not specify who had
the autocorrect activated or not: this is a word
processors tool—not typesetting systems’—that
might increase the speed performance of users. It
is pointless to measure how sharp users input text
and tables and not to measure how close to the
original is the final document look (but KNAUFF
and NEJASMIC (2014) mentions that).

WPs care about the fact that every line in a
page is good and well hyphenated, regardless of
the page quality; typesetting systems not only care
that a line is more than good and correctly type-
set and hyphenated but should care of the page
quality too. TEX only issues a page when the page
is typographically the best possible according to
TEX’s internal rules. At last, Word does not care of
documents back-compatibility, unlike LATEX. More
on that topic in section 4.

2 Interactive and Non-Interactive
Typesetting Systems

Despite the majority of users just know interac-
tive1 programs, there are still many programs that
are not interactive. Typesetting systems are no ex-
ception and probably the most representative non-
interactive programs and troff and TEX. Interactive
(and visual) typesetting systems are QuarkXPress,
Adobe InDesign, Microsoft Publisher, Scribus, and
the very ancient (and dismissed) Ventura Publisher
and Aldus PageMaker.

The main difference between interactive and
non-interactive typesetting systems is that an in-
teractive one shows you in real time the result of
your actions and your actions are usually dragging
and dropping boxes in a visual interface, while a
non-interactive program accepts whatever action
you want but shows you a result only when you
instruct it to show. So, if you delete a sentence in
an InDesign text, you immediately see the modi-
fied text; if you do the same with TEX, you will
only see the result after compiling the new text
and opening the resulting DVI or PDF.

Just to roughly cut the users set, graphic de-
signers consider more productive using interactive
programs; programmers think otherwise and it
seems to us that programmers are closer to old
linotypers, who had to rely on their experience to

1. This concept is often mistaken with visual. It is different
because “visual” means that you see fancy interfaces, use the
mouse or other similar input devices; “interactive” means that
the program immediately reacts to your actions and shows
you updated results while you keep working. We remember of
an old visual spreadsheet: Borland’s Paradox. It had a switch:
automatic or manual update. The second did not propagate
users modifications to connected cells until an explicit update
had been issued. Not that interactive.

produce text lines that where not too empty or
too full before seeing them cast into lead.

We are now entering the world of an old, yet
way too powerful typesetting system: TEX, and
its almost universally used “hi-level access gate”:
LATEX.

3 TEX As a Non-Interactive
Typesetting System and a
Programming Language

TEX is a typesetting system designed and pro-
grammed by Donald Knuth at the Stanford Uni-
versity. Its first release came to light in 1978. In
KNUTH (1999, chap. 1) the author explains why he
decided to write such a program: the first volumes
of his masterpiece The Art of Computer Program-
ming, first typeset with Monotype, needed to be
updated but that technology had been dismissed
in the USA. The available technology was unable
to get at least a similar result so he decided that a
program able to typeset books and a program able
to generate the needed fonts had to be written:
they where TEX and METAFONT.

TEX is a non-interactive typesetting system, so
the users have to instruct it—program it—on how
to output the desired document. Once the program
is ready, TEX compiles it and—hopefully—outputs
the document (in DVI format).

TEX programming language provides the users
about 900 commands, tests and so on. It is straight-
forward to realize that TEX is extremely powerful,
yet not much user-friendly in the way we currently
intend that friendliness.

The DVI documents needed one more step to be
ready for a printing service: a DVI→PostScript con-
version had to be performed. The program dvips
accomplished that task.

Years later pdfTEX started outputting PDF doc-
uments.

These programs have been partially superseded
by X ETEX and LuaTEX: both support TTF/OTF
fonts and LuaLATEX adds to TEX a powerful yet
simple programming language: Lua.

As you may figure out, TEX is not a program
that can be installed by itself, without any compan-
ion program or file. Indeed it comes with packages
known as distributions. Despite several distribu-
tions have been available for different operating sys-
tems, it is now common to see that three distribu-
tions polarized users: MikTEX (https://miktex.
org/) on Windows systems, TEX Live (https:
//www.tug.org/texlive/) on Linux systems and
MacTEX (https://www.tug.org/mactex/) on
Apple computers. While you can refer to the re-
lated websites for instructions on how to install
them, you can also refer to GREGORIO (2010) for
a skilled, though quite outdated, guide to install
TEX Live on a Linux system.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

9

4 LATEX, a Macro Package Built
on Top of TEX

TEX is quite a complex typesetting system and it
is definitely not user friendly. Its nearly 900 com-
mands can scare both those users who only rely
on point-and-click operations and those who are
not scared of using command line. Indeed those
commands express the complexity of typography
and the power of the TEX language (which is a pro-
gramming language and a sort of page-description
language).

Since authors are not supposed to know any-
thing of typography—they are not typographers—
it would be a bad practice asking them to use
such a complex typesetting system to write their
manuscripts.2 Because of that, Leslie Lamport
wrote a macro package that, while using TEX as
its typesetting engine, had to provide users with a
very mnemonic set of commands to structure a doc-
ument. Those users—authors—had to concentrate
on content, not on document look, so they just
had to tag text as chapters, sections, emphasized,
footnotes, and LATEX would deploy those elements
in the right way.

Going back to the querelle LATEX vs Word, the
only contact point and consequent reason to com-
pare those tools (but it does not mean that such
a comparison is meaningful) is that they both
are for authors (concentrate on the content, not
on the look!), though it is not immediate to find
Word users who use styles. Those users who do not
use styles keep on applying properties to text by
hand—seldom in a coherent way. They act as ty-
pographers more than authors; should we compare
Word to TEX or to InDesign and the other visual
programs similar to it? We think we should not.

After studying the code of Lamport’s macro
package, Frank Mittelbach decided to re-program
it to make it faster and less demanding when com-
piling a document. He also leads the LATEX Project
that provided us with LATEX 3, a huge improve-
ment of the language. But LATEX is not the only
macro package based on TEX. Others are ConTEXt,
PDFLATEX, X ELATEX and LuaLATEX (until it lasts).

While PDFLATEX, X ELATEX and LuaLATEX are
equivalent to LATEX because they use at least the
same set of commands, ConTEXt uses a completely
different macro set. That indicates how flexible
TEX is.

5 WhyText IsBetterThanBinary?
Nearly every source files in the TEX ecosystem
are text files (with the obvious exceptions of the

2. It might even be a bad practice asking authors to write
manuscripts with Adobe InDesign or Scribus. They see a white
page but might find surprising not to see the cursor in the home
position on that page to simply start writing. They should guess,
or learn, that they can do it only if they put a text box on the
page.

compiler, external images, fonts): user documents,
packages and classes, font size files, configuration
files and the macro package itself (i.e., LATEX) are
text files.

A text file is a file whose content is stored as a
sequence of character data. That content might be
not immediately understandable (because written
in a foreign language or because carries a hidden
meaning) but it is surely human-readable: we rec-
ognize something resembling letters, numbers and
symbols when we open it with a text editor and
do not see strange, unprintable symbols or hear
beeps. A binary file, on the contrary, may store its
content in a more efficient way (i.e., a sequence of
four-digit characters may be converted into a two-
bytes integer number) but this way is usually hard
to read because we do not know a priori the way
information is stored. Humans cannot even think
to read a binary file with a text editor because
they could only see a sequence of strange, often un-
printable, characters and symbols and hear beeps
here and there (or nothing, if the picked editor
does not print the BEL, ASCII symbol n. 7).

Why should a text format be picked instead
of a more compact binary format? Here we list
text format pros. Somebody else would instead
list binary format pros and be right anyway. It
depends on the task you need to accomplish.

Since a text file can be edited with whatever text
editor, TEX documents can be edited even when
we do not have the original editor or the compiler
on our computer. It means that a TEX document
can be edited with vi,3 Emacs, Notepad, you name
it, not only with a specific editor as those we will
see in section 9. It can be edited on machines
different than the compiling one, even running
different operating systems (OS from now on), and
even remote editing via telnet or ssh can be easily
performed. Of course, you need TEX to generate
the final document, being it PostScript or PDF, but
it is unnecessary for editing the source document.
Configuring the most part of LATEX files is as easy
for the same reason: the content is clear, though
modifications might be a hard task for newbies.

In a professional environment it should be nor-
mal to keep track of the changes made to docu-
ments. Even better, a team might work on the same
documents and it has to be possible to coordinate
and integrate the job. These are the typical cases
where a version control system has to be adopted.
Version control systems have always correctly man-
aged text files; they used to behave worse with
binary files: being difficult to store subsequent ver-
sions as deltas, the files were entirely saved. Even
though Subversion and other similar programs effi-
ciently manage binary files (ROONEY, 2005, p. 6

3. Some readers may wonder why vi is not capitalized. Please
refer to ROBBINS et al. (2008) to see that it is officially lower-
cased and, by the way, it is not pronounced ‘six’.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

10

and chapter 2), TEX immediately took advantage
of that facility: system managers could pick the
version control tool more suitable to their needs
and to the needs of “their” TEX users.

A Unix filter to quickly compare a source file
against another one—diff—can output a com-
plete list of differences between two text files, while
it will only state “differ” in case we compare two
binary files. Along with this filter come some other
useful tools like sdiff, diff3, patch that you can
read about in the corresponding man pages of Unix
systems or in books like POWERS et al. (2002). A
more useful tool for LATEX users is latexdiff that
compares two, and only two,4 versions of a LATEX
document. It can output a document that high-
lights the differences between the compared files.

In conclusion we can say that text format helps
TEX users to rapidly and versatilely operate on
the most part of the files they work with. As we
will fully understand later on, another advantage
for users is that they can look at the most part
of source code to get some help in writing custom
commands.

6 LATEX File Format: the Healing
Text

It seems to be quite rare to find a typesetting sys-
tem that stores its files as text files instead of binary
files. It is understandable because every commer-
cial vendor cares of the way it stores data and keeps
them hidden from external eyes (reverse engineer-
ing is expressly forbidden…). Indeed Scribus, that
stores users documents in XML, is free software.
Well, as the contemporary trend indicates, XML is
currently used as one of the possible file formats
even for proprietary software like Microsoft Word
and Adobe InDesign, so going back to a form of
textually-stored data is more than a simple hope.

TEX has been on the market for about 40 years,
so it has been programmed for a (computer) world
that had quite narrow character sets and a wider
ecosystem. Even the 8-bit ASCII set, with its 256
symbols, was too narrow to allow multilingual
documents without switching between different
encodings. LATEX had quite a smart way to
represent Latin extended glyphs without any
switch (see section 8.1.2). The conditions are far
better now because LATEX source documents can
be encoded in UTF-8, one of the Unicode text
encodings and this fact widens the number of
potential users and uses. Unicode formats are
a kind of enlarged ASCII and the newer editors
manage them without problems, provided your
computer has Unicode-compliant fonts installed.

Due to the way Unicode encodes its characters,
it may be possible to determine whether a file has
been corrupted somehow: some mono- and multi-

4. No equivalent of diff3 seems to exist.

byte sequences are not legal and cannot address
to any glyph. You can read about this in GIA-
COMELLI and PIGNALBERI (2018) and the related
bibliography. A nice and quick method to vali-
date a UTF-8 file has been suggested in https:
//stackoverflow.com/questions/115210/how-
to-check-whether-a-file-is-valid-utf-8. It
is trickier to detect a corruption that transformed
a legal glyph into another legal glyph. Of course,
despite errors correction is not as straightforward
as errors detection, some attempts to restore a
corrupted text can be done: the first step is fixing
the reserved part of the mono- or the multibyte
character that is not legal, in the hope that the
remainder part has not been corrupted itself; then
a spell checker might help in case the “restored”
character is in a word and this word is easy to
correct; in the end, a visual inspection might be
useful.

Part II:
Understanding a LATEX
Document
Bonus Section: Compiling a LATEX
Document
Before discussing in detail how to write a LATEX
document, we should understand how to compile
it, i.e., how to get a DVI or a PDF out of the source
document. Though we will see some friendly tools
in section 9 and 10, we see now the hard way.

Linux and Mac OS X users have to open a ter-
minal; Windows users—a command interpreter.
After “traveling” to the directory containing the
document to be compiled (let us suppose its name
is document-name.tex), write

latex document-name

Once the compilation successfully ends, a DVI
document has been generated. This has to be post-
processed with dvips to get a PostScript file. You
might prefer to directly generate a PDF, so you are
likely to use pdflatex, xelatex or lualatex.

For those who do not love the command line
it may be easier to put the compiler icon onto
the desktop and drag and drop the document icon
onto the compiler icon, should the window manager
support those operations.

7 The Structure of a LATEX
Document (part I)

A LATEX document, that we know being a text
file,5 contains the complete content along with the

5. As we’ll see in section 8.3, a LATEX document can be
subdivided in more than one text file, provided the structure
coherence is preserved.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

11

information necessary for LATEX to typeset it. The
document is composed by 1) a preliminary part of
code—the preamble—containing the general type-
setting rules, in the form of a class file, along with
the additional commands we can use while type-
setting the document and 2) by the document
content—the main body or document body.

We talked about commands without introducing
them. A LATEX command is a character sequence
opening with a backslash (\) followed by a word
or a special symbol. It is interpreted in a special
way by the typesetter. It may have 0 or more
mandatory arguments along with optional argu-
ments. When invoking the command we have to
enclose the optional parameters, if any, in brackets
before passing the mandatory parameters individ-
ually enclosed in braces if they are 1 or more.6 Not
all the commands are accessible to users. Part of
them have been written only to be used by other
commands. Commands will be a main topic along
this and the subsequent lessons.

The preamble starts with the \documentclass
command and ends when the main body starts.
\documentclass specifies which class to use to
typeset the document. The preamble is completed
by using additional packages, custom commands,
needed controls. In these ways we can both fine
tune the general typesetting rules of the class and
add unforeseen commands to accomplish tasks that
are specific to our document.

The main body, enclosed in the pair of
commands \begin{document}-\end{document}
(TEXnically, enclosed in an environment), con-
tains the document content in the form of text,
command+text, environment+text, command. It
sounds odd; be patient until section 8. Don’t
forget to notice that everything written after
\end{document} will be neglected by LATEX.

Since we’re talking about a program that is also a
programming language, we can’t forget to mention
that we can add comments to our source files. A
comment in LATEX starts with a percent sign (%)
and lasts until the end of line.

7.1 Preamble analysis: document classes
As it is already clear, the first command in a LATEX
preamble declares which class the document is
typeset according to.

The document class, which is stored in a file
with extension cls, is a kind of configuration file
containing the TEX code and the user commands
necessary to typeset a specific type of documents.
The class adds code, or substitutes part of it, to
the macro package (i.e., LATEX). It is mandatory
to specify the class we use: without it LATEX would

6. Well, it is a little more complex than this: if a parameter
has more than one character, we have to group it, i.e., surround
it with braces. Otherwise, only the first letter will be considered
the actual parameter passed to the command.

not know what kind of document it has to typeset
and what look it has to have.

LATEX provides a handful of classes of general
use: book, report, article, letter, slides. The Com-
prehensive TEX Archive Network (CTAN from now
on; www.ctan.org) provides users with classes for
nearly every need.

Of course, a document has to be “tailored” for the
class of interest: a document initially intended to
be a book can be hardly transformed in an article
without restructuring it because, for instance, a
book has chapters and an article has not. But it
should be straightforward to compile a document
initially intended to be a book into a report or
a book typeset with a custom class of a specific
publisher.

Let us now see a couple of examples, mutually
exclusive, of \documentclass possible uses:

\documentclass{standalone}

\documentclass[a4paper,11pt]{article}

The first one instructs LATEX to use a class specif-
ically designed to arrange unstructured text or
figures in the page and to crop the result. The
second one tells LATEX to typeset an article in A4-
page format and with 11 points7 text font. Exam-
ples showing documents resulting when using the
above \documentclass instances are presented in
section 8 (figures 1 and 2).
7.2 Preamble Analysis: What Is a

Package?
As already mentioned, a LATEX document could in-
clude some packages to use. The command that in-
cludes a package into a document is \usepackage.
A package is historically a file with the .sty ex-
tension. Despite users can decide to store packages
in files with different extension, \usepackage will
only consider—and look for—files with .sty ex-
tension.

A package is a (not necessarily) small piece of
code containing one or more brand new macros,
one or more pre-existing but modified macros, one
or more declarations. Substantially, a package is
an injection of code to LATEX so that it may rely on
new features and/or on pre-existing but customized
features.

Users can be asking themselves: “which is the
difference between a class and a package? They
seem to do the same things.” It was actually true
with LATEX 2.09 (better, there were not classes
at all). Since LATEX2ε we may say that while a
class instructs LATEX to manage a whole document,
a package is a tool to fine-tune or enhance the
current behavior of the pair macro package-class.

7. LATEX main classes only let you pick 10, 11 or 12 points
as the main text size. Other sizes are judged unsuitable for
books and papers. But you are free to write a class and the
corresponding .clo file to meet your needs.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

12

A package is not characterized by it size: we
have nearly one-liner packages (i.e., indentfirst) and
1MB packages such as xq. Anyway, since LATEX2ε
has been issued, the package is not a piece of
software meaningful by itself: you have to use it in
a more general context of a document using a class.

Also packages may have options that you declare
as optional arguments to \usepackage. The man-
uals of the packages we intend to use will instruct
us on the arguments we may set up.

7.3 Preamble Analysis: Completing the
Basic Information

When dealing with LATEX documents, we can be
presented a huge series of text files. Even though
currently we can be almost sure that a recent text
file has been encoded in UTF-8, we cannot be as sure
when managing older source files. Despite LATEX
can manage different encodings, it wants us to
declare the source encoding. Not only the encoding
tells how glyphs are arranged (what code number
corresponds to what glyph), but also tells what OS
has been used to edit the source file.8 The package
to use to specify the input encoding is inputenc.
The actual encoding will be passed as the optional
parameter, e.g., \usepackage[utf8]{inputenc}.
This only applies to LATEX and PDFLATEX. X ELATEX
and LuaLATEX assume that the input file is UTF-8
encoded.

When using LATEX and PDFLATEX we also have to
specify the font encoding. Roughly speaking, the
font encoding tells LATEX which group of glyphs it
has to use while typesetting the document. The
package needed for such a specification is fontenc
and the T1 encoding usually suffices. We will pass
T1 as the optional parameter to \usepackage
when loading fontenc. You can read the whole
story in MITTELBACH et al. (2016).

The default language used to hyphenate LATEX
documents is English. There are two packages that
let us load additional or substituting languages and
select them at our need: babel (normally used with
LATEX and PDFLATEX) and polyglossia (especially
programmed for X ELATEX and LuaLATEX). Their
usage is not uniform: for instance, if you listed the
languages as packages optional parameters:

\usepackage[english,italian]{babel}

\usepackage[english,italian]{polyglossia}

8. The main difference between files edited with different OSs
is in the character representing the end-of-line. DOS/Windows
use CR+LF (carriage return and line feed, ASCII codes 13 and
10), Mac OS until version 9 used CR, Linux and other Unix
flavors use LF. In our case, we do not need to specify what
OS generated the document but we have to specify what OS
we are currently using to compile it. Indeed encoding files just
list how and where some special characters have been encoded
depending on the OS and using a different encoding results in
putting strange and unwanted glyphs in our final document.

you would obtain Italian as the main language
with babel and English as the main language set up
by polyglossia. Unfortunately polyglossia no longer
supports this technique since version 1.2. So, while
the babel example is still valid, the right polyglossia
example is:

\usepackage{polyglossia}
\setmainlanguage{italian}
\setotherlanguage{english}

or, in case of more than one secondary language,

\usepackage{polyglossia}
\setmainlanguage{italian}
\setotherlanguages{english, french}

More details in CHARETTE (2015).
The default font used to typeset LATEX docu-

ments is Knuth’s Computer Modern (Latin Modern
for X ELATEX and LuaLATEX). We may use another
font indicating it in the preamble. While X ELATEX
and LuaLATEX can easily use every TrueType or
OpenType fonts, (PDF)LATEX can only rely on those
fonts specifically prepared for it. The best way to
load the picked font is to include one of the pack-
ages especially written for that task. The presence
of such a package in our systems is not a guaran-
tee that the font file is really installed along with
the package. Indeed some packages are distributed
even though the font is not freely distributed. An
example of such a case is URW Garamond.

Setting up the document main font to, e.g.,
Linux Libertine is as easy as including a package:
\usepackage{libertine}. The package takes
care of all the operations needed to use such a
font. The manuals of such packages help us to set
up the fonts according to our needs, though not
every fonts have the same settings. Some of them
allow us to use old style figures instead of lining
figures, to allow some special ligatures and so on.

You can refer to LATEX 3 PROJECT TEAM (2005)
for more information about fonts in LATEX.

If we decide to use X ELATEX or LuaLATEX, we
have a better and uniform control on how we set
up the fonts. There is a unique package to load:
fontspec, which provides us with an interface to
load the fonts we prefer and decide which serif, sans
serif and monospaced fonts we will use to typeset
a document. The commands for doing that are
\setmainfont, \setsansfont and \setmonofont;
they ask for at least a mandatory argument that ac-
cepts the font name as your OS shows it (optional
arguments can be used, for instance, to fine-tune
OTF properties). It also allows us to link a specific
font to a specific language in case we use poly-
glossia to set up the languages. You can refer to
ROBERTSON and HOSNY (2017) to get the insights
of what we only touched on and we will use in
section 8.1.13.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

13

Hello, world!

FIGURE 1: The resulting PDF of the Hello world example.

The document preamble will also contain some
data needed by some of the document kinds: ti-
tle, author and date. You just need to issue the
commands \title, \author and \date before the
document main body begins. They are not auto-
matically added to your pdf; you need to explicitly
invoke the command \maketitle in the main body
exact point you want those data to appear. Every
class has a standard way to show those data. Other
classes can delete or rename some of those data
commands and even integrate them with other
data.

European users should note that the American
space after a full stop (aka period) is slightly wider
than the average space between words in the same
line. Since our typographic tradition is unlike the
American one, we should remember to issue the
\frenchspacing command.

8 The Structure of a LATEX
Document (part II)

8.1 Main Body Analysis: Commands for
Text

How do we write a LATEX text? Before answering
this fundamental question, we should at last see
some examples that show what we discussed up to
now and we will start with the usual Hello world
example:

\documentclass{standalone}
\begin{document}
Hello, world!
\end{document}

As you may figure out, the preamble here is the
only line \documentclass{standalone} (a com-
mand with a mandatory argument) while the main
body is formed by the only line Hello, world!.
This line only contains text and, quite comprehen-
sibly, everything we write and do not enclose in
a special command will be typeset with the main
font and justified. No commands or environments
have been issued so far in the document body. Let
us see how the document appears, once compiled
with LATEX. That is what figure 1 shows.

Let us now change the preamble to this:
\documentclass[a4paper,11pt]{article}.
This time we passed the command a mandatory
and two optional parameters. The body remains
untouched. You can see the result in figure 2.

Can you see the differences? The first example
generates a PDF cropped to show a tiny white frame
around the text, while the second generates a PDF
with the text in a specific position of an A4 page.

Hello, world!

1

FIGURE 2: The resulting PDF of the Hello world example with
a new preamble.

The first example puts no other elements in the
final PDF, while the second shows a page number.
So the document class not only tells us about the
look of the document related to the structure but
also tells us about the document arrangement in
the physical page.
8.1.1 Spaces
WPs users know, but maybe do not notice it a
lot, that when they press the space bar the editor
cursor shifts to right. The more they press the space
bar, the farther the cursor shifts. If they ask the
WP to show hidden symbols, they see a number
of central dots corresponding to the times they
pressed the space bar. A text with more than one
space between two words shows inaccuracy.9 That
is why LATEX disregards the spaces. Or, better, it
considers more consecutive spaces as a single space.

In case a user needs to force an additional space
for whatever reasons, (s)he can use the command
\ (i.e., a space after a backslash). The typical
case is after commands like \LaTeX that eat spaces
following the command.

Other special spaces users should know and use
are the nonbreakable space (~), that should be
used when two words are not meant to be placed
in different lines, and the short (unbreakable) space

9. Again, we are simplifying: space between words is somehow
elastic because it can stretch or shrink a little bit. It is not a
fixed space. Anyway, elastic or not, two spaces are wider than
a single space, and that is evident.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

14

(\,) that is shorter than the normal space and may
be useful in case a text line is slightly longer than
you meant or when you represent numbers with
their measure unit (and are not using the siunitx
package).

WPs users know that they start a new paragraph
hitting return at the end of a paragraph. This is
false in LATEX, where a new paragraph starts only
after a blank line. A paragraph is usually indented
but in special cases or with special classes. How can
we avoid to indent a paragraph? As usual in LATEX,
there are several ways and they reflect the semantic
intended by the author. If the author meant not to
indent a real new paragraph for whatever reason,
the right way is issuing \noindent at the beginning
of the paragraph the author does not want to
indent. If the author just wants to interrupt the
flow of a line to make the subsequent text to stand
(just line an inline example) and this text is part of
the paragraph, the way is issuing \\ or \newline
where you he wants to terminate a line and do not
leave a blank line. The new line is not in a new
paragraph according to the LATEX definition of new
paragraph and just mimics it. As you can see, both
ways correctly reflect the semantic of the structure.

Similarly to \newline, \newpage is useful to
start a new page.
8.1.2 Special Commands for Diacritic Marks

and Special Character
Even though we do not notice it when we type
letters with accents and diacritic marks, possibly
with a Unicode editor, TEX actually interprets
commands. The original way to get an ‘a with
acute accent’ is \'a. Can you recognize the com-
mand? Right: it is \'. The subsequent letter a is
the mandatory argument. Let us now summarize
(table 1) the old way to get diacritic marks and
special characters with LATEX, useful when your
keyboard cannot type them directly.

Other special characters easy to get with LATEX
are dashes and quotation marks: - is a dash (-), --
is an en-dash (–), --- is an em-dash (—); `` is “,
'' is ”, ` is ‘, ' is ’, << is «, >> is » (these latest
quotation marks, named guillemets or chevrons
in French, virgolette caporali in Italian, were not
allowed with older font encodings like OT1). To
obtain an ellipsis character is not as easy, since we
cannot type three consecutive periods; we have to
use the \ldots command (…).

Some other special characters that LATEX uses,
even when we do not tell him to, are the liga-
tures. The most common are ff, fi, fl, ffi, ffl. There
are cases, like in the word shelfful, where the ‘ff’
ligature is not suitable. To avoid it we have ei-
ther to write shelf\mbox{}ful or to group an f
(shelf{f}ul) to get shelfful.

Two glyphs are especially able to get WPs users
confused: the degree symbol and the circumflex
accent (^) that we have already seen. The first

TABLE 1: LATEX commands to typeset diacritic marks and
special characters.

COMMAND EXAMPLE RESULT
\` \`a à
\' \'a á
\^ \^o ô
\v \v o ǒ
\~ \~n ñ
\c \c c ç
\b \b o o ̲
\= \=o ō
\u \u a ă
\. \.o ȯ
\d \d o ọ
\" \"o ö
\H \H o ő
\k \k o ǫ
\t \t oo ⁀oo
\oe œ
\OE Œ
\ae æ
\AE Æ
\aa å
\AA Å
\ss ß
\o ø
\O Ø
\l ł
\L Ł
\i ı
\j ȷ
!` ¡
?` ¿

Do not forget the space in case the command
is \ + letter instead of \ + mark.
With very old LATEX versions you had to put
accents on the dotless i or j, otherwise the
accent would be put on the dotted characters.
With more recent versions it is safe to write
\'i: you will get the correct accented dotless
letter.
It is possible to have the diacritic mark named
comma below (ŗ) and its counterpart inverted
comma above (ģ) in PDFLATEX using the cedilla
command (\c), but only with a selected set of
letters. To get the comma below under s and
t you should keep using the package combelow
to get such marks.

symbol, that older manuals advice to write
as $^\circ$ (◦), can be directly input with
nearly any keyboard (°) or obtained via the
command \textdegree provided by textcomp.10
Users often mistake that symbol for the su-
perscript o, which is o (textsuperscript{o})

10. The textcomp package has no manual, but you can find
its symbols in PAKIN (2017).

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

15

or º (\textordmasculine), when used to
indicate an ordinal number. The second
glyph—^—is often mistaken for a super-
script a, which is a (a) or
ª (\textordfeminine), to indicate a feminine
ordinal.

Before we go on with other special characters,
we invite you not to forget that LATEX has been
built on TEX and that TEX is also a programming
language. Every programming language has some
reserved words and some characters with special
meanings. We will keep on talking of this topic in
section 8.1.16.

8.1.3 Altering the Text Look
We now may want to change the look of some
parts of the texts. WPs users can easily turn text
(usually set up in upright serif) into italics, bold
or underlined. Quite trickier for them is slanting
text or turning it into small caps. So, they can
(quite) easily change font shape or series. Stated
that underlined is almost banned in typography,
LATEX provides us with easy commands to change
the font shape or series (bold, italics, small caps,
slanted). The very mnemonic commands to switch
shape for a limited portion of text—that will be
passed as a mandatory parameter—are:

\textup applies upright to the mandatory
argument content;

\textbf applies bold to the mandatory argu-
ment content;

\textit applies italics to the mandatory ar-
gument content;

\textsc applies small caps to the mandatory
argument content;

\textsl slants the mandatory argument con-
tent;

Please notice that these commands only work if
you have all the shapes installed in your computer.
Let us see a document example:

This is roman text.

\textbf{This is bold text.}

\textit Is this italics text?
\leftarrow ???

\textit{This is italics text.}
\leftarrow !!!

\textsc{This is small caps text.}

\textsl{This is slanted text.}

This is roman text.

This is bold text.

I s this italics text? ← ???

This is italics text. ← !!!

This is small caps text.

This is slanted text.

FIGURE 3: Some modified text in LATEX.

Its result is shown in figure 3. Can you explain
the strange result of the third line? No? Do
not worry and go reread footnote 6. If it is still
unclear, the reason is that \textit (and similar
commands) looks for a mandatory parameter. Is
it our parameter longer than a character? We
must surround it with braces. If we do not do
that, only the first letter different from space11 is
considered the actual parameter and that is why
the third line shows only the I italicized. Anyway,
the important thing to understand is that the
modification only applies to a defined portion
of text or, to use a term common in computer
science, the command has a limited scope.

Another widely used command is \emph: it
emphasizes the mandatory argument content. The
difference between it and \textit is that the
latter always italicizes the text it is applied to
while the former italicizes the upright text but
uprights text in italics:
\textit{\textit{Italics} text} ⇒ Italics
text
\textit{\emph{Italics}? text} ⇒ Italics?
text

If we want or are forced to switch the shape or
the series indefinitely, we can use these other com-
mands: \upshape, \bfseries (\mdseries12 to re-

11. That is why we told you not to forget spaces in some
cases listed in table 1.

12. According to SCHMIDT (2006), \mdseries selects the
regular stroke width, unlike \bfseries that selects the bold

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

16

When we write a text we may want to em-

phasize the text in some standard ways.

Do you know those ways? You hopefully do!

FIGURE 4: This text has been emphasized with commands
without arguments.

vert it), \itshape, \scshape, \slshape. No argu-
ment required. The text after the issue of one such
commands will be typeset according to the new
shape and series until another similar command
is issued. Beware the fact that a \xxshape adds
up to a \xxseries, so if we issue an \itshape
after a \bfseries we get the subsequent text in
bold italics. On the contrary, every \xxshape or
\xxseries substitutes the effects of the previously
issued corresponding command. In this case, the
command scope is not limited. What do you expect
from the following example?

When we write a text
\itshape we may want to
\bfseries emphasize the text
\scshape in some standard ways.
\upshape Do you know
\slshape those ways?
\mdseries You hopefully do
\upshape!

The answer is in figure 4.
If you are wondering if and how is it possible to

limit the scope of such commands so that you can
avoid to explicitly switch back and forth, the an-
swer is “Yes. It is possible. Just include the switch-
ing command and the text it has to be applied
stroke width. No way of selecting intermediate, thicker or thin-
ner is allowed. But, of course, LATEX is not exactly a graphic
design tool.

When we write a text we may want to em-

phasize the text in some standard ways. Do

you know those ways? You hopefully do!

FIGURE 5: This document, apparently similar to that in fig-
ure 4, has been obtained limiting the scope of commands like
\itshape and \bfseries. In this case there is no need to
explicitly switch to upright roman from another shape or series.

to into a group, i.e., include it all in braces.” The
following example

When we write a text
{\itshape we may want to}
emphasize the text
{\bfseries in some standard ways}.
Do you know {\scshape those ways}?
You hopefully do{\slshape!}

allows the result shown in figure 5. We see that
the text outside groups is upright roman because
the scope of the switches we used has been limited
by groups.

8.1.4 Altering the Text Font
WPs users can also easily change font family, e.g.,
from Times to Garamond. Since such an operation
usually leads to look incoherence, LATEX lets you
switch fonts in a very tricky way, but lets you
easily switch from roman (serif) to sans serif or
monospaced font (the TEX refers to as typewriter
typeface or teletype; as we will soon see, abbreviated
with tt):

\textrm typesets the mandatory argument
with the default serif font;

\textsf typesets the mandatory argument
with the default sans serif font;

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

17

\texttt typesets the mandatory argument
with the default monospaced font.

The corresponding commands with infinite scope
are \rmfamily, \sffamily and \ttfamily.

Since LATEX stresses typographical beauty, pack-
ages that load the main roman font usually also
load default sans serif and teletype fonts, both
picked to blend with the main font. In some cases
(e.g., Concrete) the package even sets up a mathe-
matical font (e.g., Euler). Even though this strat-
egy seems to limit users’ “creativity”, it avoids
typographical blasphemy, since authors should not
mind how a document looks: graphic designers
have already minded it. You can refer to LATEX 3
PROJECT TEAM (2005) for more information about
fonts in LATEX.

As we have seen in section 7.3, in X ELATEX and
LuaLATEX you are free to associate whatever font
to whatever family and switch to one another in
the usual way, provided those fonts are installed
on your computer. Beware the blend!
8.1.5 Changing the Text Shape in the Page
WPs users can easily change the way a text is
arranged in the page. They use to start a docu-
ment with the text left-aligned and have buttons
to change the alignment.

Being a typesetting system mainly oriented to
documents for journals, reports and books, LATEX
typesets the main text justified. Of course it is
possible to change the alignment and we have two
ways to accomplish that: with environments and
with commands. As usual, the difference is that
the environment clearly shows the scope of the
change while the command affects the text from
the issue point onwards.

The environments are center, flushleft (to
left align) and flushright (to right align); the
commands are \centering, \raggedright (to left
align) and \raggedleft (to right align).

The following code, using environments, outputs
the result shown in figure 6:

This is the first paragraph
of this important and significant
text. The \LaTeX\ default behavior
is to justify it.
\bigskip

\begin{center}
This is the second paragraph
of this important and significant
text. We had to use a command
to centering it in the page.
\end{center}
\bigskip

\begin{flushleft}
This is the third paragraph

This is the first paragraph of this important

and significant text. The LATEX default behavior

is to justify it.

This is the second paragraph of this important

and significant text. We had to use a command

to center it in the page.

This is the third paragraph of this important

and significant text. We had to use a different

command to left align it.

This is the fourth paragraph of this important

and significant text. We had to use a different

command to right align it.

This fifth paragraph is normally typeset: jus-

tified. It’s out of the scope of every environment

previously used.

FIGURE 6: Text aligning with environments.

of this important and significant
text. We had to use a different
command to left align it.
\end{flushleft}
\bigskip

\begin{flushright}
This is the fourth paragraph
of this important and significant
text. We had to use a different
command to right align it.
\end{flushright}
\bigskip

This fifth paragraph is normally
typeset: justified. It's out of
the scope of every environment
previously used.

The following code uses, instead, the commands.
The result is in figure 7.

This is the first paragraph
of this important and significant
text. The \LaTeX\ default behavior
is to justify it.
\bigskip

\centering
This is the second paragraph
of this important and significant
text. We had to use a command

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

18

This is the first paragraph of this important

and significant text. The LATEX default behavior

is to justify it.

This is the second paragraph of this important

and significant text. We had to use a command

to center it in the page.

This is the third paragraph of this important

and significant text. We had to use a different

command to left align it.

This is the fourth paragraph of this important

and significant text. We had to use a different

command to right align it.

This fifth paragraph keeps being right-aligned

because the last \raggedleft continues

working.

FIGURE 7: Text aligning with commands.

to center it in the page.
\bigskip

\raggedright
This is the third paragraph
of this important and significant
text. We had to use a different
command to left align it.
\bigskip

\raggedleft
This is the fourth paragraph
of this important and significant
text. We had to use a different
command to right align it.

\bigskip

This fifth paragraph keeps being
right-aligned because the last
\verb|\raggedleft| continues working.

Please, notice the blank line between the
\raggedlefted paragraph and the subsequent
\bigskip. Without the blank line the command is
considered part of the paragraph and the last line
will end with a space, which makes it look like not
being right aligned.
8.1.6 Changing the page format
Despite authors should not manage things that
graphic designers should, and despite LATEX makes

not that easy to change page sizes, the geometry
package (UMEKI, 2010) has been programmed (es-
pecially for class programmers) to make it easier
to modify whatever size you want in the page.

8.1.7 Lists
Three are the environments that LATEX provides to
write lists: itemize for bulleted lists, enumerate for
numbered lists, description for labeled lists. Each
list item must begin with \item. This command
can get an optional parameter, used to replace
numbers and bullets but surely fundamental to
indicate labels in a labeled list.

Lists can be nested, regardless of the type but,
by default, LATEX does not allow more than three
levels of depth.

8.1.8 Quoted Text, Poetry and Source Code
When writing books, reports, theses, we might
want to quote some external contributions in the
form of text excerpts. LATEX offers two environ-
ments: quote and quotation. The first one is useful
for quoting single-paragraph texts; the second one
is intended for multi-paragraph texts, as it indents
paragraphs, unlike quote, and the vertical space
between paragraphs is equal to the vertical space
between lines in a paragraph (\baselineskip).
The text written into one of these environments
(i.e., between \begin{quote} and \end{quote} or
\begin{quotation} and \end{quotation}) will
be quoted according to the specific style. Figures 8
and 9 show the differences.

We might even want to write poetry, where we
must exactly control the interruption points. LATEX
has the suitable environment: verse.

When we need to write some poetry
in our precious book, we must
exactly control the interruption
points. The \textsf{verse}
environment has been written
for this case:

\begin{verse}
Stick Boy liked Match Girl,\\
He liked her a lot.\\
He liked her cute figure,\\
he thought she was hot.

But could a flame ever burn\\
for a match and a stick?\\
It did quite literally;\\
he burned up quick.
\end{verse}

The result is shown in figure 10.
If we need to represent some source code or a

similar text, we will use the verbatim environment
that typesets the text within it exactly as it is,
without any interpretation.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

19

When we need to quote some text in our pre-

cious book, we can use one of the environments

provided by LATEX:

This is the quoted text as typeset by

quote.

This environment is not suitable for

quoting more that one paragraph: it

doesn’t indent the first line.

Even the vertical space between para-

graph is not uniform.

1

FIGURE 8: This is a multi-paragraph text quoted with quote.

Pay attention: you cannot nest two verbatim en-
vironments, unlike you can do with quote, quo-
tation or verse. That is to say that you can-
not show a source code containing the pair
\begin{verbatim}-\end{verbatim} in a verbatim
environment. That is why we chose not to include this
example source code. Watch a part of it in figure 11.

If we need some verbatim terms along with the
text instead of a display, we can use the command
\verb. It works differently than usual commands:
the mandatory argument will not be enclosed in
braces but surrounded with a symbol (the same)
that will not appear in the verbatim code (for
instance, a plus sign—+—or a vertical bar—|—):
\verb+\textit{\LaTeX}+ ⇒ \textit{\LaTeX}

8.1.9 Footnotes
Unless you are a novel writer, with the exception
of David Foster Wallace,13 you probably need foot-
notes in your documents. LATEX has a specific com-
mand, quite surprisingly named \footnote. You
just need to issue it in the very place you want
the footnote mark to appear. LATEX takes care of
correctly typesetting the footnote text (the manda-
tory parameter), along with the note number, at
the bottom of the page.

In some special cases such as footnotes in ta-
bles, your footnotes are likely to disappear into

13. David Foster Wallace’s Infinite Jest is crowded of end
notes: about 100 pages in 1200 pages of novel. It even has
footnotes to some end notes.

When we need to quote some text in our pre-

cious book, we can use one of the environments

provided by LATEX:

This is the quoted text as typeset

by quotation.

This environment is suitable for

quoting more that one paragraph be-

cause it does indent the first line.

The vertical space between para-

graph is uniform.

1

FIGURE 9: This is a multi-paragraph text quoted with quotation.

thin air. To fix this problem you can use a pair of
commands that LATEX defines: \footnotemark and
\footnotetext. The first one is intended to make
the note number or symbol appear in the text; the
second one is meant to make the corresponding
footnote appear at the bottom of the page. Pay at-
tention that \footnotemark may appear in tables,
titles and other special cases but \footnotetext
must be issued out of those structures. Moreover,
you have to manually manage the footnote counter
if you issues more than one \footnotemark before
issuing the corresponding \footnotetext.

Despite the default footnotes look is defined
in the macro package and possibly improved in
classes, there are plenty of packages to modify it:
footnote, footmisx, bigfoot, footmisc, just to name
a few.

Authors may have reasons for having the
footnotes grouped at the end of the documents
(endnotes). While LATEX does not provide such a
mechanism, those authors have the endnotes package
(LAVAGNINO, 2003) that suits their needs, though
visiting CTAN may reserve other pleasing discoveries.

8.1.10 Custom Commands and Environments
In some cases we could find useful to have some
custom commands to avoid extensively writing
long and repetitive strings of words or to typeset
specific portions of text effortlessly.

Custom environments help us define specific
styles and rules for needed elements.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

20

When we need to write some poetry in our

precious book, we must exactly control the inter-

ruption points. The verse environment has been

written for this case:

Stick Boy liked Match Girl,

He liked her a lot.

He liked her cute figure,

he thought she was hot.

But could a flame ever burn

for a match and a stick?

It did quite literally;

he burned up quick.

1

FIGURE 10: A document with a poem in it. The poem is Tim
Burton’s Stick Boy and Match Girl in Love (BURTON, 1997).

LATEX provides us with the following commands:
\newcommand, \renewcommand, \newenvironment
and \renewenvironment, which this lesson will not
discuss in details. You may find information and
examples in OETIKER et al. (2018, pp. 104–105). Of
course, the renew versions are meant to replace a
previously defined command or environment.

Anyway, we would like you to analyze an exam-
ple to understand the basic usage of one of those
commands. Let us suppose we have to repetitively
write the passage “All work and no play makes
Jack a dull boy” in our document.14

\newcommand\Jack{All work and
no play makes Jack a dull boy}

The above definition of a new command tells
LATEX to typeset the text into braces whenever it
sees the \Jack command in the document. This
is the simplest use; we can include TEX code in
the definition of a new command so to obtain a
more complex result. You can refer, for instance, to
STACKEXCHANGE (2016). We can even define com-
mands with mandatory and optional arguments.
STACKEXCHANGE (2011) will give you some won-
derful explanations and insights about this tech-
nique.

14. We guess that Stanley Kubrick and his crew would have
loved this facility instead of typewriting that bunch of pages—
even localized—for Shining!

When we need to quote some source code, we

can use the verbatim environment:

\documentclass{article}

\usepackage[a6paper]{geometry}

\begin{document}

When we need to quote some source code,

we can use the \textsf{verbatim}

environment:

\end{document}

1

FIGURE 11: A document with some source code shown in it.

8.1.11 Tables of Contents, Cross References and
Indices

We will see in section 8.2 that when we issue com-
mands like \chapter and \section we contribute
to compile a table of contents. How do we place it
in our documents? It is straightforward: just write
\tableofcontents in the place of your document
where you want it to appear. Obviously, you must
compile more than once to have the final PDF to
be synchronized.

At last, we should talk of two other useful mech-
anisms that LATEX offers the authors to write co-
herent yet complete documents: the cross reference
and the indexing.

The cross reference is that technique that allows
to refer to whatever element of a document in
whatever point of the document. LATEX has three
commands to provide this technique: \label, \ref
and \pageref. These commands have a mandatory
argument that has to be a unique tag so that labels
cannot be mistaken. According to their names,
these commands respectively mark a point that
will be referred elsewhere in the document; refer
to a declared label in the form of a counter (be it
a section, a figure number, a footnote. It depends
on the point we issue the \label command); refer
to a declared label in the form of a page number.
The labels can be defined and referred in whatever
order: they will be correctly referred only after at
least the second compilation. A simple example is
this:

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

21

1 A section

We now have to refer to section 1 in page 1.

1.1 The first subsection

If we now refer to subsection 1.1, the result changes

because LATEX tracks a different counter with the

new label issued after a subsection declaration.

1

FIGURE 12: This is an example of automatic cross reference
performed by LATEX. After you correctly labeled and referenced
the source document, you just have to compile the right number
of times to have the right references in the final document. In
this way you do not have to worry if you add some text in
between: just compile again.

\section{A section}
\label{sec:first}
We now have to refer
to section~\ref{sec:first}
in page~\pageref{sec:first}.
\subsection{The first subsection}
\label{sub:first}
If we now refer to
subsection~\ref{sub:first},
the result changes because
\LaTeX\ tracks a different
counter with the new label
issued after a subsection
declaration.

and its result is in figure 12. The reference num-
bers are related to the points labels are issued. Our
practice advises us to issue the labels to be ref-
erenced either just after the \chapter, \section
and similar commands or in the mandatory argu-
ment of the \footnote or \caption commands.
Those labels that will be “pagereferenced” are likely
to be put in the exact points they need.

Another sensible task that an author would want
to accomplish is the index compilation. Of course
LATEX has a mechanism that allows author to label
every term (s)he wants in the index. After labeling,
in case of changes in the text, the author just

have to recompile at least a couple of times to get
everything sorted out.

First of all we have to load a specific package. We
strongly recommend Enrico Gregorio’s imakeidx,
instead of the original makeidx or the slightly more
flexible splitidx. We invite you to discover the ad-
vantages of using Gregorio’s package but as a teaser
we can say that you no longer need to compile mul-
tiple times to have an updated index.

After we included the package, we may label
every term we want with the command \index.
This command has a mandatory argument: the
term you want to appear in the index written
exactly in the way you want it in the index. But
you should refer to LAMPORT (1987) to discover
the power of the LATEX indexing mechanism and
the richness of its syntax.

Now that you labeled your whole document you
are ready to include the index in your document:
you will issue the command \printindex in the
point of your document you want the index to
appear, compile the document and, depending on
the package you are using, you might need to post-
process the index file and compile your document
again.

8.1.12 Arbitrary Hyphenation
It may be useful, in some special cases where words
exceed the right margin, to force an hyphenation.
We can do it by typing \- in the place we want a
specific word to be hyphenated.

8.1.13 An Example of Multilingual Document in
X ELATEX

We close this long section with an example on how
easy it is for X ELATEX to manage languages with
alphabets different from Latin. Here you can see
some commands already discussed and some that
you can read of in ROBERTSON and HOSNY (2017):

\usepackage{fontspec}
\setmainfont{IM FELL English}
\usepackage{polyglossia}
\usepackage{xeCJK}
\usepackage{bidi}
\setmainlanguage{italian}
\setotherlanguages{russian,greek,arabic}
\newfontfamily{\russianfont}{FreeSerif}
\newfontfamily{\greekfont}{FreeSerif}
\newfontfamily{\arabicfont}{FreeSerif}
\newcommand\rus[1]{%

\foreignlanguage{russian}{#1}}
\newcommand\gre[1]{%

\foreignlanguage{greek}{#1}}
\newcommand\ara[1]{%

\foreignlanguage{arabic}{#1}}

\begin{document}
Ciao mondo.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

22

Ciao mondo.
Привет мир.
你好世界
Γεια κόσμο

العالم مرحبا

1

FIGURE 13: The power of fontspec let us get a document like
this multilingual Hello, world!.

\rus{Привет мир}.

你好世界

\gre{Γεια κόσμο}

\setRTL\ara{ ابحرم {ملاعلا

Figure 13 shows the related result.
We specified X ELATEX because LuaLATEX has dif-

ferent mechanisms and packages to manage Right-
to-Left languages. For instance, LuaLATEX is not
compatible with bidi, so the previous example has
to be modified to be compiled with LuaLATEX.
8.1.14 Floating bodies: figures and tables
Depending on the document we are writing, we
might have to integrate the text with images and
tables. Despite way too many authors want these
elements put exactly where they think they should
be, LATEX encourages us to let them float, so that
it can keep typesetting the pages according to its
quality high standard.

How do we make them float? It suffices to put
them in a floating body. LATEX provides us with
two environments that are floating bodies: figure
and table. In such environments we will respec-
tively put graphics, drawings (both discussed in
a different lesson), images (with the command
\includegraphics provided by graphicx; this is
an extension of the former graphics package) and

tables. As for images, graphicx enables us to in-
clude JPG, PNG, PDF and EPS images and allow to
rotate, clip, trim, dimension and scale images. You
may find a complete manual in DAVID P. CARLISLE
AND THE LATEX3 PROJECT (2017).

The very basic yet complete usage is

\begin{figure}
\centering
\includegraphics{image.pdf}
\caption{Image caption.}
\end{figure}

which shows how we add a horizontally centered
floating image and caption to our documents
putting those elements into a figure container.

Like the previous case, table is just a container
that can contain anything, most likely tables. To
build a table we need a constructor and the LATEX
basic table constructor is the tabular environment.
Instead of explaining, let us see an example, though
shortened, related to table 1 and shown in table 2:

\begin{table}
\caption{\label{tab:dm-
ex}An example of table construction.}
\begin{tabular}{|c|c|c|}
\hline
\textsc{Command} & \textsc{Example} &

\textsc{Result} \\
\hline
\verb|\`| & \verb|\`a| & \`a \\
\verb|\'| & \verb|\'a| & \'a \\
\hline
\multicolumn{3}{p{.93\columnwidth}}{It's
possible to have the diacritic mark named
comma below (\c{r}) and its counterpart
inverted comma above (\c{g}) in
\pdfLaTeX\ using the \emph{cedilla}
command (\cmdname{c}), but only with a
selected set of letters. To get the
comma below under s and t you should
keep using the package \pkgname{combelow}
to get such marks.} \\
\hline
\end{tabular}
\end{table}

We already know that the pair
\begin{table}-\end{table} is the floating
body that lets the table be placed where LATEX
considers the better place; we also know that the
pair \begin{tabular}-\end{tabular} is the con-
struction environment. \begin{tabular} needs
a mandatory argument that specifies how many
columns compose the table and their alignment. In
our case we see three c interleaved by vertical bars;
that means ‘three centered columns delimited by
vertical rules’. Other alignments are l (for left), r
(for right) and p{〈dimension〉} (for left aligned in
a fixed width column). We can leave out vertical

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

23

TABLE 2: An example of table construction.

COMMAND EXAMPLE RESULT
\` \`a à
\' \'a á

It is possible to have the diacritic mark named
comma below (ŗ) and its counterpart inverted
comma above (ģ) in PDFLATEX using the cedilla
command (\c), but only with a selected set of
letters. To get the comma below under s and
t you should keep using the package combelow
to get such marks.

rules, if we do not want them. The command
\hline draws horizontal rules.

It is now time to fill the cells. We start writing
the content of the first cell (upper left). The content
ends when we issue a &. After filling the last cell in
a table row we will not issue a & but a line break
(\\).

Now, before you ask us why tables 1 and 2 look
so different, we should unveil that table 1 has
been drawn using tabu, a package that allows a
finer control over the table design and look, and
booktabs, a package that provides us with finer
rulers and better vertical spacing.

The caption has to be issued with the command
\caption before we open tabular or after we close it.
Please notice the \label in its parameter so that
the related reference-counter is correctly referred
to a table number.

8.1.15 Colors
LATEX is not bound to serious black text and white
background. Thanks to packages like color or xcolor
we can add colors to text, highlight it coloring
its background and color a whole page so that the
text is on a background different than white. While
the color manual is in the graphicx manual (DAVID
P. CARLISLE AND THE LATEX3 PROJECT, 2017),
xcolor has a different manual that you can read, as
usual, issuing the command texdoc xcolor in a
terminal.

8.1.16 Again on Special Characters
Now we have a clearer idea of how LATEX uses
some characters: \ starts a command, so it cannot
be used per se to represent a backslash; ~ is a
special space, so it cannot be used to represent a
tilde character; & is a tabbing character in tables
and cannot represent the ampersand character;
% starts a comment.

Tilde can be obtained as \~ (~, maybe not ex-
actly in the position we expected it), as \sim
(∼, quite big, huh?) and as \textasciitilde via
textcomp (~, like in the first case). Ampersand is
\& and percent is \%.

What about the backslash, since \\ breaks a
line? Once again textcomp helps: \textbackslash

TABLE 3: LATEX commands to give documents a structure.

COMMAND book report article
\part ✓ ✓ ✓

\chapter ✓ ✓

\section ✓ ✓ ✓

\subsection ✓ ✓ ✓

\subsubsection ✓ ✓ ✓

\paragraph ✓ ✓ ✓

\subparagraph ✓ ✓ ✓

(\).
8.2 Main Body Analysis: Document

Structure
The structure of a document is directly related to
the type of the document. As we have mentioned in
section 7.1, the way a book is organized is slightly
different than the way an article is organized, and
both of them totally differ from a letter. Roughly
speaking, a document structure is directly related
to the text organization.

When we organize a document, being it a book,
a report or an article, we subdivide it into sev-
eral main topics (chapters for books and reports,
sections for articles). They could be grouped into
parts, but not necessarily. This leads to a spe-
cial treatment of counters that we are going to
talk about in a few lines. A main part will prob-
ably be subdivided into smaller blocks of text,
each one treating a specific subtopic: sections for
books and reports, subsections for articles. Ev-
ery smaller block can be subdivided into smaller
subblocks. When we organize our documents ac-
cording to these blocks and subblocks—levels—,
we are giving our documents a structure. Table 3
lists the commands provided by LATEX to struc-
ture documents and indicates which classes use
them or not.

All of these commands take a mandatory argu-
ment (the title) and an optional argument (the
title as it will be included in the table of contents.
If no optional argument has been indicated, the
main title will be included in the table of con-
tents). The commands add a number before every
title. Unless we change the way the numbers are
stored, they have the following forms: part num-
ber, chapter number, [chapter.]section number (the
brackets mean that there is no chapter numbers
in an article), [chapter.]section.subsection number
and so on.

As you can figure out, this “strategy” helps au-
thors not to make errors with the structure. Sup-
pose we are writing an article. After the \section,
instead of declaring a \subsection, we declare a
\subsubsection as in the following example:

\begin{document}
\section{Section title}

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

24

1 Section title

Section text.

1.0.1 Subsection title

Subsection text.

1

FIGURE 14: The number 1.0.1 indicates that we skipped a level
in the structure.

Section text.

\subsubsection{Subsection title}
Subsection text.
\end{document}

As we can see in figure 14, what we expected
to be numbered 1.1 is instead numbered 1.0.1.
This means that we skipped a level: instead
of using a \subsection command, we used a
\subsubsection.

All of the commands we mentioned in this sec-
tion have a corresponding starred version (i.e.,
\section*). These versions do not print the num-
ber before the corresponding title and do not let
the titles appear in the table of contents.

It is a good practice, when we organize the struc-
ture, to let (let us say) a section have two or more
subsections, if subsections are necessary.
8.3 Splitting Big Documents
When writing big documents such as books, we
could find handy to split the LATEX source into
different files. How do we put them all together?

The most common case is a master file that
includes slave documents, for instance one file per
chapter in the document body.

LATEX offers two ways to include such files:
\include{〈filename〉} (without the .tex exten-
sion) starts a new page, separately processes the
file and includes it in the final camera ready;

\input{〈filename〉} (without the .tex extension)
that simply processes the file as being part of a
single, big file.

You will find further information on the fine
control of such an operation in OETIKER et al.
(2018) or, better, in KOPKA and DALY (2004).

8.4 Help, I Need a Symbol
If you spent many hours writing LATEX documents,
you may have experienced that you cannot recall
the name of a specific symbol you really need now.
Reading PAKIN (2017) could be helpful, but you
are not sure you can really locate that symbol in
a manual longer than 300 pages. How can you do?

Thanks to Philipp Kühl and Daniel Kirsch, we
may rely on a website (KÜHL and KIRSCH, 2019)
that allows us to sketch the symbol we are look-
ing for and answers with a list of those symbols
that look like our sketch along with the related
commands.

Bonus Section: Guess What!
Many of you, experienced with LATEX, know the
usual aspect of LATEX documents. You even know the
power and the lacks of TEX. So we decided to deliver
you a game: figures 15–31 show some books, journals,
magazines and report pages along with other docu-
ments. You are invited to guess which of them have
been typeset with LATEX and which of them have
not been. The solution is at the end of the lesson.

Part III:
Writing LATEX Documents

9 (Not Necessarily) Dedicated
Editors

We already know that users do not need a special
editor to write a LATEX document. We will not stress
enough the fact that users tend to think in terms
of tools; the risk is that a user who normally edits
LATEX documents with, say, Kile, gets lost without
it and does not consider to use a different IDE or
text editor or even does not consider the fact that
a different editor can be used (can we call it the
Word syndrome?).15 In spite of that, LATEX users
can rely on several more or less dedicated editors.

The first one, one of the most famous tools in the
Unix world, is Emacs. It is not especially written
to integrate with LATEX, but with AUCTEX it can
be used as a powerful IDE (integrated development

15. [NdGP] When I used to write programs with Borland
Turbo Pascal and Turbo C, I could not understand that I was
allowed to edit source codes with whatever editor, so I always
opened the IDE not only to get an executable program but even
because I thought I could not edit the source code in a different
way, just like any proprietary environment. Then I switched to
Unix…

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

25

De_Giorgi_principale 16 luglio 2008 12:00 Page 73☛
✡

✟
✠

☛
✡

✟
✠

☛
✡

✟
✠

☛
✡

✟
✠

De Giorgi e la moderna Teoria Geometrica della Misura 73

Figura 3.3:Molteplicità algebrica

ϕ(A,π) è esprimibile mediante un integrale superficiale nel modo
seguente:

ϕ(A,π) =

∫

A∩Γ

〈n,nπ〉dσ2,

ove n è il versore normale di Γ. Quindi ciascuna di queste funzioni
fornisce, localmente, una stima per difetto dell’area.

Nel caso in cui Γ = ∂ E, scegliendo π=πyz otteniamo

∫

E

∂ g

∂ x
d xdyd x =

∫

Γ

g dϕ(·,πyz) ∀g ∈ C 1
c
(R3).

Nella terminologia moderna ϕ(·,πyz) è quindi la derivata
nel senso delle distribuzioni della funzione caratteristica χE lungo
la direzione x (e analogamente ϕ(·,πxy) e ϕ(·,πz x)).

FIGURE 15: Mathematical formulae and diagrams.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

26

atti_vinci 18 febbraio 2016 22:25 Page iii
✡✠

✟
✠

☛
✡

☛✟

BIBLIOTECA

LEONARDIANA
STUDI E DOCUMENTI

5

SCIENZE E
RAPPRESENTAZIONI
SAGGI IN ONORE DI PIERRE SOUFFRIN

Atti del convegno internazionale
Vinci, Biblioteca Leonardiana, 26-29 settembre 2012

a cura di
Pierre Caye, Romano Nanni e Pier Daniele Napolitani

LEO S. OLSCHKI EDITORE
MMXV

FIGURE 16: Frontispiece of a proceedings volume, published by Olschki.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

27

atti_vinci February 18, 2016 22:25 Page 129
✡✠

✟
✠

☛
✡

☛✟

a re-evaluation of the «liber de canonio» 129

beam in terms of thickness and matter mean both equal and similar in Arabic.
There is a clear preference in Arabic mathematical texts for using the first for
equal and the second for similar. Thus, Knorr translated them in this manner
(Knorr 1982, p. 139). In the given context it is clear though that similarity is
not meant literally, but in the sense of having the same property. This ambigu-
ity reflects the use of ἴσος and ὁμοίος for respective concepts in Greek.

5.2. Investigation 2

Liber de Canonio, Proposition II

Si fuerit proportio ponderis in terminomi-
noris portionis suspensi, ad superhabun-
dantiam ponderis maioris portionis ad mi-
norem, sicut proportio longitudinis totius
canonii ad duplam longitudinis minoris
portionis, erit canonium parallelum epi-
pedo orizontis (Moody & Clagett 1952,
p. 66).

If the proportion of the weight suspended
at the end of the smaller portion to the
surplus of the weight of the greater por-
tion to the smaller will be like the propor-
tion of the length of the entire beam to the
double of the length of the smaller por-
tion, the beam will be parallel to the sur-
face of the horizon (Cf. Moody & Cla-
gett 1952, p. 67).

MS Beirut, ziyāda, Proposition 4

وقسم الجوهر متشابه الغلظ متساوي عمود كان ثقلاذا الاقصر القسم طرف بنقطة وعلق مختلفين علىبقسمين الاطول القسم فضل ثقل الى الثقل نسبة كلهوجعلت العمود طول نصف كنسبة الاقصر القسم موازاةثقل على يعتدل العمود فان الاقصر القسم طول الافق.الى
(Knorr 1982, p. 154).

If there is a beam, (which is) equal in itself
in thickness, equal in itself in substance
and partitioned in two different parts and
(if) a weight is suspended at the end of the
shorter part and the ratio of the weight
to the weight of the surplus of the longer
part over the weight of the shorter part is
made like the ratio of half of the length of
all of the beam to the length of the shorter
part, then the beam equilibrates itself in
parallelness to the horizon.

Again, the content of both theorems is the same and the two enunciations
are similar, but not identical. Their difference is greater than in the previous
case, because the Liber de canonio does not repeat the description of the prop-
erties of the beam and the suspended weight and thus has to integrate the
latter into the description of the proportion. It differs from the ziyāda also in
regard to the placement of the term weight in the description of the second
term of the proportion. The Liber de canonio uses the term only once between
superhabundatiam and maioris. The ziyāda uses it twice, once before the sur-
plus and once before the shorter part. While the formulation of the Liber
de canonio is imprecise, but comprehensible, the formulation of the ziyāda
is comprehensible, but false. It is most likely the result of a scribal error as

FIGURE 17: Multilingual parallel texts, from the same volume.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

28

atti_vinci 18 febbraio 2016 22:25 Page 347
✡✠

✟
✠

☛
✡

☛✟

Paola Manni

SULLA TERMINOLOGIA DELLE MACCHINE IN LEONARDO:
TRADIZIONE, INNOVAZIONE E SVILUPPI FUTURI*

Qui si dimostra la natura della vite e di sua lieva,
e chome ella debbe più tosto ess(er)e adop(er)ata <in is>
in tirare che in ispingiere. E chom’ella fa più for-
ça a essere senplice che doppia, e sottile che grossa,
essendo mossa da pari lungeça di lieva e pari força.5

E chosì si farà un pocho di discorso in qua(n)ti modi si
pò adop(er)are, e di qua(n)te sorte si pò fare viti sança
fine. E qua(n)ti moti son fatti sança vite, che fa(n)-
no p(r)opio ofitio di vite. E in che modo la vite
sança fine s’achonpagni cholle rote dentate, e10

chome molte viti si debono insieme adop(er)are.
E ssi dirà della natura delle sue madri, e sse so(n)
più utili cho· molti denti o nno. E si dirà delle
viti retrose e delle viti che p(er) un medesimo ti-
rare spingano e ttirano il peso, e di viti che15

p(er) una sola volta che se le dia, farà fugire la sua
madre molte delle sue volte circulari. E così
moltissimi sua effetti, e varie fatiche, e fforteçe,
e tardità, e p(r)esteçe. E ssi prov(er)rà ragio(n)e1 <di ut>
di tutti loro ofiti e nature, e materie, e llieve,20

e utilità. E ssi dirà in che modo si debbono fare,
e del modo del metterle in op(er)a;
e di chi è stato inganato p(er) no(n) cognosscer lor natura.
E ttali strume(n)ti si figurera(n)no in gra(n) parte sança
le loro armadure, o altra cosa che avessi a inpe-25

* Le trascrizioni dai codici leonardiani sono fatte seguendo le norme stabilite da Arrigo Castellani
per l’edizione dei testi medievali, già utilizzate in Manni 2008 e in Manni & Biffi 2011. Alle pagine
introduttive di quest’ultimo (pp. xxxi-xxxii) si rimanda per una loro esposizione dettagliata e ulte-
riori riferimenti bibliografici. Nel caso di citazioni brevi inserite nel corpo del testo, si eliminano le
parentesi tonde che segnalano lo scioglimento delle abbreviazioni. Con la sigla Madrid I si indica il
primo codice di Madrid (Biblioteca Nacional de España, cod. 8937).

1 La e non chiara, corretta su altra lettera.

FIGURE 18: Automatic line numbering, from the same volume.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

29

 · -

17am, 18am, 19am, 20am. Itaque deinceps fieri potest in infinitum.
63 Hinc patet origo numeri harum vocum hexachordum constituentium, scilicet ut re

mi f a sol la. Octo autem literae Γ a b c d e f g statutae sunt, ut earum unaquaeque octavo
quoque loco repetita diapason consonantiam in proportione dupla semper indicet; quod

5 numeri in singulis chordis icosichordi dispositi, sicut omnes alias consonantias et spacia,
ostendunt. 64 g littera, quia sonora, dat initium hexachordo ♮ quadri et duri. c, quoniam
media inter aspiratam et sonoram, dat initium hexachordo naturae diatonici generis. f,
quoniam sapit ipsa aspiratam et mollem, dat initium hexachordo ♭ mollis et chromatici
generis.

10
65 Continuatio autem tonorum in sesquioctava proportione et constitutio sesquialterae

ac sesquitertiae proportionum, hoc est diatessaron ac diapente componentium diapason,
ac dieseos spacium relinquentium, sic patet in numeris:

40 1
3 364 1

2

diapente diatessaron

diapason 60 3
4 486 · 243

diesis diapason diesis

8 64 512 · 256

1 tonus diatessaron tonus tonus

9 72 diapente 576

tonus tonus
81 648

tonus
729

9 8

256 243

2304 2187 2048

diesis apotome

tonus

| 66 Ex quibus constat quod diesis proportio est in his numeris: 256 — 243. Videnda est A:32v

nunc proportio semitonii maioris sive apotomes. Sic proportio 9 — 8 facit tonum; ducatur 9
15 in 256 et mox in 243 et fiunt duo numeri 2304, 2187; quorum proportio est sicut 256 — 2〈4〉3,

scilicet diesis. Item ducatur 256 in 8 et fiat 2048. Eritque sicut 9 — 8, sic 2304 — 2048. Quare
proportio 2304 — 2048 faciet tonum cumque proportio 2304 — 2187 faciat diesim, sive
semitonium minus, supererit proportio 2187 — 2048, semitonii maioris scilicet apotomes.

67 Differentia vero diesis et apotomes dicitur comma, quod elicitur per subtractionem
20 unius proportionis ab alia, ut infra patet. | A:33r

3 ante Γ del. .a.b.c. A 6 g littera ∼ chromatici generis in laevo inf. marg. A 8 ipsa: ip A

[r-v]

FIGURE 19: Diagrams from the critical edition of Francesco Maurolico’s Musica.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

30

 ·

2187 2048 apotome

256 243 diesis

524288 531441 559872comma

524288 531441 559872

comma diesis

apotome

68 Constabit etiam quod diesis maior est, quam tria commata minor autem quam quatuor.
69 Apotome autem maior, quam quatuor commata, minor quam quinque.
70 Unde et tonus excedet octo commata et minor quam novem commata nascitur, quae

omnia ex longo et multarum figurarum calculo constare possunt lege Boetium et Fabrum
in musicis elementis. 5

O

∗
❰ 4 1

2 8 18 Nete 54 81 7us

tonus

❮ 5 1
16 9 20 1

4
Paranete 60 3

4 91 1
8 5us

diesis

❒ 5 1
3 9 13

27 21 1
3

Paramese 64 96 3us

tonus

➮ 6 10 2
3 24 Mese 72 108 8us 1us

tonus

✃ 6 3
4 12 27 Lichanos 81 121 1

2 6us

diesis

➱ 7 1
9 12 52

81 28 4
9

Parhypate 85 1
3 128 4us

tonus

Ò 8 14 2
9 32 Hypate 96 144 2us

tonus

• 9 16 36 Proslambanomenos 108 162

diapason

diate〈ssaron
〉

diapen
tem

(toni)

Die ✡ 30 decembris 1566.

4 ante possunt del. ˜pat A

70 lege Boetium: ⋄ Fabrum in musicis elementis.:

[r]

FIGURE 20: More diagrams from the critical edition of Francesco Maurolico’s Musica.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

31

LibroNascita 19 dicembre 2012 14:27 Page 60 ☛
✡

✟
✠

☛
✡

✟
✠

☛
✡

✟
✠

☛
✡

✟
✠

60 Nascita di un’idea matematica

affermazione dalla definizione di limite e “da quelle successive”: a tali
definizioni Cantor accenna soltanto, ma si possono svolgere in modo
naturale, come nelle esposizioni moderne.

L’uguaglianza, la relazione d’ordine e le operazioni sono definite per punti

(pointwise). L’uguaglianza è definita da Cantor, come abbiamo visto, e comporta

che se b = lim an e b
′ = lim a′n allora b = b

′ se e solo se

∀ε > 0∃n0∀n > n0(∣ an − a
′

n ∣< ε).

Se b = lim an e b
′ = lim a′n allora b + b

′ = lim(an + a
′

n), dopo aver dimostrato

che {an + a
′

n} è di Cauchy; come caso particolare, se b = lim an e r ∈ Q allora

b + r = lim(an + r), dopo aver dimostrato che {an + r} è di Cauchy.

Analogamente b ≤ b′ se e solo se ∃n0∀n > n0(an ≤ a
′

n); in particolare b ≤ r

se e solo se da un certo punto in poi an ≤ r.

La relazione < deve essere definita come “≤ e ≠”, che equivale a dire, se b =

lim an e b
′ = lim a′n :

b < b′ se e solo se ∃ε > 0∃n0∀n > n0(a
′

n − an > ε).

Se b = lim an e r ∈ Q, b < r se e solo se esiste un ε > 0 tale che da un certo punto

in poi r − an > ε.

Si dimostra la tricotomia, vale a dire che per b e b′ o razionali o simboli di

irrazionali associati a successioni di Cauchy

b = b′ o b < b′ o b′ < b.

Ora per ogni razionale r, scriviamo (r) per indicare la successione costante

{r, r, . . .}. Sia b = lim an e per ogni n fissato confrontiamo b con la successione

(an). Si vuole dimostrare che per ogni ε > 0 (ci si può restringere a ε razionali),

almeno da un certo punto in poi ∣ b − (an) ∣< ε, che coinvolge solo relazioni e

operazioni algebriche già definite per i nuovi numeri. ∣ b − (an) ∣< ε significa

che

∃m0∀m > m0(∣ am − (an)m ∣< (ε)m).

Siccome la successione {an} è di Cauchy, per ogni ε > 0 razionale

∃m0∀n > m0∀m > m0(∣ am − an ∣< ε),

quindi

∃m0∀n > m0∀m > m0(∣ am − (an)m ∣< (ε)m),

che è quello che si voleva dimostrare.

Si noti che viceversa, se b = lim an e la successione {a′n} è tale che ∀ε >

0∃n0∀n > n0(∣ b − a
′

n ∣< ε) allora, prendendo ε/2 qui e in lim an si ha per n

sufficientemente grande ∣ an − a
′

n ∣< ε, da cui lim a′n = b.

FIGURE 21: A page from a book on the development of mathematical logic.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

32

 · -

20 A signo enim lucidi cuiuspiam A in planum
BC cadant radii AB, AD, AE, AF et AC, intelligan-
turque iidem radii rem GH, signo A propiorem,
illuminare in signis G, H , K, L, M, sitque AE

5 radius ipsis BC et GH planis perpendicularis;
ipsi vero AD et AF item et AB et AC, aequales.
Aio quod BE et EC plana aequaliter, ipsum vero
GH magis illuminabitur. Patet enim radios AB,
AD, AE, AF et AC in planis BE et EC esse aequa-

10 liter densos, in plano vero GH densiores.JSunt

enim spatia DE, BD spatiis FE, CF aequalia, quibus qui-

dem minora sunt spatia KL, GK, ML, HM. K Igitur per
secundum suppositum, ipsa BE et EC plana ae-
qualiter, ipsum vero GH magis illuminabitur.

15
21 Quod si intelligatur | signum A spatio BC
propius fieri inter ipsas BA, AC lineas, crescet
iam BAC angulus. Itaque BC spatium plures su-
scipiet radios. Quare ex quinto supposito magis
illuminabitur.

20 C

22 Hinc et illud sequitur, ut sol aeque a se remo-
ta aequaliter, propiora vero magis calefaciat.

‖ T 4

23 Potest signum plano tantum propin-
25 quare, ut planum ipsum fortius, verum

particularius illuminet.
24 Signum A planum BC illuminet radiis AB, AD,
AE, AF et AC, e quibus AE perpendicularis. Aio
quod possibile est signum A tantum propius

30 fieri plano BC, ut magis per minorem ipsius
plani partem illustret. Fiat enim propinquius
signum A ipsi BC plano in signo G lineae AE, ita
ut ductis radiis GB, GD, GE, GF et GC, angulus
BGD minor fiat angulo BAD, hoc enim possibile

35 est.
25 JEt demonstratur: nam si ex scholio propositionis

5ae libri 4i per tria puncta B, D, A describatur arcus cir-

15 signum S spacium C 33 radiis S C2 mediis C 36–43 Et
demonstratur „ primi. S1

21 per secundum suppositum: Maur. Phot. Supp. 2 Densiores
radios intensius, aeque vero densos aequaliter illuminare.
˛ ex quinto supposito: Maur. Phot. Supp. 5 Plures radios
intensius, aequales vero aequaliter illuminare. 25 ex scholio
propositionis 5ae libri 4i: Clav. Elem., I, pp. 471 sg.

A

B CED F

G

H K L M

A

B CED F

G

H K L M

I

culi BDA et extra arcum in recta AE accipiatur punctum

infra G, a quo ducantur rectae GB, GD et reliquae, ut

modo dictum est; item ex puncto I, ubi recta BG secat 40

arcum DA DA, ducatur recta DI. Erit angulus BID ae-

qualis angulo BAD per 21am tertii, et maior angulo BGD

per 16am primi.K
26 Ducantur etiam GH ipsi AB, et GK ipsi AD,

paralleli; item GL ipsi AF, et GM ipsi AC, paralle- 45

li radii. Ergo sub angulo BAC aequales sunt nu-
mero radii radiis sub angulo HGM comprehen-
sis. Sed hi densiores,Jquia minus spatium occupant.

K Igitur per secundum suppositum erit planum
HM illustratius plano BC. Radii vero sub angulo 50

38 BDA correximus BDGA add. S1
˛ AE correximus GE S1

41 DA correximus DG S1

˛ per 21am tertii: Clav. Elem., I, pp. 410 sg. In circulo qui in
eodem segmento sunt anguli sunt inter se aequales. ˛ per
16am primi: Clav. Elem., I, p. 188 sg. Cuiuscumque trianguli
uno latere producto, externus angulus utrolibet interno et
opposito maior est. 26 per secundum suppositum: Maur.

Phot. Supp. 2 Densiores radios intensius, aeque vero densos
aequaliter illuminare.

[C v-r · S -]

FIGURE 22: Geometric diagrams from the critical edition of Francesco Maurolico’s Optica.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

33

RETRAITE (SUITE)
i L’outil d’analyse de placements utilise la « valeur future de la monnaie » pour représenter le résultat probable en tenant

compte des données variables fournies par l’utilisateur. Important : Toute projection produite par l’outil Kronos ABF
est hypothétique. Elle ne réflète pas les résultats réels et n’est pas garante des résultats futurs.

Encaissement
*

2014 2020 2026 2032 2038 2044 2050 2056 2062
0 $

33 000 $

66 000 $

99 000 $

132 000 $

� Non enregistré � CELI � Enregistré

Ce graphique présente une estimation de vos actifs à partir d’aujourd’hui et jusqu’à votre retraite. Tous les REER sont
convertis en FERR à l’âge de 71 ans et sont sujets à des retraits minimums.

Décaissement
*

2034 2038 2042 2046 2050 2054 2058 2062 2066
0 $

34 000 $

68 000 $

102 000 $

136 000 $

� Revenu du travailleur � Manque � Investissements � Gouvernement

Ce graphique montre de quelle façon vos actifs seront utilisés pour atteindre vos objectifs de revenus à la retraite. Tous
les REER seront convertis en FERR à l’âge de 71 ans et seront sujets à des retraits minimums. L’ordre de décaissement
est le suivant : placement non enregistrés, CELI et placement enregistrés.

*Voir annexe 5 pour les détails de l’encaissement et du décaissement.

George Simard et Lyne Falardeau - Imprimé le 14 mai 2014 8 de 30

FIGURE 23: Graphics from a financial report.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

34

FIGURE 24: A page from an EDUSC series.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

35

“c
op

er
ti

na
”

—
20

12
/2

/1
—

11
:1

0
—

pa
ge

1
—

#
1

In
qu

es
ta

co
lla

na
:

1.
E

di
zi

on
i
C

ri
ti

ch
e

A
l
pu

bb
lic

o
AC

25
,0

0

T
E
X

n
o
l
o
g
i
e

L
a

st
e
su

ra
d
i
u
n
’e

d
iz

io
n
e

c
ri

ti
c
a

è
u
n

c
o
m

p
it

o
lu

n
g
o

e
fo

n
te

d
i
in

n
u
m

e
re

v
o
li

c
o
n
tr

o
ll
i.

A
u
to

m
a
ti
z
z
a
re

il
p
iú

p
o
ss

ib
il
e

le
o
p
e
ra

z
io

n
i
p
e
rm

e
tt

e
u
n

n
o
te

v
o
le

ri
sp

a
rm

io
d
e
l
n
u
m

e
ro

d
i

c
o
n
tr

o
ll
i
d
a

e
ff
e
tt

u
a
re

.
U

n
fi
lo

lo
g
o

e
u
n

in
fo

rm
a
ti

c
o

g
u
id

a
n
o

il
le

tt
o
re

v
e
rs

o
l’
o
b
ie

tt
iv

o

a
u
to

m
a
ti

z
z
a
z
io

n
e
.

Q
u
e
st

o
m

a
n
u
a
le

è
ri

v
o
lt

o
p
ri

n
c
ip

a
lm

e
n
te

a
i
fi
lo

lo
g
i
e

a
i
g
re

c
is

ti
c
la

ss
ic

i
e

in
se

g
n
a

c
o
m

e

u
sa

re
X

ELA
T
E
X

,
u
n

p
o
te

n
te

li
n
g
u
a
g
g
io

d
i
im

p
a
g
in

a
z
io

n
e

ti
p
o
g
ra

fi
c
a
,
p
e
r

im
p
a
g
in

a
re

fa
c
il
m

e
n
te

d
e
ll
e

e
d
iz

io
n
i
c
ri

ti
ch

e
in

e
c
c
e
p
ib

il
i
d
a
l
p
u
n
to

d
i
v
is

ta
ti

p
o
g
ra

fi
c
o

e
d
e
ll
a

c
o
e
re

n
z
a

d
e
ll
a

n
u
m

e
ra

z
io

n
e

d
e
l
te

st
o

e
d
e
g
li

a
p
p
a
ra

ti
.
G

li
a
u
to

ri
e
sp

o
n
g
o
n
o

la
lo

ro
e
sp

e
ri

e
n
z
a

n
e
ll
’u

ti
li
z
z
o

d
e
l
p
ro

g
ra

m
m

a
sp

ie
g
a
n
d
o

n
u
m

e
ro

si
c
a
si

re
a
li

e
m

o
st

ra
n
o

la
p
o
te

n
z
a

e
la

v
e
rs

a
ti

li
tà

d
e
l
li
n
g
u
a
g
g
io

e
v
id

e
n
z
ia

n
d
o

p
ro

p
ri

o
g
li

a
u
to

m
a
ti

sm
i
d
i
n
u
m

e
ra

z
io

n
e

e
d
i

ri
fe

ri
m

e
n
to

.

T
u
tt

i
i
p
ro

g
ra

m
m

i
u
sa

ti
so

n
o

li
b
e
ri

e
g
ra

tu
it

i
e

la
lo

ro
a
ffi

d
a
b
il
it

à
è

a
tt

e
st

a
ta

d
a

o
lt

re

tr
e
n
t’
a
n
n
i
d
i
sv

il
u
p
p
o

c
o
n
ti
n
u
o

e
d
a

u
n
a

c
o
m

u
n
it
à

m
o
n
d
ia

le
d
i
d
e
c
in

e
d
i
m

ig
li
a
ia

d
i
u
te

n
ti

tr
a

c
u
i
d
o
c
e
n
ti

e
st

u
d
e
n
ti

u
n
iv

e
rs

it
a
ri

,
c
a
se

e
d
it

ri
c
i,

p
ro

fe
ss

io
n
is

ti
,
se

m
p
li
c
i
a
p
p
a
ss

io
n
a
ti

,

e
n
ti

p
u
b
b
li
c
i
e

p
ri

v
a
ti

.

J. Leal, G. Pignalberi Edizioni Critiche – Guida alla composizione con il proprio computer

E
d
iz

io
n
i
C

r
it

ic
h
e

G
u
id

a
a
ll
a

c
o
m

p
o
si

z
io

n
e

c
o
n

il
p
ro

p
ri

o
c
o
m

p
u
te

r

J
e
r
ó
n
im

o
L
e
a
l

G
ia

n
lu

c
a

P
ig

n
a
lb

e
r
i

E
di

zi
on

i
C

om
p
oM

at
T
E
X

n
o
l
o
g
i
e

Je
ró

ni
m

o
L
ea

l,
na

to
a

M
ad

ri
d

ne
l
19

61
,
è

pr
of

es
so

re
di

St
or

ia
de

lla
C

hi
es

a
A

nt
ic

a
e

P
at

ro
lo

gi
a

pr
es

so
la

P
on

ti
fic

ia
U

ni
ve

rs
it

à
de

lla
Sa

nt
a

C
ro

ce
e

di
re

tt
or

e
de

l
D

ip
ar

ti
m

en
to

di
St

or
ia

de
lla

C
hi

es
a.

C
ol

la
b
or

a
in

ol
tr

e
co

m
e

pr
of

es
so

re
in

vi
ta

to
ne

ll’
Is

ti
tu

to
P
at

ri
st

ic
o

A
ug

us
ti

ni
an

um
di

R
om

a.
È

au
to

re
de

l
lib

ro
A
ct

a
s

la
ti
n
a
s

d
e

m
á
rt

ir
es

a
fr

ic
a
n
o
s

(C
iu

da
d

N
ue

va
,
F
ue

nt
es

P
at

rí
st

ic
as

,
M

ad
ri

d
20

09
),

e
di

di
ve

rs
i
ar

ti
co

li
p
er

la
ri

vi
st

a
A
rs

T E
X
ni

ca
.
D

al
20

04
or

ga
ni

zz
a

e
ti

en
e

an
nu

al
m

en
te

un
C

or
so

di
ed

iz
io

ne
cr

it
ic

a
al

co
m

pu
te

r
(C

eT
EX

)
ne

lla
se

de
de

ll’
U

ni
ve

rs
it

à
de

lla
Sa

nt
a

C
ro

ce
.
C

ir
ca

un
ce

nt
in

ai
o

di
pr

of
es

so
ri

un
iv

er
si

ta
ri

e
ri

ce
rc

at
or

i
ha

nn
o

se
gu

it
o

il
co

rs
o

fin
or

a.
N

el
20

11
an

ch
e

la
F
ac

ol
tà

di
D

ir
it

to
C

an
on

ic
o

Sa
n

P
io

X
di

V
en

ez
ia

ha
os

pi
ta

to
il

co
rs

o
de

l
pr

of
es

so
r

L
ea

l.

G
ia

nl
uc

a
P

ig
na

lb
er

i,
na

to
a

C
or

i
(L

T
)

ne
l

19
72

,
è

un
in

fo
rm

at
ic

o.
D

op
o

la
la

ur
ea

in
Sc

ie
nz

e
de

ll’
In

fo
rm

az
io

ne
è

st
at

o
b
or

si
st

a
ap

pl
ic

at
iv

o
pr

es
so

il
C

A
SP

U
R

,
do

ce
nt

e
a

co
nt

ra
tt

o
al

la
Sa

pi
en

za
,

co
lla

b
or

at
or

e-
gi

or
na

lis
ta

te
cn

ic
o

p
er

In
fo

m
ed

ia
e

E
di

zi
on

i
M

as
te

r,
pr

og
ra

m
m

at
or

e
e

im
pa

gi
na

to
re

T E
X

p
er

F
re

e
So

ft
w

ar
e

M
ag

az
in

e.
O

ra
sv

ol
ge

le
at

ti
vi

tà
di

co
m

m
er

ci
an

te
,
in

se
gn

an
te

a
co

nt
ra

tt
o

e
im

pa
gi

na
to

re
T E

X
.
È

at
tu

al
m

en
te

vi
ce

pr
es

id
en

te
de

l
g
u
It

(G
ru

pp
o

U
ti

liz
za

to
ri

It
al

ia
ni

di
T E

X
)

e
ne

di
ri

ge
la

ri
vi

st
a

A
rs

T E
X
ni

ca
.

1

FIGURE 25: The dust cover jacket of one of the authors’ book.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

36

FIGURE 26: One page from Free Software Magazine n. 7 (camera ready for Lulu.com).

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

37

FIGURE 27: Another page from Free Software Magazine n. 7.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

38

FIGURE 28: Prospettiva Persona editorial rules.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

39

FIGURE 29: A page from the journal Prospettiva Persona.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

40

FIGURE 30: A François Dolbeau critical edition.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

41

FIGURE 31: A parallel translation (Armenian-Italian) published in Augustinianum.

environment) with auto-completion, syntax high-
lighting, PDF visualization capabilities and much
more functions.

Some other dedicated IDEs are Kile, TEX Works,
TEXstudio, TEXnic Center. Users can configure
them to decide what typesetting engine have to
be used, to debug their documents and so on. The
latest listed here, despite being a promising IDE,
has been last updated back in 2014, which means
that it has been dismissed.

Overleaf is a web site that allows users to create
LATEX documents and collaborate on them. It offers
an on-the-fly visualization of the resulting PDF.

The Wikipedia page WIKIPEDIA (2019) lists a
lot of editors and users can try one or more of
them to pick their favorite. The most part of them
are intended to work on the source code. They
are better than a simple text editor because their
capabilities and facilities can help users to be more
focused and productive. Some of them are WYSI-
WYM (what you see is what you mean): despite the
document looks so much different from the final
document, it shows the structure in a way clearer
for the authors and they can try to visualize the
final document in their mind, before viewing as an
on-screen preview.

The only real WYSIWYG editor seems to be
TEXmacs, a GNU program inspired by Emacs and
TEX, but totally unrelated to them. It does not
even use TEX to typeset the final document.

In case you do not have a favorite editor (for
instance, ours are vi and Emacs) you may try some
of them and decide which one is yours.

In the next section we present some highlights
on LYX.

10 LYX, the WYSIWYG (?)
Editor that LATEXs Your
Documents

First of all, this section title is not completely
true: the right title should have been “LYX, the
WYSIsWYG…” i.e., the only “what you see is
sometimes what you get”. The Wikipedia page
WIKIPEDIA (2019) states that LYX is properly a
WYSIWYM editor.

Users who usually write their text documents
with a WYSIWYG editor like Microsoft Word or
LibreOffice Writer will find very hard to think of
their documents the way LATEX requires. They feel
comfortable, and possibly inspired, with an editor
mimicking a white paper sheet. These users would
probably be happy to use LYX, a program that
looks very much like their favorite WP and that
uses TEX as typesetting engine to get a LATEX doc-
ument. They run LYX, see a nice user interface
similar to those of the most famous WPs and…
“Where is the white page?” Just a miserable yellow-
ish band with a blinking cursor. Figure 32 shows
LYX’s new document. They do not need to won-

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

42

FIGURE 32: LYX and a new document.

FIGURE 33: LYX and a new document.

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

43

A LYX Document

G. Pignalberi, M. Dominici

August 16, 2019

1 First document

This is our first document written with LYX.

Somebody will be happy to have the chance of

writing a LATEXdocument with a wysiwyg ed-

itor, somebody won’t. “It’s up to you whether

you fall in the trap.”1

Well, its look is not exactly like that of the

final pdf but it’s very similar. . .

1This very same expression has been included in

Afrika Bambaataa’s Reckless.

1

FIGURE 34: LYX and the new document exported in PDF.

der how will they write the whole text: the band
enlarges as they keep writing.

A LYX file is not directly a LATEX document, but
it is very easy to export it in that format, so to
post-produce it with LATEX. Figure 33 shows that
a document written into LYX only resembles the
corresponding PDF (in figure 34), but the essence is
there and that is the reason for WIKIPEDIA (2019)
to consider it WYSIWYM: we can inject TEX code
into such a document to add unknown-to-LYX
specific strings; we can “decide” with our mouse
whether a portion of text is a title, a section, a
footnote; we can apply emphasis or small caps
(that the interface tags as “author” because some
bibliography styles want the authors in small caps)
to a portion of text highlighted with the mouse.
LYX helps you manage a bibliography, lets you
insert specific LATEX features such as index entries,
cross references and labels, tables of contents and
many other elements.

In our basic example we used the default docu-
ment class—article—with a A4 page size. Of course
you can pick your needed type of document from
Document→Settings… menu; you have a lot of
things that you can customize there.

Click on the eyes to see the final PDF. When it
suits your needs, you can export it with File→Ex-
port menu.

A Summary of textcomp
commands

Apparently no manual groups textcomp commands
all together.16 We hope that our table 4, that shows
all the textcomp symbols, helps you all in being
more productive

You surely realized that two of the listed
symbols are not visible. Those symbols,
\textascendercompwordmark and \textcap-
italcompwordmark, are “two additional com-
pound word marks […] that have the height
of the ascender or capitals in the font, respec-
tively.” (MITTELBACH and GOOSSENS, 2013,
p. 365). Those symbols are an extension of the
LATEX \textcompwordmark. They are zero-width
characters (actually spaces) useful to prevent
unwanted ligatures (do you remember the shelfful
example? Try shelf\textcompwordmark ful)
or to place an accent between two letters, as
in the example of MITTELBACH and GOOSSENS
(2013), the abbreviation of the German suf-
fix -burg: b\u\textcompwordmark g and
B\u\textcapitalcompwordmark G. In this
case the zero-width symbol is the parameter of
the accent command.

References
LATEX 3 PROJECT TEAM (2005). LATEX2ε font
selection. Readable with texdoc fntguide.

BLANCO, José Luis (2015). «Word or LaTeX
typesetting: which one is more productive?
Finally, scientifically assessed». Mapping Ig-
norance. https://mappingignorance.org/
2015/04/06/word-or-latex-typesetting-
which-one-is-more-productive-finally-
scientifically-assessed/.

BLOCH, Laurent (2017). «Efficacité comparée
de latex et de ms-word». https://www.
laurentbloch . net / MySpip3 / Efficacite -
comparee-de-LaTeX-et-de-MS-Word.

BURTON, Tim (1997). The Melancholy Death of
Oyster Boy & Other Stories. Rob Weisbach
Books.

CARLISLE, David, Scott PAKIN and Alexan-
der HOLT (2001). The Great, Big List of LATEX
Symbols. https://www.rpi.edu/dept/arc/
training/latex/LaTeX_symbols.pdf.

CHARETTE, François (2015). Polyglossia: An Al-
ternative to Babel for X ELATEX and LuaLATEX.
Readable with texdoc polyglossia.
16. Well, we found an old manual (CARLISLE et al., 2001)

that alphabetically groups textcomp commands and symbols
into table 18. Some of those symbols are currently dismissed
and a lot more have been added since then. MITTELBACH and
GOOSSENS (2013, pp. 362–368) explains in details textcomp and
table 7.6 summarizes its symbols.

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

44

TABLE 4: textcomp commands and symbols. We present them in the very same order of appearance in textcomp.sty.

Command = Command = Command =

\capitalcedilla ¸ \capitalogonek ˛ \capitalgrave

\capitalacute \capitalcircumflex � \capitaltilde �

\capitaldieresis \capitalhungarumlaut \capitalring �

\capitalcaron \capitalbreve � \capitalmacron

\capitaldotaccent
 \textcapitalcompwordmark \textascendercompwordmark

\textquotestraightbase ‚ \textquotestraightdblbase „ \texttwelveudash �

\textthreequartersemdash \textdollar $ \textquotesingle '

\textasteriskcentered ∗ \textfractionsolidus ⁄ \textminus −

\textlbrackdbl 〚 \textrbrackdbl 〛 \textasciigrave `

\texttildelow ~ \textasciibreve ˘ \textasciicaron ˇ

\textgravedbl \textacutedbl ˝ \textdagger †

\textdaggerdbl ‡ \textbardbl ‖ \textperthousand ‰

\textbullet • \textcelsius ℃ \textflorin ƒ

\texttrademark ™ \textcent ¢ \textsterling £

\textyen ¥ \textbrokenbar ¦ \textsection §

\textasciidieresis ¨ \textcopyright © \textordfeminine ª

\textlnot ¬ \textregistered ® \textasciimacron ¯

\textdegree ° \textpm ± \texttwosuperior ²

\textthreesuperior ³ \textasciiacute ´ \textmu µ

\textparagraph ¶ \textperiodcentered · \textonesuperior ¹

\textordmasculine º \textonequarter ¼ \textonehalf ½

\textthreequarters ¾ \texttimes × \textdiv ÷

\texteuro € \textohm Ω \textestimated ℮

\textcurrency ¤ \capitaltie � \newtie �

\capitalnewtie � \textleftarrow ← \textrightarrow →

\textblank ␢ \textdblhyphen - \textzerooldstyle

\textoneoldstyle \texttwooldstyle \textthreeoldstyle

\textfouroldstyle \textfiveoldstyle \textsixoldstyle

\textsevenoldstyle \texteightoldstyle \textnineoldstyle

\textlangle 〈 \textrangle 〉 \textmho ℧

\textbigcircle ○ \textuparrow ↑ \textdownarrow ↓

\textborn b \textdivorced c \textdied d

\textleaf l \textmarried m \textmusicalnote ♪

\textdblhyphenchar � \textdollaroldstyle \textcentoldstyle

\textcolonmonetary ₡ \textwon ₩ \textnaira ₦

\textguarani � \textpeso � \textlira ₤

\textrecipe � \textinterrobang ‽ \textinterrobangdown �

\textdong ₫ \textpertenthousand %�� \textpilcrow ¶

\textbaht ฿ \textnumero № \textdiscount �

\textopenbullet ◦ \textservicemark ℠ \textlquill ⁅

\textrquill ⁆ \textcopyleft « \textcircledP ℗

\textreferencemark ※ \textsurd √ \textcircled ○

\t �

ArsTEXnica Nº 28, Ottobre 2019 Introduction to LATEX

45

DAVID P. CARLISLE AND THE LATEX3 PROJECT
(2017). Packages in the ‘graphics’ bundle. Read-
able with texdoc graphicx.

GIACOMELLI, Roberto and Gianluca PIGNALBERI
(2018). «Typesetting and highlighting Unicode
source code with LATEX: a package comparison».
ArsTEXnica, (18), pp. 39–54.

GREGORIO, Enrico (2010). «Installare TEX Live
2010 su Ubuntu». ArsTEXnica, (10), pp. 7–13.

KNAUFF, Markus and Jelica NEJASMIC (2014).
«An efficiency comparison of document prepara-
tion systems used in academic research and devel-
opment». PLoS ONE, 9 (12), p. e115 069. https:
//doi.org/10.1371/journal.pone.0115069.

KNUTH, Donald E. (1999). Digital Typography.
Center for the Study of Language and Informa-
tion, Stanford, CA.

KOPKA, Helmut and Patrick W. DALY (2004).
Guide to LATEX. Addison Wesley, Boston, 4th
edition.

KÜHL, Philipp and Daniel KIRSCH (2019). «Detex-
ify latex handwritten symbol recognition». http:
//detexify.kirelabs.org/classify.html.

LAMPORT, Leslie (1987). MakeIndex: An Index
Processor for LATEX. Readable with texdoc
makeindex.

LAVAGNINO, John (2003). The endnotes package.
Readable with texdoc endnotes.

MITTELBACH, Frank and Michel GOOSSENS (2013).
The LATEX companion. Addison Wesley, Boston,
2nd edition.

MITTELBACH, Frank, Robin FAIRBAIRNS,
Werner LEMBERG and LATEX 3 PROJECT TEAM
(2016). LATEX2ε font encodings. Readable with
texdoc encguide.

OETIKER, Tobias, Hubert PARTL, Irene HYNA and
Elisabeth SCHLEGL (2018). The Not So Short
Introduction to LATEX2ε. A4 format, Version
6.2, February 28, 2018. Readable with texdoc
lshort.

PAKIN, Scott (2017). The Comprehensive LATEX
Symbol List. Readable with texdoc symbols-
a4.

POWERS, Shelley, Jerry PEEK, Tim O’REILLY and
Mike LOUKIDES (2002). Unix Power Tools.
O’Reilly, Sebastopol, CA.

ROBBINS, Arnold, Elbert HANNAH and
Linda LAMB (2008). Learning the vi and
Vim Editors. O’Reilly, Sebastopol, 7th edition.

ROBERTSON, Will and Khaled HOSNY (2017).
The fontspec package. Readable with texdoc
fontspec.

ROONEY, Garrett (2005). Practical Subversion.
APress, Berkeley.

SCHMIDT, Walter (2006). «Font selection in LATEX:
The most frequently asked questions». The
PracTEX Journal. https://www.tug.org/
pracjourn/2006-1/schmidt/schmidt.pdf.

STACKEXCHANGE (2011). «macros - Different
command definitions with and without optional
argument». https://tex.stackexchange.
com / questions / 308 / different - command -
definitions-with-and-without-optional-
argument.

— (2016). «macros - What di the com-
mands inside the LATEX logo do?» https://
tex.stackexchange.com/questions/313527/
what-do-the-commands-inside-the-latex-
logo-do.

UMEKI, Hideo (2010). The geometry package. Read-
able with texdoc geometry.

WIKIPEDIA (2019). «Comparison of TEX ed-
itors». https://en.wikipedia.org/wiki/
Comparison_of_TeX_editors.

Bonus Section: Solution
You cannot pretend to read it that easy. Get a
mirror! This is the 500th anniversary of Leonardo
da Vinci’s death.

Allofthedocumentsshowninfigures15–31have
beentypesetbyMassimilianoDominiciorGianluca
PignalberiwithLATEX,beingitPDFLATEX,XELATEX
orLuaLATEX.

⊲ Gianluca Pignalberi
g dot pignalberi at gmail dot
com

⊲ Massimiliano Dominici
mlgdominici at gmail dot com

Gianluca Pignalberi, Massimiliano Dominici ArsTEXnica Nº 28, Ottobre 2019

46

TEX, LATEX and math

Enrico Gregorio

Abstract

We discuss some aspects of mathematical type-
setting: choice of symbols, code abstraction, fine
details. Relationships between math typesetting
and international standards are examined. A fi-
nal section on typesetting of numbers and units
reports on some recent developments in the field.

Sommario

Si discutono alcuni aspetti della tipografia mate-
matica: scelta dei simboli, astrazione del codice,
dettagli più fini. Si esaminano anche connessioni
tra la tipografia matematica e gli standard inter-
nazionali. La sezione conclusiva tocca il problema
della composizione di numeri e unità di misura alla
luce di sviluppi recenti.

1 Introduction

We all know that TEX was born out of Knuth’s
discomfort after having seen the proofs of the new
edition of the first volume of his magnum opus
“The Art of Computer Programming”.

Many papers have been written by Knuth him-
self and by others on the topic of math typesetting.
Here I’d like to present some personal ideas on
the subject, coming from almost thirty year long
experience in mathematical typesetting. I’ll also
present some recent developments and new tricks
made available with expl3.

2 A very short lead-in to math in
TEX

Every TEX guru knows that TEX is always in one
of three modes:

• horizontal mode,

• vertical mode,

• math mode.

Actually, there are circumstances when TEX is in
no mode at all (when writing to external files, for
the curious).

Each mode comes into two flavors, but we’re
interested only in math mode. Knuth calls the two
flavors ‘math mode’ and ‘display math mode’. In
order to better distinguish between them, I’ll call
the former ‘inline math mode’, so the unadorned
‘math mode’ will denote both.

There are subtle, well, not so much so, differ-
ences between the two flavors; beginners are most

impressed by
∑n

k=1
k2 = 1

3
n

(

n+ 1

2

)

(n+ 1) that
suddenly becomes

n
∑

k=1

k2 =
1
3
n

(

n+
1
2

)

(n+ 1)

when displayed and a very common question is
‘how do I get the limits above and below the sum-
mation symbol and real fractions, not that smallish
replacement symbol?’

I’ve been a beginner myself; I discovered
\limits and abused it. Penitenziagite, would have
said Salvatore in “Il nome della rosa”. Now I’m
no longer a beginner and know why \limits

should not be used, not to talk about the dreaded
\displaystyle that sometimes is suggested to
newbies. The proper way is just \sum.

To the contrary, beginners are usually much less
impressed by the wrong typesetting in

A\B = {x|x ∈ A, x /∈ B}

but they are likely to shrug and move on, if they
ever note it. Sometimes they see something’s wrong
and ‘fix’ the vertical bar by using \,|\, that’s still
wrong. Why is it wrong? The spacing is too small,
of course, but there’s more into the problem: two
appearances of such a construction in the same
document is a sin similar to what I describe to
young basketball referees: “whoever calls a double
foul during their career has called one too many”.
The correct answer is: first of all define a macro
for the object, for instance,

\newcommand{\suchthat}{\,|\,}

(I’m talking LATEX, plain TEX users can translate).
In case one asks, if a+b appears twice or more in
a document there’s no need to make a macro out
of it; the separator in the set builder notation is a
single conceptual object and so it must be typed
by a single command.

About the spacing, one should realize that the
reverse bar is a binary operation symbol and the
vertical bar is a relation symbol. Both are already
defined in all flavors of TEX and they are, respec-
tively, \setminus and \mid, but it’s still conve-
nient and logically sound to define \suchthat, be-
cause \mid is a ‘generic’ name:

\newcommand{\suchthat}{\mid}

...

A \setminus B=\{x \suchthat

x\in A, x\notin B\}

47

will typeset as

A \B = {x | x ∈ A, x /∈ B}

This is the version with the thin spaces

A \B = {x |x ∈ A, x /∈ B}

Compare closely the spaces around the vertical
bar.

I’m not saying the last realization should be
rejected as awfully wrong: personal judgment is
always welcome when typography is concerned, af-
ter having studied the alternatives and common
practice. Above all, consistency throughout a doc-
ument is a must. I had to edit a paper where the
separator was a bar or a colon or a semicolon, de-
pending on which of the three authors had typed
the formula. Defining \suchthat allows for delay-
ing any decision about what symbol to use until
the last minute. More on set builder notation later.

The TEXbook lists several symbol names, some
have semantics attached to them, like \setminus,
others don’t, like \mid or \otimes.1 Why is that?
Some symbols have essentially a single use case,
others appear in different branches of mathematics
with different meanings. Everybody loves \lhd and
\unlhd, right? The symbols typeset as ⊳ and E

respectively. I believe to have seen once what the
names should suggest, but I forgot it. The symbols
are common in group theory, where they denote
‘normal subgroup’: it’s heartily recommended to
group theorists to define a meaningful command
for them. Oh, I was almost forgetting! Those are
not considered as relation symbols, so a savvy
group theorist will type in the document preamble

% normal subgroup

\newcommand{\ns}{\mathrel\lhd}

\newcommand{\nseq}{\mathrel\unlhd}

% subnormal subgroup

\newcommand{\sns}{\ns\ns}

The symbols are not among the core ones designed
by Knuth; they first appeared in a symbol font dis-
tributed along with LATEX; possibly Lamport used
them for his own papers as binary operators and
the classification stuck. They were later included
in amssymb.

What should an author do? The case of nor-
mal subgroups is clear: I surely wouldn’t litter
my paper with \mathrel\lhd each time I want
to mention normal subgroups. However, suppose
a paper frequently uses Euler’s totient function,
which has the well established tradition of being
denoted by ϕ (the open version of phi). Is it bet-
ter to use \varphi or to define \euphi? The lat-
ter. Upon receiving the proofs, the author realizes
that all instances of \varphi print out φ, because
the publisher uses a font that lacks the proper

1. Generally LATEX kept the same names.

symbol. With \euphi it is a matter of doing a re-
definition, probably borrowing the open phi from
another font. We don’t know when the instruc-
tion \let\varphi=\phi is performed, but using
\euphi makes this irrelevant.

An important exception: in the abstract
there should be no use of personal macros. It should
be able to typeset with a ‘naked’ version of LATEX:
it’s very common nowadays that the abstract is
fed to some web page that maybe uses MathML,
MathJax or similar device for handing the text to
browsers.

Going back to the normal subgroup symbol, one
should know that every math symbol belongs to a
class and there are seven of them:

• class 0, ordinary symbols;

• class 1, operators;

• class 2, binary operations;

• class 3, binary relations;

• class 4, opening symbols;

• class 5, closing symbols;

• class 6, punctuation.

TEX will set the spacing between symbols according
to well defined rules. This is not the place to discuss
them fully, see Gregorio (2009). Any object, as
long as it is legal in math mode, can be defined to
behave as if it belongs in one of the above classes
by typing it as the argument to

\mathord \mathop \mathbin \mathrel

\mathopen \mathclose \mathpunct

For instance, the symbol for the determinant is
internally carried out by something like

\mathop{\operator@font det}\nolimits

but there is a higher level interface available for
declaring new symbols like this; for instance, one
does

\DeclareMathOperator{\adj}{adj}

in order to introduce a symbol for the adjugate
matrix. A one-shot operator can be input in the
document by

\operatorname{adj}

The *-version of both commands makes for a sym-
bol that carries limits above and below in display
math mode, on the side when inline.

The unfortunately common perversion of denot-
ing open intervals like]a, b[needs input such as

\mathopen]a,b\mathclose[

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

48

One can easily spot that something is wrong when
just using]a,b[by looking at the difference be-
tween the two instances below

x ∈]a, b[x ∈]a, b[

In my calculus notes I type \interval[o]{a,b}. I
can decide to be a perv by just changing a few lines
in the definition. An open interval will be typeset
as (a . . b), but I’m not bound in any way: I can go
back to the comma again by just changing a line.
Also, I like to write upper unbounded intervals like
(a . . →), but I use \pinf for the arrow, so I can
make it to be typeset ∞ by acting on a single line,
should I change my mind.

Upon entering math mode, TEX will construct a
math list consisting of math atoms, each of which
has a nucleus, a subscript field and a superscript
field. When exiting from math mode, the math list
will be transformed into a horizontal list according
to the (complex) rules described in Appendix G
of the TEXbook. These rules add spaces, as said
before, but also take care of the bidimensionality of
math formulas: superscripts, subscripts, fractions,
accents, radicals, extensible delimiters and many
more aspects.

Had Knuth been into theoretical physics, he
probably would have added also “prescripts” for
isotopes and staggered multiple subscripts and
superscripts for tensors. Unfortunately he hasn’t.
See later for more on this topic.

3 Fine points of mathematics
typing

The title is the same as chapter 18 in the TEXbook.
Of course I won’t go through Knuth’s words. Since
I’m talking LATEX and math, I assume that ams-
math is loaded: no serious math typesetting can
be done without it.

A point that’s not touched upon in the TEXbook
is ‘when, really, consecutive equations should be
aligned and where’. Browsing TEX.StackExchange
reveals several examples of bad alignments.

A prominent example is a derivation of Car-
dano’s formula2 which I won’t give the code for,
but just three realizations that you can see in fig-
ure 1.

I often use the style “the good, the bad, and the
ugly”. There is actually an even uglier way, which
is what the questioner was asking for, see figure 2.

What’s the problem? The equals signs are not
really related to one another. The pairs of formulas
are related, the fact they are equations is almost
irrelevant. Mixing ragged right and ragged left in
one and the same paragraph (or display) makes for
very hard reading. I’d instead be more generous
with vertical spacing between the various braces
and I have no doubt whatsoever that the leftmost

2. https://tex.stackexchange.com/questions/193581

realization is our Clint Eastwood. Look for holes
in the typeset output and remove them.

Another example can be seen in figure 3.3 You
can judge by yourself what’s the best way to
present the display. My opinion is that the equals
signs in the second column pair are not related to
each other, so they’re not to be aligned.

Linear systems are an exception, because their
matrix-like structure is more important than holes.
I recommend the wonderful systeme package by
Ch. Tellechea (Tellechea, 2019). No doubt there
are other exceptions: typography, and mathemati-
cal typography in particular, is a craft that doesn’t
obey to mechanical rules. A thin space may open
up symbols and make them easier to read, adding
a pair of parentheses may clear up an ambiguity,
removing unnecessary parentheses may improve
the quality of a formula. Compare top and bottom
line

a
f(x+ h) − f(x)

h
+ b

g(x+ h) − g(x)
h

a
f(x+ h) − f(x)

h
+ b

g(x+ h) − g(x)
h

and decide which one looks better. In my notes
I used the bottom one when working the proof
of linearity of the derivative. If I talk about “the
function g(z) =

√
z − 1 ”, I add a thin space before

ending inline math mode:

‘‘the function $g(z)=\sqrt{z-1}\,$’’

in order to avoid the clash between the vinculum
and the quotes in “the function g(z) =

√
z − 1”.

Try with a parenthesis after the radical to see
another case: (1 +

√
2)−1 versus (1 +

√
2)−1. In

the latter case a thin space has been added.
Going to very fine details: does anybody notice

the differences below? Consider the formulas

log |x| 6= log|x| (7)

| sin x| 6= |sin x| (8)

‖ adjA‖ 6= ‖adjA‖ (9)

where the questionable typesetting is on the left.
While the top left could be a typographic choice
(so long as it is consistent), the other formulas in
the left-hand sides are definitely wrong.

The mathtools package provides a very good
facility for handling these cases, namely

\DeclarePairedDelimiter{\abs}{|}{|}

that allows to type \abs{\sin x} and forget about
the dreaded thin space, which can also be avoided
by

\lvert\sin x\rvert

3. https://tex.stackexchange.com/questions/500472

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

49

a6 + 2a3b3 + b6 = q2

4a3b3 = −
4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

{

a6 + 2a3b3 + b6 = q2

4a3b3 = −
4

27
p3

{

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

a6 + 2a3b3 + b6 = q2

4a3b3 = −
4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

Figure 1: Three ways of laying out the derivation of Cardano’s formula

{

a6 + 2a3b3 + b6 = q2

4a3b3 = −
4

27
p3

{

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

Figure 2: One of the worst alignment I can conceive

Which style to choose is a matter of personal pref-
erence and habit. I recommend not to abuse the
facility: reserve it for functions such as absolute
values, norms and similar objects. Don’t exploit it
for parenthesized expressions: something like

\paren{a+b}\paren{a-b}=a^2-b^2

hinders input reading and would print the same as
(a+b)(a-b)=a^2-b^2. True, one could do

\paren[\big]{a\paren{(b+c}}

but is this really more legible than

\bigl(a (b + c) \bigr)

that keeps the usual mathematical structure? That
is, assuming \big size is really necessary, which it
isn’t in the particular case.

Since I mentioned trigonometric functions, look
at √

sin x+
√

cosx+
√

tan x

and explain what’s going wrong. Yes, the tittle
makes the difference! It makes ‘sin’ higher than
‘cos’ and moves up the radical sign; similarly with
‘tan’. In my trigonometry notes I have

\let\cos\undefined

\DeclareMathOperator{\cos}

{cos\vphantom{i}}

\let\tan\undefined

\DeclareMathOperator{\tan}

{tan\vphantom{i}}

with which the above formula would become
√

sin x+
√

cosx+
√

tan x

Radicals often need fine control in order to get
them aligned with each other. Some appropriate
trick involving \vphantom or \smash can fix things
up: √

x+
√
y 6=

√
x+

√
y

Again, left is the questionable output; the formula
on the right has been input as

\sqrt{x}+\sqrt{\smash[b]{y}}

The alternative

\sqrt{\mathstrut x}+\sqrt{\mathstrut y}

doesn’t seem as attractive:
√

x +
√

y. Radicals
would need a full chapter, so I’ll stop here. One last
thing: add a thin space when a radical is followed
by a fence; similarly, add a thin space when a big
operator (summation, product, integral) in display
math mode is preceded by a fence and its limits
are wide. Example

(n
∑

k=1

ak

)

6=
(n

∑

k=1

ak

)

4 Upright or italic?

Rivers of (electronic) ink have been spilled try-
ing to answer the question. Actually it cannot be
answered: mathematicians and engineers agree to
disagree. Physicists disagree with each other.

Part of the question is: should constants be type-
set in upright font or not? The ISO 80000-2:2009
standard prescribes upright; adhering to this stan-
dard is mandatory in some technology and com-
mercial fields. This is a good thing: people reading

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

50

(

Aµ
ρ∗

µ

)

→
(

cos θ − sin θ
sin θ cos θ

) (

Aµ
ρ∗

µ

)

, tan θ =
gel
g∗

(1)
(

ψL
χL

)

→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

) (

ψL
χL

)

, tanϕψL
=

∆
m

(2)

(

ψ̃R
χ̃R

)

→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

) (

ψ̃R
χ̃R

)

, tanϕψ̃R
=

∆̃
m̃

(3)

(

Aµ
ρ∗

µ

)

→
(

cos θ − sin θ
sin θ cos θ

) (

Aµ
ρ∗

µ

)

, tan θ =
gel
g∗

(4)
(

ψL
χL

)

→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

) (

ψL
χL

)

, tanϕψL
=

∆
m

(5)

(

ψ̃R
χ̃R

)

→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

) (

ψ̃R
χ̃R

)

, tanϕψ̃R
=

∆̃
m̃

(6)

Figure 3: Two similar alignments

a technical report or manual will have no doubt
about the meaning of a symbol.4 While I strongly
disagree with several decisions of the ISO standard,
on mathematical grounds, I accept the underly-
ing philosophy towards uniformity in the technical
fields. Surely I appreciate its ban on the mathe-
matically wrong sin−1 and similar: the standard
has disputable aspects, but it’s never wrong from
a mathematical point of view.

On the other hand, many mathematicians are
traditionalists and prefer italics for constants such
as e (the Euler number) and i (the imaginary unit).
Euler and Gauss used italics for the latter, I’m
among those who don’t dare to challenge their
authority. Of course, I know that mathematical no-
tation has changed along time. I’d not use Cayley’s
original notation for matrices5 because a better
notation has developed. I follow the practice of set-
ting standard function names in upright type (sine,
cosine, logarithm and so on) even when ancient
mathematicians didn’t.

However, such decrees as ‘symbols for vectors
should be bold italic serif lowercase, for matrices
should be bold italic serif uppercase, for tensors
should be bold italic sans serif uppercase’ make
me smile: as a mathematician, I know that vectors,
matrices and tensors are not different objects from
a mathematical point of view. Matrices admit an
easier two-dimensional representation: this is the
‘big’ difference.

For pedagogical reasons, I might use a distinctive
typesetting for vectors and matrices in a students’
textbook. In a research paper or graduate level
book I’d probably not make any distinction, if not
mandated by clarity. In this case I’d explain the no-
tation choices at the beginning of the paper or book.

4. A problem with ISO standards is that they have to be
bought; the one we’re talking about prices 158 CHF, about
143 e or $160 at the current exchange rate.

5. https://tex.stackexchange.com/q/487643

A very fine book by J. Dieudonné (Dieudonné,
1972), in the English edition by Academic Press,
uses

• R or C for number sets,

• X for manifolds, E for vector bundles,

• A for vector space operators,

• Tx(X) or Tx(f) for the tangent space or linear
mapping,

• dxf or dxf for the differential at x of a map-
ping (vector valued or scalar valued),

• Z for tensor fields,

and several other conventions that are consistently
followed across the book and the series. The book
starts of with a nine page long notation section.
The same notation is used in the original French
version.

However, it happens that book translations use
different conventions from the original. It is the
case of W. Rudin’s ‘Real and Complex Analy-
sis’ (Rudin, 1966) where the differential ‘d’ is in
italics, whereas it’s upright in the Italian trans-
lation published by Bollati-Boringhieri (Rudin,
1974). I disagree with the publisher: maybe the
editorial preference is for the upright ‘d’, but the
author’s style should be preserved as much as pos-
sible.

Not a big deal, one could think. No, this reflects
on the meaning of the differential ‘d‘. There are
several arguments in favor or against italics; my
feeling is that most pure mathematicians prefer
italics.

By the way, how to input the symbol in such a
way that the convention can be changed at will?
The simplest and more effective way is to define

\newcommand{\diff}{\mathop{}\!d}

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

51

(or \mathrm{d} if one really prefers the abomina-
tion).

I believe to have learned it from Claudio Bec-
cari through a comp.text.tex post. The code was
credited to him in the paper Guiggiani and Mori
(2008a),6 but I’m not sure about the real source
of this code pearl. Claudio Beccari had earlier pro-
posed a much more complicated code (Beccari,
1997), namely

\makeatletter

\providecommand*{\diff}{%

\@ifnextchar^{\DIfF}{\DIfF^{}}%

}

\makeatother

\def\DIfF^#1{%

\mathop{\mathrm{\mathstrut d}}%

\nolimits^{#1}%

\gobblespace

}

\def\gobblespace{%

\futurelet\diffarg\opspace

}

\def\opspace{%

\let\DiffSpace\!%

\ifx\diffarg(%

\let\DiffSpace\relax

\else

\ifx\diffarg[%

\let\DiffSpace\relax

\else

\ifx\diffarg\{%

\let\DiffSpace\relax

\fi

\fi

\fi

\DiffSpace

}

What’s the idea in the complicated definition?
Look whether a superscript follows; if it doesn’t,
add a dummy one. Well, this is already wrong, be-
cause it adds \scriptspace unconditionally. After
that, the next token is examined: if it is a fence,
then don’t add \!, because a \mathop is followed
by a fence with no thin space; in case an ordi-
nary symbol follows, the \mathop would add a
thin space, which is removed by \!. Well, try it
with \diff\bigl(x+y\bigr). Next try the simpler
definition and see! Where’s the trick? The empty
\mathop is followed by an ordinary symbol, the ‘d’;
we just need to remove the excess thin space! The
thin space preceding the empty \mathop is inserted
automatically by TEX following the rules. Thus we
can define

\newcommand{\tder}[2]

{\frac{\diff #1}{\diff #2}}

6. The paper is also available in English (Guiggiani and
Mori, 2008b).

without worrying that spurious spaces may creep
in. Instead

\iint\limits_{D} f(x,y) \diff x \diff y

will typeset as needed
∫∫

D

f(x, y) dx dy

For differential forms

f(x, y) dx ∧ dy

the spacing will be automatically right.
The same paper by Beccari (1997) proposes

commands for the constants, namely

% The number ‘e’

\providecommand*{\eu}

{\ensuremath{\mathrm{e}}}

% The imaginary unit

\providecommand*{\iu}

{\ensuremath{\mathrm{j}}}

I strongly disagree with proposing \ensuremath;
referring in the text to the Euler’s number by

We use \eu\ to denote...

is by no means easier and clearer than

We use \eu to denote...

One keystroke more? So what? That’s a mathe-
matical symbol so it ought to be typed in math
mode, just like when we talk about the variable x.
My definition would be

\newcommand{\eu}{\mathord{e}}

so typing \eu outside of math mode would raise
an error. Change to \mathrm if you prefer upright
type.

During the preparation of this paper, I examined
the toptesi bundle, to find

\providecommand{\eu}{%

\ensuremath{%

{\mathop{\mathrm{e}}\nolimits}%

}%

}

This is disputable under many respects:

• \ensuremath serves no real purpose;

• \nolimits can be safely omitted, because the
\mathop{...} bit is followed by }, so surely
there are no limits to take into account;

• \mathop itself is redundant, because the whole
thing is braced, so it is treated as an ordinary
symbol.

Oh, wait! No, \mathop is actually wrong! Consider
the following code:

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

52

\documentclass{standalone}

\usepackage{amsmath}

\newcommand{\euA}{\mathrm{e}}

\newcommand{\euB}{%

\ensuremath{%

{\mathop{\mathrm{e}}\nolimits}%

}%

}

\begin{document}

$2\euA\euB$

\end{document}

The output is shown in figure 4. Do you see the
problem? A single character in the argument to
\mathop is raised or lowered so that it extends the
same above and below the math axis.

2ee
Figure 4: Magnified output for the Euler’s constant prob-
lem

Now that we’re on the spot, how to define a
better \tder macro also supporting higher order
derivatives? The first attempt,

\newcommand{\tder}[3][]{%

\frac{\diff^{#1}#2}{\diff #3^{#1}}%

}

has a flaw: it unconditionally adds \scriptspace

to both the numerator and denominator. If I mea-
sure the width of \tder{f}{t} in display math
mode, with standard font and document class, I
get 14.07712pt; the version without the dummy
exponents has width 11.91045pt. More than two
points! With the upright ‘d’, the difference would
be half a point. And the visual result shows more:

df

dt
6= df

dt

df
dt

6= df
dt

Yes, we need to avoid the dummy superscript, also
with the upright ‘d’, although the difference is
less noticeable: we want perfect output, don’t we?
And we want macros that allow users to choose
their own preferred ‘d’. One could test whether the
argument is empty, but there’s a better way with
xparse:

\NewDocumentCommand{\tder}{s o m m}{%

\IfBooleanTF{#1}{\dfrac}{\frac}%

{\diff\IfValueT{#2}{^{#2}}#3}% num

{\diff #4\IfValueT{#2}{^{#2}}}% den

}

The *-version delivers \dfrac (just in case one
needs it), otherwise \frac is used. The numerator
and the denominator add the exponent only if
the optional argument is specifically used. Thus
\tder{f}{t} will not add a dummy exponent.

5 Sets, bras and kets

A short note to the title. Physicists have a sense of
humor: a well-established notation for inner prod-
ucts is 〈x | y〉, called a “bracket”. A mathematician
would denote the linear or semilinear forms induced
by the bracket as 〈x | −〉 and 〈− | y〉. Physicists,
instead, use 〈x| for the former and |y〉 for the latter,
calling them “bra” and “ket”.

Since several years, LATEX has been requiring
e-TEX extensions, among which \middle is a very
useful one. For instance, we can typeset

{

x ∈ R

∣

∣

∣

∣

−1
2

≤ x ≤ 8
5

}

with no phantom and no null delimiter. On the
other hand, the code

\left\{x\in\mathbf{R} \;\middle|\;

-\frac{1}{2}\le x\le \frac{8}{5}\right\}

is still really ugly and something like

\set*{x\in\mathbf{R}\suchthat

-\frac{1}{2}\le x\le \frac{8}{5}}

would be much nicer. We call xparse and expl3 to
the rescue!

\documentclass[varwidth]{standalone}

\usepackage{amsmath}

\usepackage{xparse}

\ExplSyntaxOn

\NewDocumentCommand{\set}{som}

{

% limit the scope for \suchthat

\group_begin:

\cs_set_protected:Npn \suchthat

{

\tl_use:N \l__egreg_set_st_tl

}

\IfBooleanTF{#1}

{

\egreg_set_auto:n { #3 }

}

{

\egreg_set_fixed:nn { #2 } { #3 }

}

\group_end:

}

\tl_new:N \l__egreg_set_st_tl

\cs_new_protected:Nn __egreg_set_st:n

{

\tl_set:Nn \l__egreg_set_st_tl { #1 }

}

\cs_new_protected:Nn \egreg_set_auto:n

{

__egreg_set_st:n

{

\nonscript\;

\middle\vert

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

53

\nonscript\;

}

\left\{ #1 \right\}

}

\cs_new_protected:Nn \egreg_set_fixed:nn

{

\tl_if_novalue:nTF { #1 }

{

__egreg_set_st:n { \mid }

\lbrace #2 \rbrace

}

{

__egreg_set_st:n

{ \mathrel{#1\vert} }

\mathopen{#1\lbrace}

#2

\mathclose{#1\rbrace}

}

}

\ExplSyntaxOff

\begin{document}

$\set{a,b,c}\cup\set[\big]{a,b,c}$

$\set{x\suchthat a<x<b}$

$\set[\Big]{x\suchthat a<x<b}$

$\set*{x\suchthat \dfrac{1}{2}<x<3}$

\end{document}

The idea is to use a syntax familiar from math-
tools’ \DeclarePairedDelimiter. The output is
in figure 5.

{a, b, c} ∪
{

a, b, c
}

{x | a < x < b}
{

x

∣

∣

∣
a < x < b

}

{

x

∣

∣

∣

∣

1

2
< x < 3

}

Figure 5: Examples of set notation

In the TEXbook, Knuth recommends to add thin
spaces when the set builder notation contains a bar,
that is, it is not just a list of elements. I disagree.
How could it be implemented? It’s possible to look
for the presence of \suchthat at the outer level
and, in this case, to add the thin spaces at either
end; nested sets would examine their own contents
for the presence at the outer level.

A full implementation would also feature the
choice for the delimiter as a preamble setting. I
leave this as an exercise for whoever wants to make
a package out of this code.

There is some code duplication, but it’s un-
avoidable. The reason is that using an O{}

specifier for the optional argument would allow
\mathclose{#2\rbrace} and no case distinction.

However, one can see the difference if a subscript
is added

\rbrace_{1} \mathclose{\rbrace}_{1}

}1 }
1

Different coding is possible, though. It would not
be difficult to allow | instead of \suchthat. Look
at how the macros for bras and kets can be defined.

\documentclass[varwidth{standalone}

\usepackage{amsmath}

\usepackage{xparse}

\NewDocumentCommand{\bra}{som}{%

\IfBooleanTF{#1}

{\left\langle #3 \right|}

{%

\IfNoValueTF{#2}

{\langle#3\mathclose|}

{\mathopen{#2\langle}#3\mathclose{#2|}}%

}

}

\NewDocumentCommand{\ket}{som}{%

\IfBooleanTF{#1}

{\left\langle #3 \right|}

{%

\IfNoValueTF{#2}

{\mathopen|#3\rangle}

{\mathopen{#2|}#3\mathclose{#2\rangle}}%

}

}

\NewDocumentCommand{\braket}{som}{%

\IfBooleanTF{#1}

{\extensiblebraket{#3}}

{\fixedbraket{#2}{#3}}%

}

\ExplSyntaxOn

\NewDocumentCommand{\extensiblebraket}{m}

{

\group_begin:

\char_set_active_eq:nN { ‘| } \egreg_bar_auto:

\mathcode‘|="8000 \scan_stop:

\left\langle

#1

\right\rangle

\group_end:

}

\NewDocumentCommand{\fixedbraket}{mm}

{

\group_begin:

\char_set_active_eq:nN

{ ‘| } % active char is |

\egreg_bar_fixed: % equal to

\mathcode‘|="8000 \scan_stop:

\IfNoValueTF{#1}

{ \egreg_braket:n { #2 } }

{ \egreg_braket:nn { #1 } { #2 } }

\group_end:

}

\cs_new_protected:Nn \egreg_bar_auto:

{

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

54

\nonscript\,\middle\vert\nonscript\,

}

\cs_new_protected:Nn \egreg_bar_fixed:

{

\mathinner{\egreg_size: \vert}

}

\cs_new_protected:Nn \egreg_braket:n

{

\cs_set_protected:Nn \egreg_size: { }

\langle #1 \rangle

}

\cs_new_protected:Nn \egreg_braket:nn

{

\cs_set_protected:Nn \egreg_size: { #1 }

\mathopen{\egreg_size: \langle}

#2

\mathclose{\egreg_size: \rangle}

}

\ExplSyntaxOff

\begin{document}

$\bra{x}\quad\ket{x}$

$\braket{x|y}$

$\braket[\Big]{x|y|z}$

$\braket*{a|b}$

$\braket[\Big]{a|b|\dfrac{c}{d}}$

$\braket*{a|b|\dfrac{c}{d}}$

\end{document}

I’ll not comment the code, except for mentioning
how easy is to define the value of a character when
it will be made active (math active, in this case).

〈x| |x〉
〈x | y〉
〈

x

∣

∣

∣
y

∣

∣

∣
z
〉

〈a | b〉
〈

a

∣

∣

∣
b

∣

∣

∣

c

d

〉

〈

a

∣

∣

∣
b

∣

∣

∣

c

d

〉

Figure 6: Examples of bras and kets

6 Numbers and units

How should numbers be typed in the LATEX doc-
ument? Knuth himself once acknowledged that
his usual practice is not very good and realized it
when writing ‘Concrete Mathematics’ (Graham
et al., 1989), were numbers are typeset with the
Euler font when they’re used in their mathematical
meaning (and not, say, as page markers).

When a number appears in text and is mentioned
as a mathematical object is should be input inside
a math formula:

a vector space of dimension~5

But what about large numbers that need to
be split in smaller units for readability? For in-
stance, can you spell out 7400043022221 without
first counting how many digits the number has?
Isn’t 7 400 043 022 221 easier to parse? Possibly
not for an American who’s more accustomed to
7,400,043,022,221 (and probably would be at stake
when people talks about meters and liters).

Now let’s face a problem: your scientific paper
has several tables with numeric data and you’re
not sure about the editorial policy of the journal
you’ll be submitting it. Will the journal require
American style or prefer thin spaces for grouping
digits?

Table 1: Tables with different formatting options for num-
bers (Source: Mr Leporello, private communication)

Nation Number

Italy 640 375
Germany 231 803
France 100 002
Turkey 91 329
Spain 1 003 000

Nation Number

Italy 640,375
Germany 231,803
France 100,002
Turkey 91,329
Spain 1,003,000

Let’s consider the two tables in table 1. They
are typeset with exactly the same input, namely

\begin{tabular}{

@{}

l

S[table-format=7.0]

@{}

}

\toprule

Nation & {Number} \\

\midrule

Italy & 640375 \\

Germany & 231803 \\

France & 100002 \\

Turkey & 91329 \\

Spain & 1003000 \\

\bottomrule

\end{tabular}

and it’s siunitx (Wright, 2018) doing all the magic.
Of course there is a catch: just before the second
copy of the table I added

\sisetup{group-separator={,}}

I could have added the option also in the bracketed
argument to the S column, which is one of the
facilities made available by the package. Similarly,
the big number above has been typeset first with
\num{7400043022221} and then with

\num[group-separator={,}]{7400043022221}

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

55

The default for the package is to use a thin space as
a group separator between digits. An S column ba-
sically applies \num to every entry, but also aligns
them at the decimal separator. In the case of our
Leporello table, all entries are integer, so they’re
right aligned.

If an entry belonging to an S column is braced,
it will be ignored as far as number alignment is
concerned and centered on the total width of the
column (options are available for left or right align-
ment). This is obviously needed in the header.

With another option we can easily scale down
the figures:

Nation Number

Italy 640 × 103

Germany 232 × 103

France 100 × 103

Turkey 91.3 × 103

Spain 1.00 × 106

This is achieved with the options

\sisetup{

round-mode=figures,

round-precision=3,

scientific-notation=engineering

}

and by changing the column specifier to

S[table-format=3.2e1]

which directs to reserve space for three digits in
the integer part, two in the mantissa and one in
the exponent. The table body in the input has not
changed in any way.

One might write an entire large chapter of the
LATEX Companion about siunitx. Some time ago,
Joseph Wright took up the job of making a succes-
sor package to SIunit adding some features along
the way. For version 2 he had the idea of exploit-
ing expl3 which not only allowed for many more
features and facilities, but made him enter the
LATEX team.7 He’s into chemistry and tables with
numeric data are his staple food.

The main purpose of the package is of course
typesetting numbers with their SI unit according
to the guidelines of the Bureau International des
Poids et Mesures (BIPM). This is also part of the
ISO standard mentioned before:

\SI{1}{\newton} is defined as

\SI{1}{\kilogram\meter\per\second\squared}

will typeset “1 N is defined as 1 kg m s−2”. However,
if we prefer slashes instead of negative exponent,
we can add to the preamble

\sisetup{per-mode=symbol}

7. It seems that understanding and propagating expl3

opens a straight way to the team.

and the same text will now typeset as “1 N is de-
fined as 1 kg m/s2”. The mode can also be changed
on a local basis with an optional argument to \SI.

All SI units and prefixes are supported:

\SI{5}{\tera\meter} \SI{2}{\pico\farad}

yields 5 Tm and 2 pF. One can also print just a
unit with \si: the unit for energy is the J which
is the same as kg m2 s−2.

Going on with our fictional scientist who’s un-
certain where her breakthrough paper will be pub-
lished, decimal numbers might require the period
as separator, or the comma; if in scientific nota-
tion there could be the×10n part or En might be
asked for. How to do it? Not to mention uncer-
tainty! Let’s take as an example the rest mass of
the electron

9.109 383 701 5(28) × 10−31 kg

9.1093837015(28) × 10−31 kg

9,109 383 701 5(28) × 10−31 kg

(9.109 383 701 5 ± 0.000 000 002 8) × 10−31 kg

9.109 383 701 5 × 10−31 kg

9.109 383 701 5(28)E−31 kg

The first line has been input with

\SI{9.1093837015(28)E-31}{\kilogram}

and the following lines by adding an option

\SI[〈option〉]{9.1093837015(28)E-31}

{\kilogram}

The used options are, in order,

output-decimal-marker={,}

group-digits=integer

separate-uncertainty

omit-uncertainty

output-exponent-marker=\mathrm{E}

and they can be combined to get the desired ef-
fect without changing the code in the document if
the settings are done with \sisetup in the doc-
ument preamble. When inputting numbers, one
can use spaces and either a decimal period or deci-
mal comma. The first mandatory argument to \SI

behaves the same as the mandatory argument to
\num, so I’ll use the latter:

\num{12345.678}

\num{12345,678}

\num{12 345.678}

will print the same

12 345.678 12 345.678 12 345.678

Very few things are hardwired in siunitx: one can in-
struct it to ignore something, for instance. Suppose
you have a set of numbers with comma separators

Enrico Gregorio ArsTEXnica Nº 28, Ottobre 2019

56

for groups: the big number already used might be
available as 7,400,043,022,221. Set (globally or
locally) the input-ignore option and remove the
comma from the possible decimal separators:

\num[

input-ignore={,},

input-decimal-markers={.}

]{7,400,043,022,221}

and you’ll get

7 400 043 022 221

The package is not limited to ‘standard numbers’: it
also copes with angles, time and complex numbers.
For instance, we can type

\ang{30.24}

\ang{30;12;44.375}

\num{3-4i}

to get

30.24°, 30°12′44.375′′, 3 − 4i

Oh, dear! An upright ‘i’! Let’s fix it with

\sisetup{

output-complex-root=\mathnormal{i}

}

(one could also tell it to use ‘j‘, of course) and get

3 − 4i

Phew! Yes, the package obviously adheres to the
ISO standard, but it’s very customizable.

7 Further reading

Twenty-two years have passed from the seminal pa-
per by Claudio Beccari: we have seen great progress
in the field of math typesetting, in particular to-
wards the uniformity that’s necessary in technical
and commercial reports.

There are other packages that can be tried for
the purpose of compliance to the ISO 80000-2:2009
standard. I would mention isomath by Günter
Milde (Milde, 2012) and also unicode-math by
Will Robertson (Robertson, 2019) that provided
facilities to the purpose; the former is for legacy
pdflatex, the latter for X ELATEX and LuaLATEX.

References

Beccari, Claudio (1997). «Typesetting mathe-
matics for science and technology according to
ISO 31/XI». TUGboat, 18 (1).

Dieudonné, Jean (1972). Treatise on Analysis.
Vol. III. Academic Press, New York-London.
Translated from the French by I. G. MacDonald,
Pure and Applied Mathematics, Vol. 10-III.

Graham, Ronald L., Donald E. Knuth and
Oren Patashnik (1989). Concrete mathematics.
Addison-Wesley Publishing Company, Advanced
Book Program, Reading, MA. A foundation for
computer science.

Gregorio, Enrico (2009). «Simboli matematici in
TEX e LATEX». ArsTEXnica, 8, pp. 7–24. http:

//www.guitex.org/home/numero-8.

Guiggiani, Massimo and Lapo F. Mori (2008a).
«Consigli su come non maltrattare le formule
matematiche». ArsTEXnica, 5, pp. 5–14. http:

//www.guitex.org/home/numero-5.

— (2008b). «Suggestions on how not to mishandle
mathematical formulae». TUGboat, 29 (2).

Milde, Günter (2012). «isomath — mathematical
style for science and technology». https://

ctan.org/pkg/isomath. Version 0.6.1, texdoc

isomath.

Robertson, Will (2019). «Experimental Unicode
mathematical typesetting: The unicode-math
package». https://ctan.org/pkg/unicode-

math. Version 0.8o, texdoc unicode-math.

Rudin, Walter (1966). Real and complex analy-
sis. McGraw-Hill Book Co., New York-Toronto,
Ont.-London.

— (1974). Analisi Reale e Complessa. Bollati
Boringhieri.

Tellechea, Christian (2019). «L’extension pour
TEX et LATEX systeme». https://ctan.org/

pkg/systeme. Version 0.32, texdoc systeme.

Wright, Joseph (2018). «siunitx — A comprehen-
sive (SI) units package». https://ctan.org/

pkg/siunitx. Version 2.7s, texdoc siunitx.

⊲ Enrico Gregorio
Dipartimento di Informatica, Univer-
sità di Verona
enrico dot gregorio at univr

dot it

ArsTEXnica Nº 28, Ottobre 2019 TEX, LATEX and math

57

Bibliographies, LATEX and friends

Guido Milanese

Abstract

This lecture deals with the treatment of bibliogra-
phies within a LATEX framework and workflow. A
comparison of BIBTEX bibliography format with
other widely used formats shows that BIBTEX has
several advantages. The classical bibtex programme
is now obsolete, and biblatex + biber offer a highly
customisable choice for bibliographies in any re-
search area. GUI environments are also discussed,
as well as possible future developments.

Sommario

Questa conversazione si occupa del trattamento
delle bibliografie all’interno di un ambiente di lavo-
ro basato su LATEX. Una comparazione del forma-
to bibliografico di BIBTEX con altri formati usati
ampiamente mostra che BIBTEX offre parecchi van-
taggi comparativi. Il classico programma bibtex è
da ritenersi obsoleto, poiché biblatex + biber offro-
no un ambiente altamente flessibile per generare
bibliografie in ogni area di ricerca. Vengono anche
discussi agli ambienti grafici e le prospettive per il
futuro.

1 BIBTEX and other formats

Let us consider a working example. One of the most
important online catalogues is “Library Hub Dis-
cover”, a British online resource that has recently
replaced Copac and SUNCAT, offering access to
117 catalogues for more than 40 million of bibli-
ographic items (https://discover.libraryhub.

jisc.ac.uk). “Library Hub Discover” (henceforth
referred to as “LHB”) gives the user the opportu-
nity of exporting bibliographic items into several
widely used formats. Let us compare the BIBTEX
file generated by LHB with the Endnote–Zotero
file generated by the same online resource (actually
it is a RIS card1: see fig. 1. At first glance, the two
formats show the same amount of information (the
abstract field is missing from RIS, but this is a prob-
lem of the filter used by “Library Hub Discover”);
BIBTEX, however, always generates a “label” for
any item – this is not an option; this feature is very
important in order to link items, which makes pos-
sible to biblatex to generate highly sophisticated
bibliographic entries. The three formats referred
to (RIS, Endnote/Zotero, and BIBTEX) are widely

1. See https://en.wikipedia.org/wiki/RIS_(file_

format); https : / / en . wikipedia . org / wiki / EndNote;
https://en.wikipedia.org/wiki/Zotero.

used on the Internet, and it is fairly easy to con-
vert among them: BIBTEX is known e.g. to Google
Books and Google Scholar. From a practical point
of view, the three formats are equally successful.

2 The BIBTEX format

As an example of BIBTEX, we can use a very basic
card generated by LHB:

1 @book{Lamport:1994,

2 author = {Lamport, Leslie.},

3 title= {LATEX : a document preparation system},

4 edition = {2nd ed.},

5 address = {Reading, Mass. },

6 publisher = {Addison-Wesley},

7 year = {1994},

8 language = {English},

9 isbn = {ISBN: 0201529831},

10 isbn = {ISBN: 9780201529838},

11 note = {User’s guide and reference manual.},

12 location = {University of Sussex Library},

13 }

There are some minor mistakes (see section 9); now,
let us read the information provided. Line 1 is very
important, providing a unique label for each entry;
think of this line as the number plate of a car:
you can have an archive of thousands of entries,
but each one must have a unique label. Lines 2
to 10 feature the most important bibliographic
information, such as author, title, and so on; lines
9 and 10 are not a useless duplicate, because the
two ISBN code formats are listed, the former of
10 digits, and the latter of 13 digits. It is worth
mentioning that some of the fields listed in this card
are actually biblatex fields, unknown to the original
BIBTEX format: I refer to the “ISBN”, “language”
and “location” fields. Line number 11 is used by the
LHB filter as a sort of black hole, because in this
case the “note” field is used for what is really the
subtitle of Lamport’s book. The last line informs of
the library location of this book. All the fields must
be balanced: each piece of information must be
enclosed in curly braces and followed by a comma,
and the whole entry must be opened and closed
by a curly braces pair. Uppercase and lowercase
are immaterial: AUTHOR and author and Author

are valid and can be mixed freely. Consistency is
recommended for stylistic reasons, but it does not
change the behaviour of programmes using this
format.

There are other fields that can prove very
useful to scholars, such as abstract, keywords,
annotation. . . Any parser using BIBTEX files can
perform powerful researchers, combining the infor-

58

Figure 1: Endnote/Zotero and BIBTEX formats

mation provided by fields – such as a query look-
ing for of books concerning typesetting (keywords

field) published between 2010 and 2018 (year

field), and featuring the word «useless» in the
annotation field. This research will extract all
the books about typesetting, published between
2010 and 2018, regarded as useless by the owner
of the database. There is of course great freedom
in the use of “personal” fields.

3 Bibliographic data and output
formats

BIBTEX fields are in fact a particular format of tags.
It is indeed quite simple to export a BIBTEX file
into another format called BIBTEXML – a format
designed in 2007 but not very successful2:

<bibtex:entry xmlns:bibtex="http://bibtexml.sf.net/"

bibtex:id="Lamport:1994">

<bibtex:book>

<bibtex:author>Lamport, Leslie. </bibtex:author>

<bibtex:title>LATEX : a document preparation system

</bibtex:title>

<bibtex:edition>2nd ed.</bibtex:edition>

<bibtex:address>Reading, Mass. </bibtex:address>

<bibtex:publisher>Addison-Wesley </bibtex:publisher>

<bibtex:year>1994</bibtex:year>

<bibtex:language>English</bibtex:language>

<bibtex:isbn>ISBN: 0201529831</bibtex:isbn>

<bibtex:isbn>ISBN: 9780201529838</bibtex:isbn>

<bibtex:note>User’s guide and reference manual.

</bibtex:note>

<bibtex:location>University of Sussex Library

</bibtex:location>

</bibtex:book>

</bibtex:entry>

The information provided by this XML format is
exactly the same featured by the internal tagging
system of BIBTEX – just heavier and more diffi-
cult to read; BIBTEX is simply a tagging system,
just a very light and simple one. The purpose of

2. See https://sourceforge.net/projects/bibtexml/

files/BibTeXConverter/.

any tagging system, as XML which is familiar to
anyone using a computer nowadays, is to separate
data from representation: BIBTEX is no exception:
there are literally thousands of bibliographic for-
mats required by publishers and journals, and it
is vital to keep information on a book, article or
whatever separated from the output needed for a
particular publication. In this incredible variety of
output formats, a very basic arrangement can be
the following one:

1. the number reference system: each item re-
ferred to in a book or article is labelled with
a number. At the end of the text, a list will
show the complete bibliographic information.
For example, a citation from page 32 of Lam-
port’s book, provided it receives e.g. number
6 in the final list, will be «[6, 32]».

2. the author-year systems: from the BIBTEX file,
fields author and year will be extracted and
citations will take this form: «Lamport 1994,
32» or «Lamport, 1994, 32» or «Lamport
1994, 32». . . Again, at the end of the book or
article the reader finds the complete informa-
tion about the titles referred to. If there are
more than one title published by the same
author in the same year, the year field is com-
pleted with a letter, such as, e.g., «Lamport
1994a, 32».

3. the author-title systems: from the BIBTEX file,
fields author and title will be extracted and
citations will take this form: «Lamport, LATEX,
32», or a variety of this scheme. For this kind
of system, it is advisable to add a shorttitle

field, in order to obtain reasonably short ref-
erences;

4. the varieties of the “verbose” systems, very
popular in the humanities, particularly in Italy.
Generally, the first citations is complete, given

ArsTEXnica Nº 28, Ottobre 2019 Bibliographies, LATEX and friends

59

in a footnote, and the following ones take the
form of an author-title system. Normally with
this kind of reference system a final bibliog-
raphy is not required by journals, although it
remains necessary for books.

4 BIBTEX, bibtex, biber and biblatex

Since 1985, at the very beginning of LATEX, the
programme bibtex (with the same name of the
bibliographic format) was designed by Lamport
himself and Oren Patashnik in order to obtain
from the output format agnostic bibliographic files
provided by BIBTEX the kind of output format
required by the final user, i.e. by the journal or
publishing house3. This programme never reached
version 1.0 – the most recent version at CTAN
(July 2019) is version 0.99d. bibtex is a good piece
of software, but at the beginning of this century it
was clear that it had serious troubles with Unicode
and that it was not easily customisable. There were
several attempts to improve the situation4: a very
promising tool is (was) bibulous, a Python script
with a simple, intuitive approach to develop new
styles – but apparently the development ceased
years ago5. The standard replacement for bibtex
is now biber + biblatex6. The former is used to
sort data and to deal with labels, while all the
process of generating the desired output format is
performed by biblatex. Advantages of the new pair
of programmes in comparison with old bibtex are,
from the point of view of the final user:

• no problems with Unicode – sorting can be
adapted to the language of the document and
also single entries can be made aware e.g. of
the hyphenation required by the language of
that particular entry;

• it is possible to build new styles, which is par-
ticularly important in countries, such as Italy,
where each publisher wants to receive files for-
matted according to the particular styles of
this of that particular journal or series;

• more flexible use of the crossref field;

• full support for related entries, e.g. “reprinted
as. . . ” or “translation of. . . ”;

• the new XDATA field, a sort of container for
one or more fields, e.g. name of a publishing
house and place of publication, or name of
a series of books, publishing house, place of
publication. This can be convenient to avoid
useless repetition of information in a file.

3. See Lamport (1994, 69-72) and more recently Mit-
telbach et al. (2004, 683-812).

4. See Hufflen (2011).
5. See https://pypi.org/project/bibulous. The latest

version is dated 2015.
6. A recent updated manual is Voß (2011); on biblatex,

see Lehman’s manual (Lehman et al., 2018).

• suppression/inclusion of fields is straightfor-
ward, even for some entry types.

No heavy tailoring of old BIBTEX files is neces-
sary to use the new features. However, to take full
advantage from biber + biblatex some additional
fields are advisable, and some old field names must
be adapted. If we take the basic example down-
loaded from LHB (see sec. 1) we could adapt it as
follows:

@book{Lamport:1994,

author = {Lamport, Leslie.},

title= {{LATEX} A document preparation system},

EDITION = {2},

LOCATION = {Reading, Mass. },

publisher = {Addison-Wesley},

year = {1994},

LANGID = {AMERICAN},

language = {english},

isbn = {ISBN: 0201529831},

isbn = {ISBN: 9780201529838},

subtitle = {User’s guide and reference manual},

LIBRARY = {University of Sussex Library},

}

I have capitalised the fields that have to be adapted
to use with biber + biblatex. The edition field
must contain only a number, in order to format
the field according to the needs of languages and
styles, e.g.: «1994, 2nd ed.», or «II edizione, 1994»,
or «19942»; the new field langid is used by biblatex
in order to format entries according to hyphenation
and, if required, to all the rules of the language
of that particular entry: for example the strings
used to replace “translation” or “reprint” in lan-
guages other than American English. The old field
language can still be used for the language of the
work, but will not affect the rules for hyphenation
etc. Since British English and American English
have their local rules, it is advisable to use «ameri-
can» or «british» for the langid field, avoiding the
generic label «english». One possible ambiguity is
the field location: traditional BIBTEX used it for
library location, while biblatex uses the same field
name as an alias for address; the name of libraries
holding the book is archived as library. In this
example, the field titleaddon is used to describe
the real hierarchy of Lamport’s book title.

5 How to survive BIBTEX

As it happens with any tagging system, BIBTEX
files are error-prone. Even if good text editors,
such as (g)vim, do an excellent job checking syn-
tax, it is too easy to forget to close a bracket or to
add a comma at the end of a field. A good GUI
interface makes for BIBTEX makes the users’ life
much easier: see https://en.wikipedia.org/

wiki/Comparison_of_reference_management_

software for a comparison of the features of-
fered by reference management programmes. Many
among them have a Free Software licence, and the
great majority of these programmes either use

Guido Milanese ArsTEXnica Nº 28, Ottobre 2019

60

Figure 2: Jabref graphical user interface

BIBTEX files or can import/export from this for-
mat – a choice is basically a matter of preferences
and of personal taste. However, I think that some
points may be taken into serious account:

• some very popular programmes are propri-
etary software. Those who prefer to use Free
Software would probably avoid using for exam-
ple Mendeley (https://www.mendeley.com);

• some programmes offer the user an online
space to archive data. Those who prefer local
storage should consider this point; see again
Mendeley;

• does a programme use BIBTEX to archive data,
or just to import/export data? For example,
Zotero can archive data on local storage, but
using its own SQL format. Programmes using
BIBTEX directly have the great advantage of
archiving data in a plain text file, that is not
bound to a particular GUI programme and to
its format;

• those users who work on several platforms,
e.g. Windows at home and Linux at work, will
probably prefer programmes being actively de-
veloped for different platforms. For example,
pybibliographer (https : / / pybliographer .

org) runs only under Linux, and this is an
obvious problem for many users.

At the moment of writing, Jabref is probably the
most complete GUI environment for using BIBTEX
files (http://www.jabref.org/). It offers a good
support also for the new features provided by bibla-
tex and links very effectively BIBTEX entries to local
or remote files, such as PDF files or other forms of
archived information, and to texts written by users
as their own comments. See fig. 2: the green square
shows that a file containing notes by the user is
available; the traditional PDF icon opens a local
PDF; the third icon, with the form of a little globe,
opens a link on the web. Even if these features are
offered by other programmes, the advantages of
Jabref are

1. to use a simple BIBTEX file to archive infor-
mation

2. to be platform-independent.

In other words, while a Zotero archive needs Zotero
to work properly, the work done by Jabref can be
edited and modified using any other GUI interface,
such as e.g. pybibliographer, or any text editor,
even Notepad; the file produced is a completely
transparent, standard BIBTEX archive.

Citing an entry from a BIBTEX archive is made
easy by all these GUI interfaces, either clicking on
a particular item or hitting a combination of keys.
To cite page 32 of Lamport’s book, the LATEX file
will feature the required citation in the neutral
form \cite[32]{Lamport:1994}. In the final out-
put, the citation will be formatted, as previously
described, according to the desired style.

6 Using BIBTEX to build a
scholarly archive

Since BIBTEX entries are highly customizable, it
is possible to use this format to build a complete
environment to keep trace of one’s scholarly work
and make it available in the future. Let me use a
real example taken from one of my databases:

@ARTICLE{Dalfen:Das-Gebet,

author = {Dalfen, Joachim},

journal = {Hermes},

keywords = {fant, fhel, stoa},

pages = {174-183},

shorttitle = {{D}as {G}ebet des {K}leanthes},

title = {{D}as {G}ebet des {K}leanthes an

{Z}eus und das {S}chicksal},

volume = {99},

langid = {german},

year = {1971},

annotation = {2018-Cleante},

file = {Dalfen\:Das-Gebet.md:Neworbis/

Dalfen\:Das-Gebet.md:Markdown},

issn = {00180777},

pdf = {Dalfen:Das-Gebet.pdf},

timestamp = {24.03.2018},

url = {http://0-www.jstor.org.opac.

unicatt.it/stable/4475677}

}

I am using the annotation field to archive a key-
word showing for which publication I have used this
particular article or book; I keep a list of these key-
words in a separate file and in the future I will be
able to know which publications I had been using
for this particular research. The field timestamp

is useful to know when I read and archived this
work; the field keywords is obviously useful if and
only if the user is consistent in naming keywords:
if, for example, I would sometimes use “stoa” and

ArsTEXnica Nº 28, Ottobre 2019 Bibliographies, LATEX and friends

61

sometimes “stoicism”, an attempt to extract all
the entries concerning Stoicism would fail. This is
one of the instances where consistency is crucial
for a successful use of this format.

«Digital tools have yet to develop models for dis-
playing and replicating the self-reflexive operations
of bibliographical tools, which alone are operations
for thinking and communicating – which is to say,
for transforming storage into memory, and data
into knowledge. We have to design and build digital
environments for those purposes» (McGann, 2016,
363). I think that an imaginative use of BIBTEX
archives already offers a serious answer to these
questions.

7 The philosophy package

A tremendous amount of bibliographic styles has
been produced by journals and publishers: more
than 9000 “Citation Style Language” (CSL) bib-
liographic styles are now available (https : / /

citationstyles.org/). The CSL format is used
by bibliography managers such as Zotero and
Mendeley: unfortunately, BIBTEX users are offered
a good choice of styles, but not comparable to
this incredible wealth. The Italian scholar Ivan
Valbusa has developed a package aimed particu-
larly at the needs of humanists, who every day
struggle with the various and exasperating bibli-
ographic requirements of publishers and journals.
This package, called biblatex-philosophy (https:

//ctan.org/pkg/biblatex-philosophy), now
at version 1.9.8a, features three basic styles, with
a rich offer of options, whose combination and
selection is likely to face, if not all, at least the
large majority of the requirements of journals and
publishers7.

8 The zblbuild package

This utility offers a GUI aimed at helping the
generic user building his own bibliographic format.
A series of GUI widgets (question and checkboxes)
select among the various possible formats and gen-
erate a biblatex call featuring all the necessary
options. The programme is particularly tailored
to work along with Valbusa’s philosophy package8.
See an example at fig. 3.

9 Other utilities

BIBTEX is a complex system, and in more than
30 years of life, which is a geological era in this
field, it has generated many utilities to maintain
archives or to adapt them to new formats such
as biblatex. Although a couple of dozens of these
utilities are listed by CTAN, it is worth noticing

7. See Valbusa’s manual on CTAN: Valbusa (2018), and
– for a previous version – Valbusa (2010).

8. See https://ctan.org/pkg/zblbuild. For a previous
version see Milanese (2015).

Figure 3: Blbuild – a widget

that many among them are old, written even more
than 25 years ago, and cannot be useful within
a modern framework. The most complete I know
among these utilities is called BibTool, developed
and maintained by Gerd Neugebauer since 1995.
This rich programme features a wide variety of
utilities: sort an archive, extract items referred to
in an article or book, rename fields – for example,
the location field of legacy BIBTEX files that is
to be renamed to library if the archive is going
to be used by biblatex. A real “must”: the list of
possible manipulations listed in the CTAN page
are the following ones9:

• Pretty-printing data bases;

• Syntactic checks with error recovery;

• Semantic checks;

• Sorting and merging of data bases;

• Generation of uniform reference keys accord-
ing to predefined rules or according to user
specification;

• Selecting references used in one publication
which are found by analysing an “aux” file;

• Controlled rewriting of fields utilising regular
expressions to specify the rewriting rules;

• Macro (String) expansion to eliminate the
need of extra string definitions;

• Collecting statistics about one or more
databases.

9. See https://www.ctan.org/pkg/bibtool.

Guido Milanese ArsTEXnica Nº 28, Ottobre 2019

62

There are also many other little utilities that
may prove worth trying. For example, frequently,
BIBTEX entries produced by automatic systems
such as Google or Library Hub Discover contain
little mistakes (spurious spaces, wrong labels) that
should be manually corrected. The programme
copac-clean (labelled from the old name of Library
Hub Discover) improves the output produced by
those systems, cleaning minor errors and adapting
field names such as location and language to the
needs of a present-day biblatex installation10.

10 Using BIBTEX without LATEX

BIBTEX was designed to be used along with LATEX,
but it can be effectively employed also within other
environments and workflows because of its very
simple tagged structure. The best example I know
is offered by markdown, particularly in its pandoc
variety. This format is very easy to read, needs
no particular piece of software to edit files, and
via the pandoc filter can generate a variety of out-
put formats, including HTML, XML-TEI, ODT,
DOCX, and LATEX. Direct generation of a PDF
file is possible if a TEX system is installed11.

The interesting point is that pandoc can make
use of a standard BIBTEX archive but compile a
PDF file using a CSL style format (see section n. 7).
If preferred, the user can compile the bibliography
calling biber + biblatex or even legacy bibtex (which
is clearly not advisable). For example, consider this
minimal MD file:

title: A Test

author: John Tester

bibliography: ’test.bib’

This has been noticed by Kenneth Levy in a

seminal article [@Levy:ItalianNeophytes 34],

and in more recent literature.

Running pandoc as follows, the filter defaults to a
generic author–year style (backslash for readability
only):

pandoc --filter pandoc-citeproc\

bibliotest.md -s -o bibliotest.pdf

The final output is displayed at fig. 4. The MD
file is processed by pandoc, silently calling one of
the varieties of LATEX compilers. Since no option is
listed, pdflatex and the standard fonts are used, but
the bibliography is produced calling the pandoc-
citeproc filter, not biber + biblatex. Adding the
name of a particular CSL style its features are
used by the bibliographic filter, e.g.:

10. See https://ctan.org/pkg/copac-clean

11. Markdown – designed in 2004 by John Gruber and
Aaron Swartz – is riding on a wave of popularity, also
because pandoc makes the conversion to output formats
a matter of a few keystrokes: LHB lists 20 manuals on
Markdown, all published between 2013 and 2019. For pandoc

see the online documentation (https://pandoc.org/).

A Test

John Tester

This has been noticed by Kenneth Levy in a seminal article (Levy 1970, 34),
and in more recent literature.

Levy, Kenneth. 1970. “The Italian Neophytes Chants.” Journal of the Americal

Musicological Society 23: 181–227.

Figure 4: Pandoc + LATEX: default CSL

A Test

John Tester

This has been noticed by Kenneth Levy in a seminal article,1 and in more recent
literature.

Levy Kenneth, The Italian Neophytes Chants, in «Journal of the Americal
Musicological Society» 23 (1970), 181–227.

1K. Levy, The Italian Neophytes Chants, in «Journal of the Americal Musicological Society»
23 (1970), 181–227: 34.

1

Figure 5: Pandoc + LATEX: verbose CSL

pandoc --filter pandoc-citeproc\

bibliotest.md --csl=universita-pontificia\

-salesiana-it.csl -s -o bibliotest.pdf

This is an Italan “verbose” style, and the filter
instructs LATEX accordingly: see fig. 5. Pandoc can
also use biber + biblatex: which one is the better?
The pandoc-citeproc filter is attractive because it
can make use of the huge collection of CSL styles;
on the other hand, biber + biblatex offer a level
of fine-tuning that is truly unparalleled by other
systems.

11 The future of BIBTEX

Again, the variety of styles is a challenge: the CSL
repositories present the final user who is not a spe-
cialist in computing with +9000 styles; select the
name of the needed journal or publishing house,

ArsTEXnica Nº 28, Ottobre 2019 Bibliographies, LATEX and friends

63

and that’s all. The Zotero page features also a
clever system offering the user a way to find a
style strictly similar to the one required by his
publisher, if not already listed. BIBTEX users can
choose within a certain amount of choices (around
180–200), but this is ridiculous in comparison with
the wealth offered by the Citation Style Language
repositories. A good project would be a transla-
tion of all these styles in order for them to be
usable with biblatex – or, even better, to make Ci-
tation Style Language directly digestible by bibla-
tex. BIBTEX archives + CSL formatting, thanks to
pandoc, is a good example for the future.

The reason of this relative paucity of styles lies in
the historical roots of LATEX and of TEX itself, orig-
inally aimed to users in the field of mathematics
and informatics. The present writer, who happens
to be a humanist, believes that LATEX offers e.g. to
linguists, historian, and philosophers, an ideal envi-
ronment to maximise productivity without wasting
time and energy in trivial matters – formatting
texts and, in this case, formatting bibliography:
«Worrying too much about formatting and not
enough about content» is the mistake that people
should stop making, according to Leslie Lamport
himself (Lamport, 2000, 51). A more user-friendly
approach is a desideratum badly needed in order
to make LATEX + BIBTEX a real opportunity in
comparison with the ubiquitous “Word + Zotero”
approach. Markdown is very good for writing a
paper, but the final output depends either on biber
+ biblatex or on pandoc-citeproc; therefore the prob-
lem of bibliography is not completely solved, as
we saw above, because CSL filters do not offer the
amount of details and features offered by biblatex,
which on its turn has the problem of ready-to-use
styles. A serious interest on the part of one or
more universities (e.g. a financed research project)
is needed, because the development of this complex
family of software cannot rely only on the time and
energy generously offered by individuals, skilled
and competent as they may be.

References

Hufflen, Jean-Michael (2011). «A comparative
study of methods for bibliographies». TUGboat,
32 (3), pp. 289–301. https://www.tug.org/

TUGboat/tb32-3/tb102hufflen.pdf.

Lamport, Leslie (1994). LATEX. A Document
Preparation System. User’s Guide and Refer-
ence Manual. Addison–Wesley, Reading, Mas-
sachusetts.

— (2000). «How (La)TeX changed the face of
Mathematics». Mitteilungen der Deutschen
Mathematiker-Vereinigung, (1), pp. 49–51.

Lehman, Philipp, Philip Kime, Audrey Boru-
vka and Joseph Wright (2018). The biblatex
Package. Programmable Bibliographies and Ci-
tations. Version 3.12. http://mirrors.ctan.

org/macros/latex/contrib/biblatex/doc/

biblatex.pdf.

McGann, Jerome (2016). Marking Texts of Many
Dimensions, John Wiley & Sons, Ltd, Chich-
ester, West Sussex, UK, capitolo 25, pp. 358–376.
Blackwell companions to literature and culture
93.

Milanese, Guido (2015). «Zbl-build: a GUI inter-
face for Biblatex». ArsTEXnica, 20, pp. 31–34.

Mittelbach, Frank, Michel Goossens, Jo-
hannes Braams, David Carlisle, and
Chris Rowley (2004). The LATEX Companion.
Second edition. Addison–Wesley Publishing
Company, Reading, Massachusetts.

Valbusa, Ivan (2010). «Creare stili bibliografici
con biblatex: l’esperienza del pacchetto biblatex-
philosophy». ArsTEXnica, 9, pp. 39–50.

— (2018). The biblatex-philosophy bundle v1.9.8a.
http : / / www . ctan . org / pkg / biblatex -

philosophy.

Voß, Herbert (2011). Bibliografien
mit LATEX. Lehmanns Media, Berlin.
https : / / books . google . it / books ? id =

SgNACgAAQBAJ & pg = PA228 & dq = biblatex &

hl = it & sa = X & ved = 0CCQQ6AEwAGoVChMI -

dH5o8vJxwIVR1kUCh1uxwKa.

⊲ Guido Milanese
UCSC – Milano; USI – Lugano
guido dot milanese at unicatt

dot it

Guido Milanese ArsTEXnica Nº 28, Ottobre 2019

64

Graphics for LATEX users

Agostino De Marco

Abstract

This article presents the most important ways to
produce technical illustrations, diagrams and plots,
which are relevant to LATEX users. Graphics is a
huge subject per se, therefore this is by no means
an exhaustive tutorial. And it should not be so
since there are usually different ways to obtain
an equally satisfying visual result for any given
graphic design. The purpose is to stimulate read-
ers’ creativity and point them to the right direc-
tion. The article emphasizes the role of tikz for
programmed graphics and of inkscape as a LATEX-
aware visual tool. A final part on scientific plots
presents the package pgfplots.

Sommario

Questo articolo presenta gli strumenti più impor-
tanti per produrre illustrazioni tecniche, diagram-
mi e grafici, che sono rilevanti per gli utenti di
LATEX. La grafica è un argomento di per sé molto
vasto, quindi questo tutorial non ha la pretesa di
essere esauriente. Né dovrebbe esserlo poiché di
solito ci sono più modi per ottenere un risultato
visivo soddisfacente per un determinato proget-
to grafico. Il tentativo è di stimolare la creatività
del lettore e di indirizzarlo nella direzione giusta.
L’articolo sottolinea il ruolo di tikz per la grafica
realizzata con codice LATEX e di inkscape come stru-
mento visivo capace di interfacciarsi con un sistema
TEX. L’ultima parte riguarda i grafici scientifici e
presenta il pacchetto pgfplots.

1 Introduction

People writing in technical professions — whether
they are primarily technical communicators, engi-
neers, scientists, or others — spend a lot of time
describing technology, experiments, how things
work, what a project entails, and so forth.

On-the-job technical communications often use
graphics, such as the illustrations reported in Fig-
ure 1, rather than text to convey key points and
information. Graphics are photographs, drawings,
flowcharts, fancy tables, and other visual represen-
tations. As research shows, they play a critically
important role in technical and scientific writing.
Visual material convey certain kinds of information
more clearly, succinctly, and forcefully than words.

One of the golden rules of traditional typogra-
phy says that both the text and the accompanying
visual material has to be composed to create a read-

able, coherent, and visually satisfying whole that
works invisibly, without the awareness of the reader.
Typographers and graphic designers claim that an
even distribution of typeset material and graphics,
with a minimum of distractions and anomalies, is
aimed at producing clarity and transparency. This
is even more true for scientific or technical texts,
where also precision and consistency are of the
utmost importance.

Authors of technical texts are required to be
aware and adhere to all the typographical conven-
tions on symbols. The most important rule in all
circumstances is consistency. This means that a
given symbol is supposed to always be presented in
the same way, whether it appears in the text body,
a title, a figure, a table, or a formula. A number
of fairly distinct subjects exist in the matter of
typographical conventions where proven typeset-
ting rules have been established. Some examples
include: (a) the correct display of units of mea-
surement, (b) mathematical formulae, both inline
and in display, (c) chemical elements and formulae,
(d) numbers, (e) abbreviations. All the rules have
to be applied also in visual material.

When dealing with graphics, a typical anomaly
may arise when textual annotations do not match
with the general design of the main document.
This may happen because differences in font usage
are evident or because visual signs are inappro-
priately crafted. Fortunately, LATEX can be used
natively to produce all sorts of visuals, to typeset
the annotations of pictures and drawings, and to
produce professional quality graphs. More flexible
approaches are also available, with the possibility
to combine the typesetting strength of LATEX with
specialized graphical software (external to the TEX
system).

In the following sections we will focus on illus-
trations, how they are designed, how they can be
generated and handled, and how their textual anno-
tations are typeset with LATEX. In the second part
of the article we will see how scientific plots can
be produced according to the same set of quality
criteria.

2 Illustrations: general guidelines

The term illustration will refer to all kind of picto-
rial graphics — photographs, drawings, diagrams,
and schematics. As mentioned in previous section,
it is important in typography to maintain a con-
sistency between text and graphics. When this is
achieved the aesthetic result is of such a good qual-

65

ity that the fame of LATEX as a tool to produce
‘beautiful documents’ is readily confirmed.

When it comes to producing graphics in the
LATEX world the reader is referred to the book
The LATEX Graphics Companion by Goosens et al.
(2007), where many techniques can be found that
let us generate, manipulate, and integrate graphics
with texts. Due to several recent improvements in
the TEX typesetting system, that brought the users
to harness more efficiently both the features of pdf
and the resources of their operating system — such
as fonts installed outside TEX — , the Graphics
Companion does not address some techniques that
nowadays are considered standard. These rely on
the program pdflatex — or on the more recent xe-
latex and lualatex — and on the power of the pgf
package with his high-level interface tikz. One of
the aims of this article is to cover these aspects.

There are many benefits coming from a care-
ful use of visual material in technical documents.
These include the following:

• Readers look for and want graphics. They gain
more knowledge from communications with
graphics, and remember more from communi-
cations with graphics.

• Graphics enhance a communication’s visual
appeal, thereby increasing the readers’ con-
centration on its message.

• Graphics convey some kinds of information
much more efficiently than prose. An exam-
ple of what a reader perceives when flipping
through a technical publication is shown by
Figure 2. In the picture, the right-hand page
contains a detailed illustration with several
annotated indications. Well-crafted graphics
really can say more than many lines of text.

• Graphics enable writers to convey information
to readers who do not share a common lan-
guage with the writers — or with each other.
Graphics communicate information so effec-
tively that they sometimes convey the entire
message. An example is given by Figure 1a
where the concept of Reflex in modern cam-
eras is so evident.

Examples of visual material of all kinds are
shown in the book by Harris (1996), a comprehen-
sive illustrated reference on information graphics.

Generally speaking, when planning a communi-
cation, authors should look for places where graph-
ics provide the best way for them to show how
something looks (in drawings or photographs), ex-
plain a process (flowcharts), make detailed infor-
mation readily accessible (tables), or clarify the
relationship among groups of data (graphs). When
the document is typeset with LATEX, authors have a
number of options to produce and handle graphics.
Details of the most popular and up-to-date tech-
niques are going to be discussed in the following
sections.

2.1 Guidelines for illustration design

When planning to include an illustration in a docu-
ment one should keep in mind that, at some point,
readers’ attention will be going back and forth be-
tween the text and the figure, necessarily. Authors
should make the effort of having the readers feel at
ease during the process. Therefore, having chosen
the type of graphic, it must be designed appropri-
ately, with a special focus on usability. Graphics
should have the same good qualities of author’s
prose, easy for readers to understand and use. Here
are some general usability rules:

(i) It can be said that graphics have to be de-
signed to support any possible readers’ tasks. This
is a well-known reader-centered strategy: authors
should imagine their readers in the act of using
their graphic. Then they should design it to sup-
port readers’ efforts. In drawings or photographs
for step-by step instructions, for example, one
should show objects from the same angle that
readers will see them when performing the actions
described in the illustration and text. This princi-
ple is also valid for table design, where one should
arrange columns and rows in such an order that
will help readers rapidly find the particular pieces
of information they are looking for.

(ii) Another important point is about read-
ers’ knowledge and expectations; these should be
considered carefully by an author/illustrator. Of
course, readers will find graphics useful and persua-
sive only if they can understand them. Some types
of graphic are familiar to us all, but other types
can be interpreted only by people with specialized
knowledge. If one works in a field that employs
specialized graphics, then these graphics only can
be used when communicating with readers in that
particular field, who will understand and expect
them. However, when writing for a general au-
dience, authors should consider using alternative
types of graphic — or include explanations that
general readers need in order to interpret special-
use graphics. This kind of simplified visuals are
often called ‘information graphics’ or ‘infograph-
ics’; they include those images frequently used in
presentations at formal meetings or the stylized
charts and graphs used in newspapers and maga-
zines (see, for instance, Figure 1b). Many are used
for these purposes; however, for every chart, graph,
map, diagram, or table used in a presentation or
publication, there are thousands that are utilized
in other occasions, for what are called operational
purposes (Harris, 1996).

(iii) A well-known general rule-of-thumb when
designing visual material is that of seeking simplic-
ity. As seen in the preceding point, by simplifying
their graphics authors can also make their illus-
trations easy to understand and use. Simplicity
is especially important for graphics that will be
read on a computer screen or from a projected

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

66

(a) An example of technical illustration showing the
Reflex principle.

(b) A newspaper illustration. This example shows a
particular kind of artwork known as ‘infographics.’

Figure 1: Examples of on-the-job technical illustrations.

image; people have more difficulty reading from
these media than from paper. Here are some ef-
fective strategies for keeping your graphics simple:
(a) Include only a manageable amount of material.
Sometimes, it’s better to separate information into
two or more graphics than to cram it all into one.
(b) Eliminate unnecessary details. Like unneces-
sary words in prose, superfluous details in graphics
create extra, unproductive work for readers and
obscure the really important information. In many
cases the elimination of extraneous detail can sim-
plify and improve the effectiveness of a graph.

(iv) One of the most important points about
illustration design is the effectiveness of textual la-
bels. Important content should always be labelled
clearly. Labels help readers locate the information
in a graphic and understand what it shows. In dia-
grams, every part that is important to readers has
to be labelled. But authors should avoid labeling
other features because unnecessary labels clutter
a graphic, making it difficult to understand and
use. An appropriate wording should be chosen for
all labels, which should be placed where they are
easily seen. If necessary, a line can be drawn from
the label to the item it refers to. Authors have
to avoid placing a label on top of an important
part in their graphic. It has to be noted that labels
placed in a graphic are much easier than a key for
readers to use.

(v) A special mention goes to informative titles.
Titles help readers to find the graphics they are
looking for and also to know what the graphics
contain once they locate them. Typically, titles
may go in figure captions — for example, “Figure 3.
Effects of Temperature on the Strength of M312.”
Titles can be made brief and informative at the
same time. In some cases more words can be used
if they are needed in order to give readers precise

information about the graphic. For this purpose
LATEX provides the figure environment where one
can use the \caption macro. There are extension
packages, such as float and caption, that help users
customize the style of captions.

(vi) Readers might seek a specific figure whose
location is not obvious from the regular table
of contents. To help this process authors should
provide a separate list of the figures and the
pages where they can be found. Lists of fig-
ures are generated in LATEX by the native macro
\listoffigures.

2.2 Interplay between graphics and text

To enable graphics to achieve their potential for us-
ability and persuasiveness, they should be carefully
integrated with a communication’s prose. Here are
four common strategies authors can use to create
a single, unified message in which their graphics
and prose work harmoniously together.

(i) First of all, graphics have to be introduced in
the text. When people read, they read one sentence
and then the next, one paragraph and then the
next, and so on. In a manuscript, when one wants
to make sure that the next element the reader scans
is a table or a chart rather than a sentence or a
paragraph, one needs to direct people’s attention
from the prose to the graphic and tell them how the
graphic relates to the statements they just read.

(ii) Whatever kind of introduction is made
in the text, it should be placed at the exact
point where one wants the readers to focus
their attention on the graphic. For this purpose,
graphics should be placed near the point they are
referenced to in the text. When readers come to a
statement asking them to look at a graphic, they
lift their eyes from the prose and search for the
graphic. That search has to be made as short and
simple as possible. Ideally, the graphic should be

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

67

Figure 2: A technical book in the hands of a reader. The right-hand page contains a full-height annotated
illustration.

placed on the same page as the prose references to
it. If there is not enough room, the graphic should
be put on the facing page or the page that follows.
If the figure is placed farther away than that (for
instance, after two pages or in an appendix), the
text should mention the number of the page on
which the figure can be found. These strategies
are handled in LATEX by a careful positioning of
floating objects in the source file and by using
the cross-referencing mechanism (enanced with
packages like varioref, cleveref and hyperref).

(iii) Having introduced the visual material prop-
erly, one has to state the conclusions that one wants
readers to draw. One way to integrate graphics into
the text is to state explicitly those conclusions. Oth-
erwise, readers may draw conclusions that are quite
different from the ones that the author has in mind.

(iv) When appropriate, graphics may include
explanations, or longer annotations. Sometimes
illustrations designers can help readers under-
stand the message by incorporating explanatory
statements into the figures—for instance, “Counter-
clockwise moments are positive by convention.”

It has to be mentioned the existence of a well
written section entitled “Graphics guidelines” in
the pgf package documentation (Tantau, 2016),
a LATEX extension package that will be introduced
later on in this paper. This material, that we en-
courage to read, is not only about pgf, but about
general guidelines and principles concerning the
creation of graphics for scientific presentations,
papers, and books.

3 Drawing and annotating with
native LATEX extensions

In this section we introduce some facilities offered
by LATEX and its extension packages for producing
graphic material directly in the source document.

Some of the available drawing facilities are stan-
dalone, in the sense that they rely totally on the
program latex or pdflatex and do not require func-
tionalities of other programs. Some other drawing
tools, instead, rely on other programs distributed
with the standard TEX system (or publicly avail-
able).

There are several drawing tools that one can
pick up and use once a full TEX system is installed.
But we have basicly three main facilities, which
are readily listed:

(i) The package tikz, which is a high-level inter-
face to the low-level graphics package pgf. This is
considered the standard drawing facility. At the
time of writing this paper (and probably for years
to come) it is the most popular standalone tool
for producing line graphics in the LATEX world.1

tikz comes with several specialized extension pack-
ages (tikz libraries). It is a very powerful package,
flexible, easy to use, and stunning.

(ii) The package pstricks and its companion
packages. This was the tool of choice before tikz
came into the scene. pstricks is designed to em-
bed low-level picture drawing primitives available
in the PostScript language. These primitives are

1. To learn more about pgf, see the extensive documen-
tation on CTAN http://www.ctan.org/pkg/pgf and the
collection of examples on http://www.texample.net .

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

68

exposed to the user in terms of LATEX macros so
that they can work smoothly with the typesetting
engine. With an an up-to-date TEX distribution
pstricks can be used with pdflatex, provided that
the option -shell-escape has been enabled.2

(iii) The native LATEX environment picture. This
environment is part of LATEX kernel and, when
enhanced with the standard packages pict2e and
curve2e, allows for the creation of line graphics
from a number of fairly basic constructs.

The above list mentions the most important
ways to produce graphics with LATEX and they
will be treated in reverse order in next sections.
But they are not the only possible options. The
following is a list of other graphics packages and
tools included in standard TEX distributions:

• The package Xy-pic. A tool which is best
suited to graphs and diagrams, but has capabilities
for other formats.3

• The package ePiX. A tool to produce mathe-
matical figures. It creates pstricks, TikZ, or eepic
macros.4

• The program METAPOST. Similar to the pro-
gram METAFONT used to create early TEX fonts.
It outputs special PostScript files that can be im-
ported by both LATEX and pdfLATEX. it is the de-
fault drawing program used by Knuth himself. Its
source code may be included into a LATEX file and,
via the emp package, the METAPOST code is exe-
cuted and the resulting graph is imported into the
typeset document. METAPOST is now integrated
in LuaTEX via the mplib library. Using LuaTEX,
one can include METAPOST figures directly in the
TEX/LATEX file with the luamplib package, without
using any external software.5

• The program MetaFun. An extension to
METAPOST.6

• The program asymptote. A descriptive vec-
tor graphics software and language for technical
drawing. The language is inspired to METAPOST

but with an improved syntax taken from C++.7

LATEX users can use the package asymptote that
provides the environment asy to enclose Asymptote
language code into LATEX sources. See De Marco
(2009) for a presentation of this powerful tool.

This latter list of tools is reported for the sake of
completeness. They can be considered of secondary
importance for the scope of the present article and
the interested readers are referred to the suggested
links and references.

2. To learn more about pstricks, see the documentation on
CTAN http://www.ctan.org/pkg/pstricks and the dedi-
cated section on TUG website http://tug.org/PSTricks .

3. http://www.tug.org/applications/Xy-pic/Xy-

pic.html

4. http://mathcs.holycross.edu/~ahwang/current/

ePiX.html

5. http://www.tug.org/metapost.html

6. http://wiki.contextgarden.net/MetaFun

7. https://ctan.org/pkg/asymptote

Next three subsections present some selected
examples of technical illustrations made, respec-
tively, with the environments: picture (from pack-
age picture), pspicture (from package pstricks), and
tikzpicture (from package tikz).

4 The standard LATEX picture

environment

This section presents briefly the standard picture
environment. Examples of usage of this environ-
ment are reported in Figure 3, Figure 4 and Fig-
ure 5. A picture has two main dimensions, width
and height, that users can pass to the environment
as arguments. In addition to picture, macros such
as \put, \line, \vector and several other com-
mands have arguments that expect numbers that
are used as factor for \unitlength. The latter is a
TEX length that can be set by users with the macro
\setlength to scale their drawings as appropriate.

LATEX was born in 1984 with the native pic-
ture environment that allowed users to draw lines,
vectors, circles and ‘ovals’ with some limitations.
Special fonts were used to draw all graphic objects.
This was a severe limitation, because at LATEX’s
birth all fonts usable with LATEX could contain
only 128 glyphs. This was true with text fonts as
well as with LATEX special drawing fonts.

This implied that there were only two thicknesses
available for all graphic objects, and, worst of all,
the line and vector slopes and the circle diameters
were available in only a limited number. Line slope
parameters could only be integer relatively prime
numbers in the range [−6,+6], while for vectors
they could range only within [−4,+4]. This meant
that only a limited set of lines and vectors could
be drawn.

Filled circles (disks) were limited to diameters
from 1 pt to 15 pt, while unfilled circles were limited
to diameters from 1 pt to 40 pt; circles of diameter
larger than 15 pt were drawn as four quarter cir-
cles, and each of these were available also for the
rounded corners of ‘ovals.’

This environment allowed typesetting of text by
means of extensions of the \makebox macros, and
framed text by means of \framebox; fine tuning
of the position of the text allowed placement of
any text in the precise required position and, most
important of all, the fonts used were the same
ones used in the text of the document as a whole.
Typographically, this feature was and remains the
most valuable of this built-in environment.

Leslie Lamport, in his second edition of the
LATEX handbook (Lamport, 1994) fixed the syn-
tax of a new extended picture environment, where
most if not all limitations of the standard imple-
mentation could be overcome: unlimited slopes of
lines and vectors, any circle radius, arbitrary line
thickness also for curved lines, real third order
Bézier curves, et cetera (see for example Figure 3).

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

69

cm 1 2 3 4 5

✍✌
✎☞

✍✌
✎☞✉ ✉

car
❍

❍
❍❨

\setlength{\unitlength}{1mm}

% in preamble

\newcounter{cms}

% ...

\begin{picture}(50,39)

\put(0,7){\makebox(0,0)[bl]{cm}}

\multiput(10,7)(10,0){5}{%

\addtocounter{cms}{1}\makebox(0,0)[

b]{

\arabic{cms}}}

\put(15,20){\circle{6}}

\put(30,20){\circle{6}}

\put(15,20){\circle*{2}}

\put(30,20){\circle*{2}}

\put(10,24){\framebox(25,8){car}}

\put(10,32){\vector(-2,1){10}}

\multiput(1,0)(1,0){49}{\line(0,1)

{2.5}}

\multiput(5,0)(10,0){5}{\line(0,1)

{3.5}}

\thicklines

\put(0,0){\line(1,0){50}}

\multiput(0,0)(10,0){6}{\line(0,1)

{5}}

\end{picture}

Figure 3: Lamport used this drawing in his hand-
book to describe his picture environment.

These extensions are nowadays incorporated in the
package pict2e.

In addition to the standard pict2e package, users
may rely on the curve2e package developed by Clau-
dio Beccari.8 This extension to pict2e enhances the
syntax of the \line command and introduces two
new commands: \Line, which allows the user to
specify the relative x and y displacements from the
current point, and \LINE, which has two absolute
coordinates as its arguments. Similarly, \Vector

and \VECTOR are defined and extend the \vector

command. The package also defines a \polyline

command for drawing polylines between two (min-
imum) or more vertices that are specified as argu-
ments, as well as a \Curve command for drawing
third-order Bézier curves. This macro needs a se-

8. See the documentation on CTAN: https://ctan.org/

pkg/curve2e .

A

B

x

y

% in preamble

\usepackage{pict2e}

% ...

\begin{picture}(120 ,80)

\put(30,30){\circle*{3}}

\put(30,33){\makebox(0,0)[br]{A}}

\put(90,43){\circle*{3}}

\put(88,47){\makebox(0,0)[bl]{B}}

\linethickness{1.2pt}

\Line(30,30)(90,43)

\put(10,10){\vector(1,0){100}}

\put(110,14){\makebox(0,0)[b]{x}}

\put(10,10){\vector(0,1){60}}

\put(14,70){\makebox(0,0)[l]{y}}

% dashed box

\put(0,0){\dashbox{5}(120,80){}}

\end{picture}

Figure 4: An example showing some basic com-
mands offered by the standard picture environment
enhanced by the pict2e package.

ries of nodes on the curve together with the tangent
at each node. Finally, curve2e introduces an \Arc

command and some variants for drawing circular
arcs of any radius and any angular aperture.

Recently the pict2e package has incorporated
some features proposed by curve2e and some draw-
ings are made possible by simply including pict2e.
Figure 4 shows an example of a very simple illus-
tration and the related LATEX code. The example
in Figure 5 demonstrates the use of tension pa-
rameters that modify the shape of a Bezier curve
connecting two points.

For more details on the use of the picture envi-
ronment the reader might want to consult refer-
ence Beccari (2011) for a review of the available
commands and for examples of graphics with this
native drawing tool.

5 Using pstricks

The pstricks package is presented very briefly in this
section. Explaining all the features of the package
is beyond the scope of this article. For an extended
treatment of the subject we encourage to consult
the LATEX Graphics Companion (Goosens et al.,
2007), which contains an entire chapter on pstricks,
and the book by Herbert Voß on graphics and
PostScript for TEX and LATEX (Voß, 2011).

The extension package pstricks provides the envi-
ronment pspicture that will contain all commands

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

70

(0, 0) (70, 0)

τ = (1.0, 1.0)

τ = (1.0, 2.5)

τ = (1.0, 4.5)

τ = (4.5, 4.5)

% in preamble

\usepackage{pict2e}

\usepackage{curve2e}

% ...

\begin{picture}(80,70)

\put(0,0){\GraphGrid(70,70)}

\put(0,0){\circle*{1}}

\put(70,0){\circle*{1}}

\put(0,0){\makebox(0,-1)[ct]{$(0,0)$}}%

\put(70,0){\makebox(0,-1)[rt]{$(70,0)$}}%

\thicklines

% Default tension

\put(0,0){\color{blue}

\Curve(0,0)<1,1>(70,0)<1,-1>

\put(0,0){\Vector(10,10)}

\put(70,0){\Vector(10,-10)}

\put(35,10){\makebox(0,0)[ct]{$\tau

=(1.0,1.0)$}}%

}

\put(0,0){\color{magenta}

\Curve(0,0)<1,1>(70,0)<1,-1;1.0,2.5>

\put(30,23){\makebox(0,0)[ct]{$\tau

=(1.0,2.5)$}}%

}

\put(0,0){\color[rgb]{0.65,0.15,1.0}

\Curve(0,0)<1,1>(70,0)<1,-1;1.0,4.5>

\put(15,47){\makebox(0,0)[ct]{$\tau

=(1.0,4.5)$}}%

}

\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>

\put(35,69){\makebox(0,0)[ct]{$\tau

=(4.5,4.5)$}}%

\end{picture}

Figure 5: An example showing some basic com-
mands offered by the standard picture environment
enhanced by the curve2e package.

% arara: latex

% arara: dvips

% arara: ps2pdf

\documentclass[%

border={0.6cm 0.6cm 0.6cm 0.6cm}% lbrt

]{standalone}

\usepackage[pdf]{pstricks}

\begin{document}

\begin{pspicture}(4,5)

\psgrid

\end{pspicture}

\end{document}

0 1 2 3 4

0

1

2

3

4

5

Figure 6: The basic command \psgrid offered by
the pspicture environment.

necessary to produce a drawing. One important
tool for drawing pictures with pstricks is the grid.
It can be activated with the \psgrid macro. If no
further arguments are given in the command it pro-
duces a grid with width and height as determined
by the size of the enclosing pspicture. Figure 6
shows the basic commands offered by the pspicture
environment. Thanks to the class standalone the
output document is a PDF containing the cropped
diagram. The work flow that produces the final
PDF is handled by the editor texworks coupled
with arara.9

The way pstricks works is an example of a draw-
ing package where some of the functionalities are
provided by an external program, in this case dvips.
The set of macros that are collectively known as
pstricks exploit the PostScript language to a great
degree by writing to the output file — a .dvi file
in this case — the raw PostScript code necessary
to draw all of the required objects.

The most important basic geometric objects
are produced by the macros \psline, \psdots,
\pspolygon, \pscircle, \psellipse, \psarc,

9. http://texdoc.net/texmf-dist/doc/support/

arara/arara-usermanual.pdf

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

71

-1 0 1

0

1

2

3

4

5 b

b

b

b

Center,Middle

bottom,left
︸ ︷︷ ︸

Really!

Baseline,right
︸ ︷︷ ︸

Really!

R
ot
at
ed

by
45
◦

% arara: latex

% arara: dvips

% arara: ps2pdf

\documentclass[%

border={0.6cm 0.6cm 0.6cm 0.6cm}% l b r t

]{standalone}

\usepackage[pdf]{pstricks}

\usepackage{pst-all}

\usepackage{pstricks-add}

\begin{document}

\begin{pspicture}(-1,0)(1,5)

\psgrid[griddots=10,subgriddots=3,

gridlabelcolor=blue](-1,0)(1,5)

\psdots[linecolor=red,dotsize=10pt]

(0,5)(-1,3)(1,2)(0.5,1)

\rput(0,5){Center,Middle}

\rput[bl](-1,3){%

$\underbrace{\text{bottom,left}}_{\text{Really!}}$}

\rput[Br](1,2){%

$\underbrace{\text{Baseline,right}}_{\text{Really!}}$}

\rput[tr]{45}(0.5,1){

\parbox{5cm}{\flushright Rotated\\ by 45°}

}

\end{pspicture}

\end{document}

Figure 7: Placing whatever,wherever in pspicture environment.

\pscurve, \psbezier, whose names are self-
explanatory. Figure 7 shows a possible customiza-
tion of the grid made by passing a number of
arguments to \psgrid. The same diagram con-
tains a few examples of how a text box can
be placed on the canvas. Figure 8 demonstrates
the use of \psline and \pscurve with their
arguments to obtain simple lines with various
line endings.

A showcase of graphics produced with pstricks
and other companion packages is given by Fig-
ure 9.10 Figure 9a represents a power balance in
a form known as Sankey diagram and is made
by coupling to pstricks the package pst-node. Fig-
ure 9b shows a three-dimensional scene produced
with the package pst-solides3d. In Figure 9c the
power of the package pst-plot is demonstrated by
plotting the diagram of a mathematical function
using 4000 connected points. In Figure 9d pst-plot
is used to illustrate the construction of a hypocy-
cloid curve. Finally, Figures 9e and 9f demonstrate
the potential of package pst-3dplot.11

6 Using pgf/tikz

This is an introduction to drawing diagrams/pic-
tures using the tikz package, which is built on top

10. For an extensive gallery of examples visit this link
http://tug.org/PSTricks/main.cgi?file=examples .

11. http://texdoc.net/texmf-dist/doc/generic/pst-

3dplot/pst-3dplot-doc.pdf .

of pgf, a platform- and format-independent macro
package for creating graphics. The pgf package is
smoothly integrated with TEX and LATEX and, as
a result, tikz also lets users incorporate text and
mathematics in their diagrams. The tikz package
also supports the beamer class, which is used for
creating incremental computer presentations.

The main purpose here is to emphasize the po-
tential of tikz and inspire a creative use of this pow-
erful extension. The interested reader is referred to
the excellent package documentation itself (Tan-
tau, 2016) for more detailed information.

The pgf package, where ‘pgf’ means ‘portable
graphics format,’ is a package for creating inline
graphics, that is, it defines a number of TEX com-
mands that can draw graphics within the typeset-
ting process. Graphics objects are put into boxes
and treated as normal items to be taken care of
by the LATEX output routine.

As occurs with the environments picture and
pspicture, when one uses pgf the graphics are pro-
gramed, just as documents are programed when
TEX is used. The package users get all the advan-
tages of the TEX-approach to typesetting for their
graphics: quick creation of simple graphics, pre-
cise positioning, the use of macros, often superior
typography. But also all the disadvantages are in-
herited: steep learning curve, no wysiwyg, small
changes require a recompilation, and the code does
not really show how things will look like.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

72

\begin{pspicture}(5,5)

\psgrid[griddots=10,subgriddots=3,

gridlabelcolor=blue]

\psline{-*}(1,4)(2,4)

\psline{-,linewidth=3pt}(3,4)(4,4)

\psline{->,linecolor=magenta,

linewidth=2pt}(2.5,4)(2.5,2.5)

\pscurve{|-|}(1,2)(2.5,1)(4,2)

\end{pspicture}

0 1 2 3 4 5

0

1

2

3

4

5

Figure 8: Lines and line endings with pstricks.

The pgf system is designed as a combination
of three software layers sitting one on top of each
other. The lower layer, called by the author the
“system layer,” is in charge of low-level tasks re-
lated to the production of the final output. In
practice, the generic user will never be using the
TEX macros provided by the system layer. Next,
we have the “basic layer,” providing a set of basic
commands that allow to produce complex graphics
in a much easier manner than by using the system
layer directly. However, also this layer of drawing
macros is not conceived to be used directly by the
generic user. Finally, the pgf exposes a “frontend
layer,” i. e. a set of commands or a special syntax
that makes using the functionalities implemented
by basic layer easier. This frontend is what is called
“TikZ” — hence the double possibility to name the
package. The name tikz is an acronym of ‘tikz ist
kein Zeichenprogramm’ (German for ‘tikz is not a
drawing program’) and provides commands and en-
vironments for specifying and “drawing” graphical
objects in a document.

6.1 Command \tikz and environment
tikzpicture

Once \usepackage{tikz} is used in the preamble,
LATEX users have two options to produce a diagram
with the tikz frontend:

(a) The command \tikz as the following exam-
ple

\tikz \draw (0pt,0pt) -- (20pt,6pt);

that yields the line , or

\tikz\fill[orange] (1ex,1ex) circle(1ex);

that yields the orange circle . Observe that the
argument passed to \tikz is a string terminated
by a semicolon.

(b) The environment tikzpicture to embed more
elaborated graphic commands, as the following
example

\begin{tikzpicture}

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

\end{tikzpicture}

that gives the triangle

Both the command \tikz and the environment
tikzpicture can be used in running text for simple
drawings. For instance, the following draws a 0.4×
0.2 crossed rectangle: .

The following draws a 0.4×0.2

crossed rectangle:

\begin{tikzpicture}

\draw (0.0,0.0) rectangle (0.4,0.2);

\draw (0.0,0.0) -- (0.4,0.2);

\draw (0.0,0.2) -- (0.4,0.0);

\end{tikzpicture}\,.

Although there is the chance to use or implement
other types of frontend layers to the pgf system,
the tikz frontend is by far the most popular.

6.2 Grids

Grids, as in all programmed drawing environments,
are the most important support of the trial-and-
error process occurring when users develop their
pictures. In tikz the simple code

\begin{tikzpicture}

\draw[line width=0.1pt,gray!30,step=5mm]

(0,0) grid (3,2);

\draw[help lines]

(0,0) grid (3,2);

\draw[thick] (1,1) -- (2,2) -- (2,1)

-- cycle;

\end{tikzpicture}

draws a grid and a triangle:

This example demonstrates how to draw a basic
3×2 grid, relative to the origin. The grid consists of
two superimposed grids, the coarser of which (help
lines) is drawn on top of the other. The option
gray!30 in the style of the fine grid defines the
colour for the grid: one gets it by mixing 30% grey
and 70% white. Of course, a grid becomes part of
a picture in all cases where a scientific plot has to
be represented.

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

73

Pe

Rs I
2
s

GFe E
2
s

RR I 2
r

Ptr =
ω

n
Ce

attr

ωm

n
Ce Pu

(a) Power balance represented as a Sankey diagram.

x

y

z

(b) A 3D scene drawn with PSTricks

extended with the package pst-

solides3d.

0.2 0.4 0.6 0.8
0

−1

1

x

y

f(x) = sin
1

x

(c) Mathematical function plot obtained with the extension package
pst-plot connecting 4000 points.

(d) Construction of a hypocycloid
obtained with the extension package
pst-plot.

x y

z

�

(e) A function z = f(x, y) plotted with pst-plot3d. Reproduced
from Goosens et al. (2007).

x y

z

1

-1

-2

1

-1

1

2

-1

bxy

bxz

byz

(f) A 3D plot obtained with the ex-
tension package pst-plot3d.

Figure 9: Examples of advanced illustrations made with PSTricks.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

74

6.3 Paths

Inside a tikzpicture environment everything is
drawn by starting a path and by extending the
path. Paths are constructed using the \path com-
mand. In its basic form, a path is started with a
coordinate that becomes the current coordinate
of the path. Next the path is extended with other
coordinates, line segments, nodes or other shapes.
Line segments may be straight line segments or cu-
bic spline segments, which are also known as cubic
splines. Each line segment extension operation adds
a line segment starting at the current coordinate
and ending at another coordinate. Path extension
operations may update the current coordinate.

The optional argument of the \path command
is used to control if, and how the path should be
drawn. Adding the option draw forces the drawing
of the path. By default the path is not drawn. A
semicolon indicates the end of the path. This code

\begin{tikzpicture}

\path[draw] (0,0) -- (2,0);

\path (2.5,0) -- (3,0);

\end{tikzpicture}

renders as follows:

The first \path command in the above tikzpicture
draws a line segment from (0, 0) to (2, 0). The
second \path command draws an invisible line
segment. Both line segments are considered part
of the picture, so the picture has a width of 3 cm.
The following variant

\begin{tikzpicture}

\path[draw] (0,0) -- (2,0);

\path[draw, red, thick] (2.5,0) --

(3,0);

\end{tikzpicture}

renders both lines:

and modifies their thickness and color.
The command \draw is a shorthand for \path

[draw]. The tikz package has many shorthand
notations like this. The following example draws a
path that starts at position (0, 0).

\begin{tikzpicture}

\draw[help lines] (0,0) grid (3,4);

\draw (0,0) circle (2pt)

-- (1,1) rectangle (2,3)

-- (3,4)

-- (2,4) circle (2pt);

\end{tikzpicture}

First the path is extended by adding a circle. Next
the path is extended with a line segment leading
to (1, 1). Next it is extended with a rectangle, and

so on. Except for the circle extension operation,
each operation changes the current position of the
path. The result is:

It has to be observed that the examples given so
far violate every rule of the maintainability. For ex-
ample, what if the rectangle’s size were to change,
what if its position were to change, what if its
colour were to change? Fortunately, tikz provides
users a range of commands and techniques for main-
taining their diagrams. One of the cornerstones is
the ability to label nodes and coordinates and use
the labels to construct other nodes and shapes. In
addition the packages upports hierarchies. Parent
settings may be inherited by descendants in the
hierarchy.

6.4 Coordinate labels

Maintaining complex diagrams defined entirely in
terms of absolute coordinates is virtually impos-
sible. Fortunately, tikz provides many techniques
that help maintain a diagram. In one of these
techniques relies on the possibility to you define
coordinate labels associated to coordinates. The
resulting labels can be effectively used instead of
the coordinates to build up even the most a com-
plicated diagrams.

User defines a coordinate label by the chosen la-
bel name after the coordinate keyword. Defining
coordinates this way is possible at (almost) any
point in a path. Once the label of a coordinate
is defined, it can be used as a coordinate. The
following, which draws a crossed rectangle (),
demonstrates the mechanism.

The following, which draws a

crossed rectangle

(\begin{tikzpicture}

\draw (0.0,0.0) coordinate(lower left)

-- (0.4,0.2) coordinate(upper right);

\draw (0.0,0.2) -- (0.4,0.0);

\draw (lower left) rectangle (upper

right);

\end{tikzpicture}), demonstrates

the mechanism.

A label name may contain spaces.

6.5 Types of path extensions

Paths are constructed by extending them. There
are several different kinds of path extension opera-

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

75

tions. The majority of these extension operations
modify the current coordinate, but some don’t. In
the remainder of this section it is therefore assumed
that an extension operation modifies the current
coordinate unless this is indicated otherwise. For
the moment it is assumed that none of the coordi-
nates are relative or incremental coordinates.

6.5.1 The move-to operation

The move-to operation is the most intuitive and
adds a coordinate to the path, making it the cur-
rent coordinate. The following example uses three
move-to operations. The first move-to operation
defines the lower left corner of the grid. The re-
maining move-to operations define the starts of
two line segments. The code

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1) % then move-to

(2,1) -- (3,2);

yields:

6.5.2 The line-to operation

The line-to operation is represented by the -- di-
rective and adds a straight line segment to the path.
The line segment is from the current coordinate
and ends in the given coordinate. The example
code

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1) --

(2,0) -- (3,2);

yields:

6.5.3 The curve-to operation

The curve-to operation is represented by the ..

directive and adds a cubic Bézier spline segment
to the path. The start point of the curve is the
current point of the path. The end point is last
given coordinate, and the control points are all the
intermediate coordinates passed to the operation.
The following example code

% grid

\draw[help lines] (-2,-4) grid (2,4);

% define labels (nodes)

\path (-2, 0) coordinate(c1)

(-1, 3) coordinate(c2)

(0,-3) coordinate(c3)

(2,-1) coordinate(c4);

% segments connecting nodes

\draw[dashed] (c1) -- (c2) -- (c3) -- (c

4);

% control points

\draw (c1) circle (2pt)

(c2) circle (2pt)

(c3) circle (2pt)

(c4) circle (2pt)

(c1);

% the curve

\draw[thick] (c1) .. controls (c2)

and (c3) .. (c4);

% text labels

\path

(c1) node[anchor=west] {\texttt{c1}}

(c2) node[anchor=west] {\texttt{c2}}

(c3) node[anchor=east] {\texttt{c3}}

(c4) node[anchor=east] {\texttt{c4}};

yields:

c1

c2

c3

c4

The above drawing demonstrates the operation.
The curve starts at c1 and ends at c4. The control
points are given by c2 and c3. The tangent of the
spline segment at c1 is equal to the tangent of
the line segment c1 -- c2. Likewise, the tangent
at c4 is given by the tangent of the line segment
c3 -- c4.

As an alternative, in the this curve-to operation
the and can be replaced by .. directives.

6.5.4 The cycle operation

The cycle operation closes the current path by
adding a straight line segment from the current

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

76

point to the most recent destination point of a
move-to operation. The cycle operation has three
applications. First it closes the path, which is re-
quired if one wishs to fill the path with a colour.
Second, it connects the start and end line segments
in the path. Third, it avoids the need to reference
the start point of the path. The following example
code

\draw (0,0) -- (1,1)

(2,0) -- (3,0) --

(3,1) -- cycle;

yields:

6.5.5 Connecting points with horizontal/vertical
lines

This operation is equivalent to two line-to opera-
tions connecting the current coordinate and the
given coordinate. It may follow the -| directive,
that is, the first operation adds a horizontal and
the second a vertical line segment. The following
example code

\draw (0.0,0.0) -| (2.0,0.5)

(1.0,1.0) -| (3.0,0.0);

yields:

As an alternative, the operation may follow the
|- directive. This time, however, the first opera-
tion adds a vertical and the second a horizontal
line segment, as in the following example

\draw (0.0,0.0) |- (2.0,1.0)

(1.0,0.5) |- (3.0,0.0);

resulting in:

6.5.6 The rectangle operation

The rectangle operation adds a rectangle to the
path. The rectangle is constructed by making the
current coordinate and the given coordinate, re-
spectively, the lower left and upper right corners
of the rectangle. The following example

\draw (0,0) rectangle (1,1)

rectangle (3,2);

yields:

The given coordinate in the first rectangle oper-
ation here becomes the current coordinate in the
next one.

6.5.7 The circle operation

The circle operation adds a circle to the path.
The centre of the circle is given by the current
coordinate of the path and its radius is the dimen-
sion passed as argument. This operation does not
change the current coordinate of the path. The
following example

\draw (0,0) circle (2pt)

rectangle (3,1)

circle (4pt);

yields:

6.5.8 The ellipse operation

The ellipse operation adds an ellipse to the path.
The centre of the ellipse is given by the current
coordinate of the path and its semi-width and semi-
height are passed as arguments. This operation
does not change the current coordinate of the path.
The following example

\begin{tikzpicture}[scale=0.85]

\draw[help lines] (0,0) grid (6,4);

\draw (2,2) ellipse (1cm and 1cm)

(3,2) ellipse (3cm and 2cm);

\end{tikzpicture}

yields:

6.5.9 The arc operation

The arc operation adds an arc to the path. The arc
starts at the current point, P . The user supplies
two angles, α and β, and a radius r. The arc is
determined by a circle of radius r. The centre of the
circle, C, is determined by the equation P = C +
R× (cosα, sinα). The end point of the arc is given
by P = C + R × (cosβ, sin β). The arc is drawn
in counterclockwise direction from the start point
to the end point, which becomes the new current
coordinate of the path. The following example
illustrates the construction. Only the upper half
of the circle is drawn. The resulting arc is drawn
with a continuous line. The code

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

77

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (4,2);

\draw[dashed] (4,0) coordinate(p0)

arc (0:180:2cm);

\draw[fill=black] (2,0) coordinate(c)

circle(1pt)

node[anchor=south east] {C};

\path (p0) arc (0:30:2cm)

coordinate(p30);

\draw[fill=black] (p30) circle(1pt)

node[anchor=south west] {P_1};

\draw[thick] (p30) arc (30:120:2cm)

coordinate(p120)

circle (2pt)

node[anchor=north west] {P_2};

\draw[->,thick] (c) --

node[anchor=south east] {r} (p30);

\end{tikzpicture}

yields:

C

P1

P2

r

Further examples of arcs are drawn with the
following code

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (3,2);

\draw[dashed] (1,1) circle (1cm);

\draw (1,2) coordinate(a) circle (2pt)

(2,1) coordinate(b) circle (3pt)

(1,0) coordinate(c) circle (4pt);

\draw[->,thick] (a) arc (90:180:1cm);

\draw[->,thick] (b) arc (0:45:1cm);

\draw[->,thick] (c) arc (270:225:1cm);

\end{tikzpicture}

resulting in:

The arc operation can be performed along an
ellipse as well. It adds an ellipse segment to the
path. The construction of the ellipse segment is
similar to the construction of the arc segment. In
this case, instead of passing the radius, the user
must provide the half width and the half height of
the ellipse. The following code

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,-1) grid (3,1);

\draw[dashed] (1.5,0) circle (1.5cm and

1cm);

\draw[fill=black] (1.5,0) coordinate(c)

circle(1pt);

\draw (3,0) coordinate(a) circle (2pt);

\draw (0,0) coordinate(b) circle (2pt);

\draw[->,thick] (a) arc (0:90:1.5cm and

1cm);

\draw[->,thick] (b) arc (180:340:1.5cm

and 1cm);

\end{tikzpicture}

demonstrates the elliptical arcs:

6.6 Actions on paths

Most of the examples shown so far are conceived
to emphasize the default path style. This may not
always be what users want. For example, one may
want to draw a line in a certain colour, change the
default line width, fill a shape with a colour, and
so on. In tikz terminology this is achieved with
path actions, which are operations acting on an
existing path. The user first constructs the path
and then apply the action. At the basic level the
command \draw is defined in terms of an action on
a path: the action results in the path being drawn.
As pointed out before \draw is a shorthand for
\path[draw].

The following are some other shorthand com-
mands that are defined in terms of path actions
inside the tikzpicture environment.

\draw Shorthand for \path[draw].
Example:

\draw (0,0) -- (3,0);

\fill Shorthand for \path[fill].
Example:

\fill[gray!30] (0,0) rectangle (3,0.5);

\filldraw Shorthand for \path[filldraw].
Example:

\filldraw[fill=gray!30,draw=black,thick]

(0,0) rectangle (3,0.5);

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

78

\shade Shorthand for \path[shade].
Example:

\shade[left color=black,right color=gray]

(0,0) rectangle (3,0.5);

\shadedraw Shorthand for \path[shadedraw].
Example:

\shadedraw[left color=black,right color=

white,thick]

(0,0) rectangle (3,0.5);

6.7 Colour

The tikz package knows several colours. Some
colours are inherited from the xcolor package.12

There are several techniques to define a new name
for a colour. To learn more, the reader is referred
to the documentation of xcolor.

Some path actions also let users define a colour.
For example, one may draw a path with the given
colour. There are different ways to control the
colour. The option color determines the colour for
drawing and filling, and the colour of text in nodes.
(Nodes are explained later on in this section.) One
may set the colour of the whole tikzpicture or set
the colour of a given path action. Setting the colour
of the whole picture is done by passing a color

option to the environment. Setting the colour of a
path action is done by passing the option to the \

path command (or derived shorthand commands).
The following is an example that draws three lines:
one in red, one in green, and one in 60% cyan and
40% white.

\begin{tikzpicture}[thick,color=red]

\draw (0,2) -- (2,2);

\draw[color=green] (0,1.5) -- (2,1.5);

\draw[color=cyan!60]

(0,1) -- (2,1);

\end{tikzpicture}

It is usually possible to omit the color= part
when one specifies colour options.

6.8 Line width

In tikz there are several path actions affecting the
line style, including the style that determines the
line width, the line cap, and the line join. The
following code provide some examples.

12. http://texdoc.net/texmf-dist/doc/latex/

xcolor/xcolor.pdf

\draw[very thin] (0,3.5) -- (3,3.5)

node[anchor=west] {(0.2pt)};

\draw[thin] (0,3) -- (3,3)

node[anchor=west] {(thin, default)};

\draw[line width=0.4pt] (0,2.5) --

(3,2.5)

node[anchor=west] {(0.4pt, default)};

\draw[semithick] (0,2) -- (3,2)

node[anchor=west] {(0.6pt)};

\draw[thick] (0,1.5) -- (3,1.5)

node[anchor=west] {(0.8pt)};

\draw[very thick] (0,1.0) -- (3,1.0)

node[anchor=west] {(1.2pt)};

\draw[ultra thick] (0,0.5) -- (3,0.5)

node[anchor=west] {(1.6pt)};

\draw[line width=8pt] (0,0) -- (3,-4pt)

node[anchor=west] {(8.0pt)};

(0.2pt)
(thin, default)
(0.4pt, default)
(0.6pt)
(0.8pt)
(1.2pt)
(1.6pt)

(8.0pt)

6.9 Dash patterns

The drawing of lines inb tikz also depends on the
dash pattern and dash phase settings. The dash
pattern determines a basic pattern for the line
that is repeated cyclicly. The dash phase shifts the
dash pattern. By default the dash pattern is solid.
The following shows the relevant path actions that
affect dash patterns.

\draw[loosely dotted] (0,3.5) -- (3,3.5)

node[anchor=west] {(loosely dotted)};

\draw[dotted] (0,3) -- (3,3)

node[anchor=west] {(dotted)};

\draw[densely dotted] (0,2.5) -- (3,2.5)

node[anchor=west] {(densely dotted)};

\draw[solid] (0,2.0) -- (3,2.0)

node[anchor=west] {(solid)};

\draw[loosely dashed] (0,1.5) -- (3,1.5)

node[anchor=west] {(loosely dashed)};

\draw[dashed] (0,1.0) -- (3,1.0)

node[anchor=west] {(dashed)};

\draw[densely dashed] (0,0.5) -- (3,0.5)

node[anchor=west] {(densely dashed)};

\draw[densely dashed,

dash phase=3pt] (0,0.0) -- (3,0.0)

node[anchor=west] {(phase 3pt)};

\draw[dash pattern=on 7pt off 2.5pt

on 1pt off 2.5pt] (0,-0.5) -- (3,-0.5)

node[anchor=west] {(custom pattern)};

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

79

(loosely dotted)
(dotted)
(densely dotted)
(solid)
(loosely dashed)
(dashed)
(densely dashed)
(phase 3pt)
(custom pattern)

6.10 Predefined styles

Hard-coding a line width or a dash pattern com-
mand is not always a good idea. It is usually better
to define a style for a certain line width, for a dash
style, or a combination of the two. The advantages
of doing this are that you only have to define the
style once and can use it several times. Using styles
gives you a consistent appearance for the resulting
lines, and if you want to make a global change to
the style then you only have to make one change
in your LATEX file. Later on in this section it will
be explained how users can define their own styles.

Several previous examples given so far make use
of some predefined line width and dash pattern
styles. The default line width is thin. The default
dash pattern is solid.

6.11 Line caps and joins

The drawing of a path depends on several parame-
ters. The line cap determines how lines start and
end. The line join determines how line segments
are joined.

The following examples demonstrates different
line cap types.

\begin{tikzpicture}[line width=8pt]

\draw[help lines] (0,0) grid (3,4);

\draw[line width=2pt,dashed,gray!75]

(1,0) -- (1,4) (2,0) -- (2,4);

\draw[line cap=round] (1,3) -- (2,3);

\draw[line cap=rect] (1,2) -- (2,2);

\draw[line cap=butt] (1,1) -- (2,1);

\end{tikzpicture}

The following examples demonstrates different
line join types.

\begin{tikzpicture}[line width=8pt]

\draw[line join=round]

(0.0,.8)--(0.3,.0)--(0.6,.8);

\draw[line join=miter]

(0.9,.0)--(1.2,.8)--(1.5,.0);

\draw[line join=bevel]

(1.8,.8)--(2.1,.0)--(2.4,.8);

\end{tikzpicture}

To avoid sharp-angled miter joins that protrude
too far beyond the joining point, tikz provides the
control option miter limit. It poses a limit on
how far the miter join may protrude the joining
point. If the join protrudes beyond the limit then
the join style is changed to bevel. The limit is
equal to a fraction of the line width. An example
of use is the following.

\begin{tikzpicture}

[line width=8pt,line join=miter]

\draw (0,0) -- (0.25,2) -- (0.5,0);

\draw[miter limit=8]

(1,0) -- (1.25,2) -- (1.5,0);

\end{tikzpicture}

6.12 Arrows

Arrows are also drawn using path actions. The fol-
lowing example demonstrates some common ways
to how to draw them.

\begin{tikzpicture}[thick]

\draw[->] (0,1.0) -- (2,1.0);

\draw[<-] (0,0.5) -- (2,0.5);

\draw[<->] (0,0.0) -- (2,0.0);

\end{tikzpicture}

Several arrow head styles are available besides
the default one shown above. Some of the styles are
provided by the tikz extension library arrows.meta.
The following code demonstrates a small selection
of arrow types.

% in preamble

\usepackage{tikz}

\usetikzlibrary{arrows.meta}

\begin{tikzpicture}[thick]

\draw[>=to,->] (0,1.0) -- (2,1.0)

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

80

node[anchor=west] {(to)};

\draw[>=stealth,->] (0,0.5) -- (2,0.5)

node[anchor=west] {(stealth)};

\draw[>=latex,->] (0,0.0) -- (2,0.0)

node[anchor=west] {(latex)};

\draw[>=Triangle,->] (0,-0.5) --

(2,-0.5)

node[anchor=west] {(Triangle, arrows)

};

\draw[Stealth-Circle] (0,-1.0) --

(2,-1.0)

node[anchor=west] {(Stealth \& Circle

, arrows)};

\draw[{Diamond[open]}-{Kite[fill=green

]}] (0,-1.5) -- (2,-1.5)

node[anchor=west] {(Diamond \& Kite,

arrows)};

(to)
(stealth)
(latex)
(Triangle, arrows)
(Stealth & Circle, arrows)
(Diamond & Kite, arrows)

6.13 Nodes and node labels

Diagrams with lines only are rare. Usually, they
also contain text, math, or both. Fortunately, tikz
has a mechanism for adding text, math, and other
material to paths. This is done with the node path
extension operation.

The node path extension operation allows to
place a given content (delimited by curly brackets)
at the current position in the path using some
given options, and associates a label to the node.
Each node added to a path has an outer shape.
The outer shape is only drawn if draw is part of
the options. The default node shape is a rectangle
but other shapes are also defined.

The following example draws a circle at posi-
tion (1, 0) and at the same time places a diamond-
shaped node at the current point on the path. The
node contains the words ‘my content’ and shape
boundaries have a distance of 10 pt from the text.
The fill operation is applied both to the circle
and to the diamond, giving them, respectively, a
green and a light blue background.

% in preamble

\usepackage{tikz}

\usetikzlibrary{shapes.geometric}

\draw (0,1) % current position.

[fill=green] % options for circle

circle (4pt) % draw shape circle

node[anchor=south, % node options

diamond,

fill=blue!20,

inner sep=10pt,draw]

(c) % node label

{my content}; % content

my content

When adding a node to a path, it is not manda-
tory to have a label and a set of options. In fact,
the simple code

\draw (0,1) circle (8pt) node {Circle};

just draws a circle and puts the word ‘Circle’ on
top of it:

Circle

Observe that the default behaviour puts the word’s
center at the current coordinate.

When a node receives a label, 〈 label 〉, then
usually the additional labels 〈 label 〉.center,
〈 label 〉.north, 〈 label 〉.north east, . . . , and
〈 label 〉.north west are also defined. The posi-
tions of these labels correspond to their names, so
〈 label 〉.north is to the north of the node having
label 〈 label 〉. This holds for the most common
node shapes. Next example involves all these aux-
iliary labels, except for 〈 label 〉.center. The op-
tion anchor in the example is a way to override
the node’s default insertion point.

\begin{tikzpicture}

\draw (0,0)

node (hello)

[scale=2.0,

inner sep=0pt,outer sep=0pt,

draw=red]

{\fbox{\textbf{Hello \GuIT}}};

\draw (hello.north east) circle (2pt)

node[anchor=south west] {north east};

\draw (hello.north) circle (2pt)

node[anchor=south] {north};

\draw (hello.north west) circle (2pt)

node[anchor=south east] {north west};

\draw (hello.west) circle (2pt)

node[anchor=east] {west};

\draw (hello.south west) circle (2pt)

node[anchor=north east] {south west};

\draw (hello.south) circle (2pt)

node[anchor=north] {south};

\draw (hello.south east) circle (2pt)

node[anchor=north west] {south east};

\draw (hello.east) circle (2pt)

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

81

node[anchor=west] {east};

\end{tikzpicture}

Hello guIt
north eastnorthnorth west

west

south west south south east

east

Observe in the above example that the options
inner sep and outer sep are both set to 0 pt.
This means that the default rectangular shape con-
taining the words ‘Hello guIt’ is the actual bound-
ing box of the text and that the anchor points
are precisely located at the boundary of the box.
A nonzero inner sep (inner separation) makes
the shape larger than the actual bounding box. A
nonzero outer sep (outer separation) offsets the
anchor points outwards of the given dimension.

6.14 Predefined node shapes

Nodes have a shape/style and content. The default
node shape is rectangular but tikz also predefines
the shapes coordinate, rectangle, circle, and
ellipse. The option shape=〈 shape 〉 determines
the node shape.

The following example shows some of the differ-
ent node shape options and low-level control.

\begin{tikzpicture}[scale=1.5]

\draw (0,0) grid (3,2);

\draw (1.5,1.5)

node (a)

[draw,inner sep=0pt,outer sep=5pt]

{xx};

\draw (2.5,0.5)

node (b)

[draw,inner sep=5pt,outer sep=0pt]

{yy};

\draw (0.5,0.5)

node(c)

[draw,shape=circle] {zz};

\draw (a.north) circle (2pt);

\draw (b.north) circle (2pt);

\draw (c.north) circle (2pt);

\end{tikzpicture}

xx

yyzz

The difference in the inner separations of the rect-
angular nodes manifests itself in different sizes for
the rectangular shapes. Differences in the outer
separations result in different distances of labels
such as north. The higher the outer separation of
a node, the further its north label is away from its
rectangular shape.

6.15 Node placement

Several node options exist that permit a low-level
control of all graphical aspects. Here we show some
of these node options with an example.

\begin{tikzpicture}[scale=1.5]

\draw[help lines] (0,0) grid (3,4);

\draw (0,1) coordinate(a)

node[anchor=north west] {a}

-- (3,1) coordinate(b)

node[anchor=north east] {b}

node[pos=0.3,anchor=north] {0.3}

node[pos=0.5,anchor=north] {0.5}

(a) .. controls (1,4) and (2,4) .. (b

)

node[pos=0.2,sloped,anchor=south] {$

0.2$}

node[pos=0.8,sloped,anchor=north] {$

0.8$};

\end{tikzpicture}

a b0.3 0.5

0.
2 0.8

Notice that several nodes can be placed with pos

options for the same path segment.

6.16 Connecting nodes

The tikz package is well-behaved. It will not cross
lines unless user says so. This includes the crossing
of borderlines of node shapes. For example, let us
assume the user created two nodes. One of them
is a circle, which is labelled c, and the other is a
rectangle, which is labelled r. When user draws a
line using the command \draw (c) -- (r); then
the resulting line segment will not join the centres
of the two nodes. The actual line segment will
be shorter because the line segment starts at the
circle shape and ends at the rectangle shape. In
most cases this is the desired behaviour. If one
needs a line between the centres then .center

notation must be used. The following code provides
an example.

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid (3,3);

\path (1,1) node(a)[draw,shape=circle]

{a};

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

82

\path (1,2) node(b)[shape=rectangle] {$

b$};

\path (2,2) node(c)[shape=circle] {c

};

\path (2,1) node(d)[draw,shape=

rectangle] {d};

\draw (a) -- (b) -- (c.center) -- (d)

-- (a.center);

\end{tikzpicture}

a

b c

d

6.17 Coordinate systems

Specifying coordinates is the key to effective, ef-
ficient, and maintainable picture creation. Coor-
dinates may be specified in different ways each
coming with its own specific coordinate system.
Within a coordinate system you specify coordi-
nates using explicit or implicit notation.

Explicit — Explicit coordinate specifications
are verbose. To specify a coordinate, users write
(〈 system 〉 cs: 〈 coord 〉), where 〈 system 〉 is
the name of the coordinate system and where
〈 coord 〉 is a coordinate whose syntax depends
on 〈 system 〉. For example, to specify the point
having x-coordinate 〈 x 〉 and y-coordinate 〈 y 〉 in
the canvas coordinate system one writes (canvas

cs:x=〈 x 〉, y=〈 y 〉).
Implicit — Implicit coordinates specifications

are shorter than explicit coordinate specifications.
Users specify coordinates using some coordinate
system-specific notation inside parentheses. Most
examples so far have used the implicit notation for
the canvas coordinate system.

Canvas coordinate system — The most widely
used coordinate system is the canvas coordinate
system. It defines coordinates in terms of a horizon-
tal and a vertical offset relative to the origin. The
implicit notation (〈 x 〉, 〈 y 〉) is the point with
x-coordinate 〈 x 〉 and y-coordinate 〈 y 〉.

Xyz coordinate system — The xyz coordinate
system defines coordinates in terms of a linear
combination of an x-, a y-, and a z-vector. By
default, the x-vector points 1 cm to the right, the
y-vector points 1 cm up, and the z-vector points to
(−

√
2/2,−

√
2/2). However, these default settings

can be changed. The implicit notation (〈 x 〉, 〈 y 〉,
〈 z 〉) is used to define the point at 〈 x 〉 times the x-
vector plus 〈 y 〉 times the y-vector plus 〈 z 〉 times
the z-vector.

Polar coordinate system — The canvas polar
coordinate system defines coordinates in terms of
an angle and a radius. The implicit notation (α:r)

corresponds to the point (r cosα, r sinα). Angles
in this coordinate system, as all angles in tikz,
should be supplied in degrees.

Node coordinate system — The node coordi-
nate system defines coordinates in terms of a label
of a node or coordinate. The implicit notation
(〈 label 〉) is the position of the node or coordi-
nate that was given the label 〈 label 〉.

The following example demonstrates the previ-
ous four coordinate systems in action. The optional
argument of the tikzpicture sets the arrow head
style to the predefined style named latex.

\begin{tikzpicture}[>=latex]

\draw[help lines] (-1,-1) grid (2,3);

\draw[red] (canvas cs:x=1cm,y=2cm) --

(0,3);

\draw[blue,->] (0,0) -- (xyz cs:x=1,y

=0,z=0);

\draw[blue,->] (0,0) -- (0,1,0);

\draw[blue,->] (0,0) -- (0,0,1);

\draw (canvas polar cs:radius=2cm,angle

=30)

-- (90:2);

\path (0,0) coordinate (origin);

\draw (origin) circle (2pt);

\end{tikzpicture}

Users can freely mix the coordinate systems.
For example \draw (0,0) -- (0,1); and \draw

(0,0) -- (90:1); are equivalent.

6.18 Relative and incremental
coordinates

Specifying diagrams in terms of absolute coordi-
nates is cumbersome and prone to errors. What
is worse, diagrams defined in terms of absolute
coordinates are difficult to maintain. For example,
changing the position of an n-agon that is defined
in terms of absolute coordinates requires changing
n coordinates. Fortunately, tikz provides a coordi-
nate computation mechanism based on previously
defined coordinates. Used intelligently, this reduces
the maintenance costs of diagrams.

Relative and incremental coordinates are com-
puted from the current coordinate in a path. The
first doesn’t change the current coordinate whereas
the second does change it.

Relative coordinate — A relative coordinate con-
structs a new coordinate at an offset from the cur-

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

83

rent coordinate without changing the current coor-
dinate. The notation +〈 offset 〉 specifies the rela-
tive coordinate that is located at offset 〈 offset 〉
from the current coordinate.

Incremental coordinate — An incremental coor-
dinate also constructs a new coordinate at an offset
from the current coordinate. This time, however,
the new coordinate becomes the current coordi-
nate. One uses the implicit notation ++〈 offset 〉
for incremental coordinates.

The following example draws three squares. The
first square is drawn with absolute coordinates, the
second with relative coordinates, and the last with
incremental coordinates.

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid +(3,2);

\draw (0,0) -- (+1,0) --

(1,1) -- (+0,1) -- cycle;

\draw (1,1) -- +(+1,0) --

+(1,1) -- +(+0,1) -- cycle;

\draw (2,0) -- ++(+1,0) --

++(0,1) -- ++(-1,0) -- cycle;

\end{tikzpicture}

Clearly, the relative and incremental coordinates
should be preferred because they improve the main-
tenance of the picture. For example, moving the
first square requires changing four coordinates,
whereas moving the second or third square requires
changing only the start coordinate. The relative
coordinate in the grid also improves the maintain-
ability.

6.18.1 Complex coordinate calculations

Finally, tikz offers complex coordinate calculations.
However, these calculations are only available if the
tikz extension library calc is loaded in the preamble.

Generally, coordinate computations based on
previously defined points are enclosed in the special
syntax

($ 〈coordinate modifiers 〉 $)

where coordinate modifiers are a set of possible
constructs that usually manipulate two existing
points to produce a new one.

The following examples present several coordi-
nate computations involving distance modifiers.

The code

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick]

\draw[help lines] (0,0) grid +(3,2);

\path (0,0) coordinate (A)

[fill]circle (2pt) node[anchor=south

east] {A};

\path +(3,2) coordinate (B)

[fill]circle (2pt) node[anchor=south

west] {B};

\draw (A) -- (B);

\path ($(A)!0.5!(B)$) coordinate (M)

[fill=red]circle (2pt) node[anchor=

south] {M};

\end{tikzpicture}

A

B

M

calculates the halfway point (M) between two co-
ordinates, (A) and (B), using the special syntax
($(A)!0.5!(B)$).

The last example can be elaborated further by
extracting the x- and y-coordinate of (M) using
the special path operation \let, see the package
documentation (Tantau, 2016) for a detailed ex-
planation of this handy feature. Finally, a point
N0 is taken on segment AB at 3

4
|AB| from A and

a point N1 is calculated such that segment N0N1

is normal to AB and |N0N1| = 1.5 cm.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick,>=latex]

\draw[help lines] (0,0) grid +(3,2);

\path (0,0) coordinate (A)

[fill]circle (2pt) node[anchor=south

east] {A};

\path +(3,2) coordinate (B)

[fill]circle (2pt) node[anchor=south

west] {B};

\draw (A) -- (B);

\path ($(A)!0.5!(B)$) coordinate (M)

[fill=red]circle (2pt) node[anchor=

south] {M};

% extract M.x

\draw[dashed,red]

% point register <-- M coordinates

let \p{M}=(M) in

(M) -- (\x{M},0) % extract M.x

[fill=red]circle(1pt)

(M) -- (0,\y{M}) % extract M.y

[fill=red]circle(1pt);

% point N0

\path ($(A)!0.75!(B)$) coordinate (N0)

[fill=blue]circle (2pt) node[anchor=

north west] {N_0};

% point N1: N0--N1 normal to N0--B

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

84

\path ($(N0)!1.5cm!90:(B)$) coordinate

(N1);

\path (N1) [fill=blue]circle (2pt) node

[anchor=south west] {N_1};

\draw[->] (N0) -- (N1);

\end{tikzpicture}

A

B

M N0

N1

The following example demonstrates more com-
putations with partway and distance modifiers.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[thick,>=latex]

\draw[help lines] (-3,0) grid +(3,4);

% define origin O

\path (0,0) coordinate (O)

[fill] circle (1pt)

node[anchor=north west] {O};

% define point N

\path (0,4) coordinate (N)

[fill] circle (1pt)

node[anchor=south west] {N};

% point computation helpers

\draw[dashed,blue] (0,4) arc (90:140:4)

;

\draw[|->|,blue] (0,4.8) arc

(90:120:4.8)

node[pos=0.5,anchor=south east]

{\small 30\,deg};

% compute A, B, C, D

\draw (O)

% connect the origin

-- % with next point

% define A:

% on segment ON,

% at N,

% then rotate of 30deg about O

($(O)!1.0!30:(N)$)

coordinate (A)

[fill] circle (1pt)

node[anchor=south east] {A}

% define B:

% on segment OA,

% at 2cm from O

($(O)!2.0cm! (A)$)

coordinate (B)

[fill] circle (1pt)

node[anchor=north east] {B}

% define C:

% on segment OA,

% at 2.5cm from O

% then rotate of -15deg about O

($(O)!2.5cm!-15:(A)$)

coordinate (C)

[fill] circle (1pt)

node[anchor=south] {C}

% define D:

% on segment OA,

% at 2cm from O,

% then rotate of -30deg about O

($(O)!2cm!-30:(A)$)

coordinate (D)

[fill] circle (1pt)

node[anchor=west] {D};

% draw a bezier

\draw[-latex,red]

(B) .. controls (C) .. (D);

\end{tikzpicture}

O

N

30 deg

A

B

C

D

Finally, next example demonstrate coordinate
computations with projection modifiers.

% in preamble

\usetikzlibrary{calc}

\begin{tikzpicture}[scale=1.5,

thick,>=latex,line join=round]

\draw[help lines] (0,0) grid +(3,4);

\draw[red] (1,1) coordinate (A)

node[anchor=north west,orange] {A}

% segment AB

-- (1,2) coordinate (B)

node[anchor=south east,orange] {B

};

\draw[green] (B)

% segment BC

-- (2,3) coordinate (C)

node[anchor=south west,orange] {C

};

% segment CA

\draw[blue] (C) -- (A);

% connect points with their projections

% on opposite segments

% B on segment AC

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

85

\draw[->] (B) -- ($(A)!(B)!(C)$)

coordinate (Bp);

\draw[fill,gray] (Bp) circle (1pt);

% C on segment BA

\draw[->] (C) --

($(B)!(C)!(A)$) coordinate (Cp);

% construction helpers

\draw[dashed,orange] (B)

-- ($(B)!1.2!(Cp)$);

\draw[fill,gray] (Cp) circle (1pt);

% A on segment CB

\draw[->] (A) --

($(C)!(A)!(B)$) coordinate (Ap);

% construction helpers

\draw[dashed,orange] (B)

-- ($(B)!1.2!(Ap)$);

\draw[fill,gray] (Ap) circle (1pt);

\end{tikzpicture}

A

B

C

In the last drawing three vertices of a triangle
ABC are first defined, annotated, and connected.
Successively, some helper lines and dots are repre-
sented as aids to the reader. Finally, each vertex
V is projected onto the opposite segment S1S2

according to the sintax ($(S1)!(V)!(S2)$).

6.19 What else?

Making graphics with pgf is a huge subject. There-
fore, this section does not claim to serve as an
exhaustive tutorial on programmed illustrations
with tikz. There are several aspects that have been
left out of this presentation to save space and re-
main on the essential commands and options.

For a comprehensive explanation of tikz styles,
scopes, options, advanced path operation, cus-
tomization possibilities, and extension libraries the
interested readers are referred to the excellent user
guide (Tantau, 2016) and to the book LATEX and
Friends (van Dongen, 2012).

All tikz examples given in previous subsections
are viewable on Overleaf website.13 These are pro-
vided mainly to facilitate new users in their further
explorations.

13. https://www.overleaf.com/read/mgskyfdpttzt

6.20 Advanced examples

In this final subsection on tikz three advanced
examples are reported to demonstrate the possi-
bilities of the package. The examples are adapted
from the website http://texample.net , which
exhibits a gallery containing a large number of
high quality illustrations and graphics made with
tikz and pgf.

The LATEX code reported in Figure 10 produces
the example of Figure 11, a nice block diagram
obtained with tikz. The diagram is constructed
with the aid of the tikz library positioning, which
facilitates the relative positioning of the various
nodes on the canvas. The code also demonstrates
the definition of custom node styles.

Figure 12 shows the geometry of hydrogen and
oxygen atoms in the water molecule. The example
demonstrates the use of shading options to obtain
a three-dimensional effect.

Figure 13 demonstrates the way a submatrix
can be highlighted within a mathematical formula.
In this example some advanced features of pgf are
used in order to produce rectangle nodes that fit
the desired areas. The drawing requires a double
compilation.

7 LATEX-aware graphic software

The approach to graphic work production discussed
in this section relies on available visual tools and
is very different from the ‘programmed graphics’
approach presented in the previous section.

There are many ‘LATEX-aware’ computer programs,
with sophisticated graphical user interfaces (GUI),
not included in standard TEX distributions, which are
capable of producing professional-quality graphics.
The following is a list of the most popular ones:

• Xfig,14 is one of the first visual tools of this
type, an X Window drawing software available for
Unix and Linux that saves graphics in its own
format (.fig files), but exports to many other for-
mats, including Encapsulated PostScript (EPS).
An improved version named WinFig15 is available
for MS Windows. This software has been tradition-
ally used in conjunction with the LATEX package
psfrag that can remove labels and other text from
.eps graphics and replace them with LATEX labels.
Although this approach still works perfectly, it has
become somewhat obsolete with respect to other
recently introduced workflows.

• Ipe,16 is a powerful vector graphics editor,
with several snapping modes that make it espe-
cially suitable for a variety of technical illustrations.
The application saves graphics in its own .ipe file
format, but outputs PDF and EPS for inclusion in
LATEX documents. Ipe uses LATEX to typeset text,

14. http://xfig.org

15. http://winfig.com

16. http://ipe7.sourceforge.net

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

86

%in preamble

\usepackage{relsize,calc,paralist,tikz}

\usetikzlibrary{calc,arrows,decorations.pathmorphing,backgrounds,fit,positioning,shapes.symbols,chains}

\definecolor{mydarkgreen}{rgb}{0.03,0.47,0.03} \definecolor{mydarkblue}{rgb}{0.07,0.08,0.4}

\definecolor{mylightblue}{rgb}{.8, .8, 1} \definecolor{mylightgray}{rgb}{0.95,0.95,0.95}

\definecolor{mydarkgray}{rgb}{0.35,0.35,0.35} \definecolor{myblue}{rgb}{.4,.4,1}

\tikzstyle{line} = [draw,>=latex’, shorten >=0pt, shorten <=0pt,line width=2pt]

% in document ---

\begin{tikzpicture}

[node distance = 1cm, auto, font=\footnotesize,

% STYLES

every node/.style={node distance=3cm},

% The comment style is used to describe the characteristics of each force

comment/.style={

rectangle, inner sep= 2pt, text width=5cm, node distance=0.25cm,

font=\relsize{0}\sffamily

},

% The discipline style is used to draw the disciplines’ name

discipline/.style={

rectangle, draw, fill=black!10, inner sep=5pt, text width=4cm, text badly centered,

minimum height=1.2cm, font=\relsize{0}\bfseries

},

% The topic style

topic/.style={

rectangle, draw, top color=white, bottom color=mylightblue,very thick,

inner sep=5pt, text width=3.5cm, text badly centered,

minimum height=1.7cm, font=\relsize{0}\bfseries

},

% the mycircled node type

mycircled/.style={

circle, draw, fill=black!10, inner sep=2pt,font=\relsize{0}\bfseries

}

]% end of tikzpicture global options

% Draw forces

\node [discipline] (FD) {\relsize{1}Flight Dynamics};

\node [mycircled, left of=FD] (plus) {$\boldsymbol{+}$};

\node [discipline, left of=plus] (MechElasStru) {Mechanics of Elastic Structures};

\node [discipline, above of=MechElasStru,yshift=-1cm] (MechRigiBodi) {Mechanics of Rigid Bodies};

\node [discipline, above of=MechRigiBodi,yshift=-1cm] (Aero) {Aerodynamics};

\node [discipline, below of=MechElasStru,yshift=+1cm] (HumaPiloDyna) {Human Pilot Dynamics};

\node [discipline, below of=HumaPiloDyna,yshift=+1cm] (ApplMathMachComp) {Applied Mathematics Machine Computation};

\node [discipline, right of=FD,xshift=3cm] (VehiOper) {Vehicle Operation};

\node [discipline, above of=VehiOper,yshift=-1cm] (VehiDesi) {Vehicle Design};

\node [discipline, below of=VehiOper,yshift=+1cm] (PiloTrai) {Pilot Training};

\node [topic, below of=FD,xshift=-5.98cm, yshift=-3.8cm] (P) {Performance (trajectory, maneuverability)};

\node [topic, right of=P,xshift=1cm] (SC) {Stability \& Control (handling qualities, airloads)};

\node [topic, right of=SC,xshift=1cm] (AE) {Aeroelasticity (control, structural integrity)};

\node [topic, right of=AE,xshift=1cm] (NG) {Navigation and Guidance};

% Comments

\node [comment, above=0.25 of FD] (comment-FD) {

\begin{compactitem}% needs paralist

\item Flight Simulator mathematical model \item Aircraft representation

\end{compactitem}

};

% Draw the links between nodes

\path[line,->] (plus) edge (FD);

\path[line,->] (MechElasStru) edge (plus);

\path[line,->] (MechRigiBodi.east) -- ++(0.3cm,0) -- (plus.120);

\path[line,->] (Aero) -| (plus);

\path[line,->] (HumaPiloDyna.east) -- ++(0.3cm,0) -- (plus.240);

\path[line,->] (ApplMathMachComp) -| (plus);

\path[line,->] (FD) -- (VehiOper);

\path[line,->] (FD.east) ++(1cm,0) |- (VehiDesi);

\path[line,->] (FD.east) ++(1cm,0) |- (PiloTrai);

\path[line,<-] (P.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (SC.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (AE.north) -- ++(0,0.6cm) -| (FD);

\path[line,<-] (NG.north) -- ++(0,0.6cm) -| (FD);

\end{tikzpicture}

Figure 10: Source code of diagram reported in Figure 11.

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

87

Flight Dynamics+
Mechanics of Elastic

Structures

Mechanics of Rigid
Bodies

Aerodynamics

Human Pilot
Dynamics

Applied Mathematics
Machine Computation

Vehicle Operation

Vehicle Design

Pilot Training

Performance
(trajectory,

maneuverability)

Stability & Control
(handling qualities,

airloads)

Aeroelasticity
(control, structural

integrity)

Navigation and
Guidance

• Flight Simulator

mathematical model

• Aircraft representation

Figure 11: Block diagram of disciplines involved in Flight Dynamics. All graphic elements are placed on
the canvas with intuitive tikz commands. See code in Figure 10.

both simple labels and larger paragraphs. Supports
layers and views, which make it possible to ‘build’
illustrations incrementally in a presentation.

• Asymptote,17 is a vector graphics language
and compiler. This software has been mentioned
earlier in this article because code snippets in
Asymptote language can be embed in LATEX
sources. Asymptote compiler can be used as a
standalone tool as well (comes also with its own
GUI) for generating both 2D and 3D figures. 3D
figures can be included in a pdf file in the PRC
(Product Representation Compact) format which
allows them to be manipulated when viewed in
Adobe Reader.

• LaTeXPiX,18 is a Windows GUI capable of
exporting pgf/LATEX code.

• TPX,19 is a Windows GUI similar to LaTeX-
PiX, but more flexible.

• Sweave,20 is a tool that allows users to include
R code directly into their LATEX files. It does much
more than just generate graphics, but it makes
inclusion of R generated graphics into LATEX docu-
ment very easy.

• KtikZ/QtikZ,21 is a pgf/tikz real-time open
source compiler that runs on Linux and Windows.

17. http://asymptote.sourceforge.net

18. http://latexpix.comyr.com/latexpix.htm

19. http://tpx.sourceforge.net

20. http://www.stat.uni-muenchen.de/~leisch/

Sweave

21. http://www.hackenberger.at/blog/ktikz-editor-

for-the-tikz-language

It can speed up the drawing effort while at the
same time allowing to code directly in tikz language.
It has a template option which allows to define
user commands in an easy way as well as a menu
with many common (and not so common) tikz
constructs.

• LatexDraw,22 is a very useful open source mul-
tiplatform GUI capable of generating pstricks code.

• Dia,23 is a multiplatform open source GUI
that supports both pgf/tikz and pstricks output.

• Sketch,24 is a language and compiler that al-
lows users to create vector drawings of 3D scenes.
It generates pgf/tikz or pstricks code. A detailed
presentation of this software can be found in
De Marco (2007).

• Inkscape,25 is an open source and well-
supported vector graphics/SVG editor available for
all major operating systems. Due to its popularity,
and being by far the most powerful and impor-
tant application among those mentioned here, we
will discuss the LATEX-related capabilities of this
graphics software in the rest of this section.

7.1 Using Inkscape

Inkscape is an open source vector graphics editor
using the W3C standard Scalable Vector Graph-
ics (SVG) file format, with capabilities similar to

22. http://latexdraw.sourceforge.net

23. http://live.gnome.org/Dia

24. http://www.frontiernet.net/~eugene.ressler

25. http://www.inkscape.org

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

88

p

105◦

H+ H−

O2−

(a) The diagram by Jimi Oke shows the geometry of
hydrogen and oxygen atoms in the water molecule, and
the position of the dipole (p).

\begin{tikzpicture}[>=latex,scale=1.3]

\shade[ball color=gray!10!] (0,0)

coordinate(Hp) circle (0.9);

\shade[ball color=gray!10!] (2,-1.53)

coordinate(O) circle (1.62);

\shade[ball color=gray!10!] (4,0)

coordinate(Hm) circle (0.9);

\draw[thick,dashed] (0,0) -- (2,-1.53)

-- (4,0) ;

\draw[thick] (2,.2) -- (2,1.5) node[

right]{\mathbf{p}};

\draw (2.48,-1.2) arc (33:142:.6);

\draw (2,-.95) node[above]{$105^{\circ}

$};

\draw (0,.2) node[left]{H$^+$};

\draw (4,.2) node[right]{H$^-$};

\draw (2,-1.63) node[below]{O$^{2-}$};

\foreach \point in {O,Hp,Hm}

\fill [black] (\point) circle (2pt);

\end{tikzpicture}

(b) The tikz code of the above drawing.

Figure 12: Example of graphics made with tikz.

commercial applications such as Adobe Illustrator,
CorelDRAW, or Xara X.

Inkscape supports many advanced SVG features,
moreover, developers took great care in designing
a streamlined interface, that allows user to edit
nodes, perform complex path operations, trace
bitmaps, and much more in a very easy way. A
well written documentation and many tutorials are
available online. For a guide on this application
the reader is referred to Bah (2011).

Inkscape provides a large API (Application Pro-
gramming Interface) and a Python scripting ca-
pability. These features have encouraged the de-
velopment of several third-party extension plugins.
One of these plugins is TexText,26 a particularly
important extension for TEX users because it gives

26. https://textext.github.io/textext

them the possibility to add and re-edit (multi-
line) LATEX/X ELATEX/LuaLATEX generated SVG
elements to a drawing. It offers a multi-line editor,
optionally with syntax highlighting.

SVG elements created with TexText are enriched
with special additional information containing the
LATEX code used to generate all text and symbols
prior to be traced into SVG vector graphics. The
additional information allow users to re-edit the
original LATEX commands.

TexText is written in Python and uses ei-
ther pdf2svg (or a combination of pstoedit and
ghostscript) as converter for producing SVG code
from the generated PDF (or PostScript). Detailed
installation instructions for all major platforms are
found on the project website.

Once TexText and its dependencies are correctly
installed, a menu entry Extensions → Tex Text will
appear in Inkscape. See Figure 15a. When this
menu item is selected, a TexText dialog window
appears to assist the user to input the desired
LATEX content.

The TexText input dialog window is shown in
Figure 15b. LATEX code is entered into the edit box
5 . In the case PyGTK is installed, it will show
line and column numbers. If PyGTKSourceView
has been additionally installed, the edit box will
also highlight the syntax with colors. The user can
add any valid and also multi-line LATEX code. The
plugin provides additional settings which can be
adjusted to the user’s needs:

• The group box 1 controls the TEX command
to be used for compiling the code. Possible options
are: pdflatex, xelatex, lualatex.

• The group box 2 points to a custom pream-
ble file that the user might need in order to have
his LATEX input compiled successfully.

• The group box 3 regulates a scale factor to
be applied to the final SVG element.

• The button 4 becomes active only when the
user re-edits the code of the enriched SVG element,
and controls the alignment relative to the previous
state of the same graphic object.

• Menu items 7 control the default math envi-
ronment in new nodes and the appearance of the
editor.

The LATEX code and the accompanying settings
will be stored within the new SVG node in the
Inkscape document. This allows the user to re-edit
the ‘LATEX node’ later by selecting it and running
the TexText extension (which will then show the
dialog containing the saved values).

The TexText dialog window provides also a pre-
view button 6 as well, which shortens the feedback
cycle from entry to result considerably. Once the
user is happy with the previewed LATEX object the
Save button can be clicked to get the resulting SVG
object of Figure 16. The final traced result of the
intermediate temporary PDF produced with the

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

89

M =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

MT =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Transpose

N
NT

(a) An example by Stefan Kottwitz. A submatrix within a matrix is highlighted with tikz. The same
is done in the transposed matrix. tikz and some advanced features of pgf are used in order to produce
rectangle nodes that fit the desired areas. The drawing requires a double compilation.

% in preamble

\usepackage{tikz}

\usetikzlibrary{fit}

% ...

\tikzset{highlight/.style={rectangle

,rounded

corners,fill=red!15,draw,fill

opacity=0.3,thick,inner

sep=0pt}}

\newcommand{\tikzmark}[2]{\tikz[

overlay,remember

picture,baseline=(#1.base)] \

node (#1) {#2};}

\newcommand{\Highlight}[1][

submatrix]{\tikz[overlay,

remember

picture]{

\node[highlight,fit=(left.north

west) (right.south east)] (#1)

{};}}

\begin{document}

\[

M = \left(\begin{array}{*5{c}}

\tikzmark{left}{1} & 2 & 3 & 4 &

5\\ 6 & 7 & 8 & 9 & 10 \\

11 & 12 & \tikzmark{right}{13} &

14 & 15 \\

16 & 17 & 18 & 19 & 20 \end{

array}\right)

\Highlight[first]

\qquad

M^T = \left(\begin{array}{*5{c}}

\tikzmark{left}{1} & 6 & 11 & 16

\\ 2 & 7 & 12 & 17 \\

3 & 8 & \tikzmark{right}{13} &

18 \\ 4 & 9 & 14 & 19 \\

5 & 10 & 15 & 20 \end{array}\

right)

\]

\Highlight[second]

\tikz[overlay,remember picture] {

\draw[->,thick,red,dashed] (first)

to[out=30,in=140]

node[above] {Transpose} (second

);

\node[above of=first] {N};

\node[above of=second] {N^T};

}

\end{document}

(b) The tikz code of the above drawing.

Figure 13: Example of nice graphics made with tikz.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

90

Figure 14: A screenshot of Inkscape with TexText extension in use.

(a) Selecting TexText from Inkscape Extensions menu. (b) The TexText dialog window.

Figure 15: Using TexText extension plugin in Inkscape.

input LATEX code is visible in Figure 17 where the
highlighted nodes of the SVG element are shown.

TexText is a very powerful tool when coupled
with the potential of Inkscape itself. Yet the user
have to be aware of including the required pack-
ages in the preamble file if special commands are
used in LATEX code that rely on such packages. The
preamble file can be chosen by the selector men-
tioned above. The default preamble file shipped
with TexText is the following:

% default_packages.tex

\usepackage{amsmath,amsthm,amssymb,

amsfonts}

\usepackage{color}

Basically, user’s LATEX code will be inserted into
this template:

\documentclass{article}

% ===> preamble file content <===

% default:

% \input{default_packages}

\pagestyle{empty}

\begin{document}

% ==> User’s code <===

\end{document}

This will be typeset in a separate system thread,
the PDF result will be converted to SVG and

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

91

Figure 16: SVG element resulting from input of
Figure 15b.

Figure 17: Nodes highlighted in the SVG element
of Figure 16.

the vector object will be inserted into the current
Inkscape document.

In conclusion of this section, a fairly elaborated
illustration is displayed in Figure 18. The vector
image has been produced using Inkscape with the
TexText extension. The preamble file has been cus-
tomized to load the package mt2pro and use the
commercial font MathTime Professional 2.

8 Presenting data with plots

This section studies the presentation of data with
“data plots” using LATEX. Usually one shall use
the word ‘graph’ instead of data plot. The main
focus of this final part of the article is the package
pgfplots, which creates astonishingly beautiful data
plots in a consistent style with great ease.

The package pgfplots is built on top of pgf and
is designed to draw graphs in a variety of formats,
with a consistent, professional look and feel. The
package also allows to import data stored in files
in tabular format via the package pgfplotstable.27

27. https://ctan.org/pkg/pgfplotstable

As is usual with the pgf family, their manuals are
impressive (Feuersänger, 2018).

8.1 The axis environment

The workhorse of the pgfplots package is an environ-
ment called axis, which may define one or several
plots (graphs). Each plot is drawn with the com-
mand \addplot. When the graphs are drawn the
environment also draws a 2- or 3-dimensional axis.
The axis environment is used inside a tikzpicture
environment, so one can also use tikz commands.
The options of the axis environment specify the
type of the plot, the width, the height, and so on.

Typically, one or more plots are created in LATEX
following the template:

% in preamble

\usepackage{pgfplots}% loads tikz

...

\begin{tikzpicture}

\begin{axis}[〈graphic options 〉]
...

〈pgfplots or tikz commands 〉
...

\end{axis}

\end{tikzpicture}

The simplest possible graph with pgfplots is
given by the code

\begin{tikzpicture}

\begin{axis}

\end{axis}

\end{tikzpicture}

that is, an empty axis environment, with default
formatting options. The result is:

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

This can be customized, for example, changing
the ranges of x- and y-axis, introducing a grid,
and defining axis labels. This is done by passing
the following self-explanatory options to the axis
environment

\begin{axis}[

xmin = -1, xmax = 1,

ymin = 0, ymax = 2,

grid = major,

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

92

Figure 18: A fairly elaborated illustration representing an aircraft in a spin manoeuvre. The image has
been made using Inkscape with the TexText extension. The preamble file has been customized to load
the package mt2pro and use the commercial font MathTime Professional 2.

xlabel = x, ylabel = y

]

\end{axis}

The customized axes now appear as follows:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

y

The package pgfplot, as also pgf and tikz do,
provides a way to change default settings at a
global level. For plots this feature is given by the
command \pgfplotsset. The following example
enlarges the default font size in axis labels and
rotates the y-axis label.

% in preamble

\usepackage{pgfplots,relsize}

...

% pgfplots styles

\pgfplotsset{

every axis x label/.append style = {

font = \relsize{2}

},

every axis y label/.append style = {

font = \relsize{2},

rotate = -90,

xshift = 0.5em

}

}

\begin{tikzpicture}

\begin{axis}[

xmin = -1, xmax = 1,

ymin = 0, ymax = 2,

grid, xlabel = x, ylabel = y

]

\end{axis}

\end{tikzpicture}

The above code yields:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

y

The macro \pgfplotset acts on predefined
styles, as, for instance, in the last example on those
labelled every axis x label as well as every

axis y label. The usual approach is to change
style parameters by appending customized settings
to the defaults, such as font, rotate, xshift, and
several others. The user provided settings overwrite

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

93

the default ones. To learn more on style customiza-
tions available for pgf and pgfplots the reader might
want to look at the remaining examples in this sec-
tion and at the package documentation.

The following example demonstrates further cus-
tomizations. The style of grid lines is changed and
axis labels are formatted with the help of macro
\si provided by the package siunitx.

% in preamble

\usepackage{pgfplots,relsize,siunitx}

...

% pgfplots styles

\pgfkeys{

/pgf/number format/.cd,

use comma

}

\pgfplotsset{

every axis/.append style={

font=\relsize{0},

line width=1.0pt,

tick style={line width=1.0pt}

},

every axis x label/.append style={

font=\relsize{1},

yshift=0pt,

xshift=0em

},

every axis y label/.append style={

font=\relsize{1},

rotate=-90,

xshift=-0.7em,

yshift=-1.4em,

},

major grid style={

line width = 0.8pt,

black,

dash pattern=on 8pt off 4pt

},

every axis title/.append style={

font=\relsize{1}

}

}

\begin{tikzpicture}

\begin{axis}[

xmin=-1, xmax=1,

ymin=0, ymax=10,

xtick={-1,-0.5,...,1},

ytick={0,2,...,10},

minor x tick num = 1,

minor y tick num = 1,

grid=major,

xlabel={x (\si{\meter})},

ylabel={

\parbox{2cm}{%

\centering

$\dfrac{\partial T}{\partial x}$

\\[0.7em]

\centering

(\si{\celsius/\meter})

}

},

title=Gradiente di temperatura,

axis on top=true

]

% the shaded rectangle

\fill[blue!40]

(axis cs:-0.5,0) --

(axis cs:0.5,0) --

(axis cs:0.5,10) --

(axis cs:-0.5,10) --

cycle;

\end{axis}

\end{tikzpicture}

The macro pgfkeys, similar to pgfplotsset, is
provided by pgf and is used to change the default
decimal separator in numbers from ‘.’ (dot) to
‘,’ (comma). This example demonstrates also the
use of tikz drawing commands inside the axis
environment. The above code yields:

−1 −0,5 0 0,5 1
0

2

4

6

8

10

x (m)

∂T

∂x

(◦C/m)

Gradiente di temperatura

Next example evolves from the previous one. It
demonstrates the use of a second y-axis on the
right side of the plot bounding box. The second
axis has different range and scaling with respect
to the default one on the left side, and is used
typically when multiple sets of data with values
in different ranges have to be represented in the
same plot.

\begin{tikzpicture}

% same initial settings

% of previous example

\begin{axis}[

height=6cm,% <==

% same initial settings

% of previous example

]

% same drawing commands

% of previous example

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

94

% add plot data #1 here <==

\end{axis}

% second axis

\begin{axis}[

height=6cm,% <==

xmin=-1, xmax=1,

axis x line=none, % <==

axis y line*=right,% <==

ymin=-5, ymax=80,

ytick={-10,0,...,80},

minor y tick num = 1,

ylabel={

\parbox{2cm}{%

\centering

T

\\[0.0em]

\centering

(\si{\celsius})

}

},

]

% add plot data #2 here

\end{axis}

\end{tikzpicture}

The new y-axis is obtained by superimposing a
second reference frame on the first one. This is done
by giving a second axis environment in the same
tikzpicture. The second environment has an hidden
x-axis and an axis y line set to right. All data
whose y-values are conveniently represented with
the new axis range should be provided in the second
axis environment. The above code yields:

−1 −0,5 0 0,5 1
−15

−10

−5

0

5

10

15

x (m)

∂T

∂x

(◦C/m)

Gradiente e temperatura

0

10

20

30

40

50

60

70

80

T
(◦C)

The code of a more elaborated multiple axis
example is shown in Figure 19. The product is that
of Figure 20 showing three y-axes conveniently
positioned on the left- and right-hand sides of
the main area of the plot. Various tikz drawing
commands are used in this case to annotate and
decorate the graph for a refined visual result.

8.2 The macro \addplot

The command \addplot is used within an axis envi-
ronment to define the lines in a graph. The command
accepts a number of options and an argument that
specifies the set of data to be represented on canvas.

The following example contains two line graphs
with two different markers and a legend. No op-
tions are passed to the two \addplot commands to
customize their behaviour. Yet, two different types
of data sources are chosen: the first is a mathemat-
ical function, f(x) = −x5 − 242; the second is a
discrete set of (x, y)-coordinates.

\begin{tikzpicture}

\begin{axis}[

grid=major,

xlabel={x}, ylabel={y},

y tick label style={

/pgf/number format/.cd,

set thousands separator={},

/tikz/.cd}

]

% a function of x

\addplot {-x^5 - 242};

\addlegendentry{model}

% a discrete set of coordinates

\addplot coordinates {

(-4.77778, 2027.60977)

(-3.55556, 347.84069)

(-2.33333, 22.58953)

(-1.11111, -493.50066)

(0.11111, 46.66082)

(1.33333, -205.56286)

(2.55556, -341.40638)

(3.77778, -1169.24780)

(5.00000, -3269.56775)

};

\addlegendentry{estimate}

\end{axis}

\end{tikzpicture}

The above code yields:

−6 −4 −2 0 2 4 6

−2000

0

2000

x

y

model
estimate

The mathematical function is defined intuitively
at high-level as -x^5 - 242 and is parsed by the
powerful low-level \pgfmathparse feature of pgf.
By default, the function is evaluated at 25 points
equally spaced between two automatically calculated
x-axis limits — in this example [−5, 5]. Data points
are connected with a blue solid line and marked
by default with dots of the same color. The second
set of data is manually given with a coordinates

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

95

%in preamble

\usepackage{pgfplots}

\usetikzlibrary{calc,arrows,decorations.pathmorphing,

backgrounds,fit,positioning,shapes.symbols,shapes.

geometric,shapes.misc,chains}

% ...

\begin{tikzpicture}

\pgfplotsset{compat=1.3}

\pgfkeys{

/pgf/number format/.cd,

set decimal separator={,{\!}},

set thousands separator={}}

\pgfplotsset{

every axis/.append style={

font=\relsize{2},

line width=1.0pt,

tick style={line width=1.0pt}},

every axis x label/.append style={

font=\relsize{4},

yshift=0pt,

xshift=0em},

every axis y label/.append style={

font=\relsize{3},

rotate=-90,

xshift= 0.8em,

yshift=-1.4em},

major grid style={

line width = 0.8pt,

black,

dash pattern=on 8pt off 4pt},

every axis title/.append style={

font=\relsize{3}},

no markers

}

% the left y-axis #1

\begin{axis}[

clip=false,

scale only axis,

width=2cm, xshift=-0.4cm,

xmin=-1, xmax=1,

hide x axis,

axis y line*=left,

ymin=-15, ymax=15,

ytick={-15,-10,...,15},

minor y tick num = 1]

\node [above, yshift=6pt] at (rel axis cs:0,1)

{$\dfrac{\partial T}{\partial x}$ (\si{\celsius/\meter

})};

\end{axis}

% the unique x-axis

\begin{axis}[

scale only axis,

height=2cm, yshift=-0.4cm,

xmin=-1, xmax=1,

xtick={-1,-0.5,...,1},

minor x tick num = 1,

xlabel={x (\si{\meter})},

axis x line*=bottom,

hide y axis,

ymin=-15, ymax=15,

]

\end{axis}

% the curve #1

\begin{axis}[

scale only axis,

xmin=-1, xmax=1,

hide x axis,

ymin=-15, ymax=15,

hide y axis,

title=\parbox{8cm}{\centering Trasmissione del calore

attraverso una parete},

]

\fill[blue!40]

decorate [decoration={random steps,segment length=2mm

}] { [very thick] (axis cs:-0.5,-14.8) -- (axis cs

:0.5,-14.8) } -- (axis cs:0.5,14.8)

decorate [decoration={random steps,segment length=2mm

}] { [very thick] -- (axis cs:-0.5,14.8)}

-- cycle;

\draw[very thick] (axis cs:-0.5,-15) -- (axis cs:-0.5,15)

;

\draw[very thick] (axis cs:0.5,-15) -- (axis cs:0.5,15);

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.125,0.94)

{1};

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.50,0.94) {2};

\node [rounded rectangle, minimum size=6mm, very thick,

draw=black!50, top color=white, bottom color=black

!20, font=\ttfamily] at (rel axis cs:0.875,0.94)

{3};

% \addplot of temperature gradients here

\end{axis}

\pgfplotsset{

every axis y label/.append style={

xshift= -2.4em

}

}

% the right y-axis 1

\begin{axis}[clip=false, scale only axis,

xshift=0.4cm, xmin=-1, xmax=1, hide x axis,

axis y line*=right,

ymin=-5,ymax=80, ytick={-10,0,...,80},

minor y tick num = 1,

]

\node [above, yshift=6pt] at (rel axis cs:1,1)

{T (\si{\celsius})};

% \addplot of temperatures here

\end{axis}

\pgfplotsset{every axis y label/.append style={xshift

=-1.3em}}

% the right y-axis 2

\begin{axis}[clip=false, scale only axis,

xshift=2.4cm,

xmin=-1, xmax=1,

axis x line=none, hide x axis,

axis y line*=right,

ymin=-5, ymax=500,

ytick={0,50,...,500},

minor y tick num = 1,

]

\node [above, yshift=6pt, xshift=16pt] at (rel axis cs

:1,1) {q (\si{\kcal/\meter^2})};

% \addplot of heat fluxes here

\end{axis}

\end{tikzpicture}

Figure 19: Source code of diagram reported in Figure 20.

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

96

−15

−10

−5

0

5

10

15

∂T

∂x
(◦C/m)

−1 −0,5 0 0,5 1

x (m)

1 2 3

Trasmissione del calore

attraverso una parete

0

10

20

30

40

50

60

70

80

T (◦C)

0

50

100

150

200

250

300

350

400

450

500

q (kcal/m2)

Figure 20: Example of multiple y-axes obtained with pgfplots. See source code in Figure 10.

directive to \addplot as a sequence of couples
(〈x 〉,〈y 〉). This second set of data points are
connected with a red solid line and marked by
default with boxes filled with the same color.

The following example demonstrates the use of
logarithmic scales for the axes within the environ-
ment loglogaxis. The markers of the line graphs are
controlled by specific settings passed as options to
the \addplot commands.

% in preamble

\usepackage{filecontents}

\begin{filecontents*}{data1.txt}

Level Cost Error

1 7 8.47178381e-02

2 31 3.04409349e-02

3 111 1.02214539e-02

4 351 3.30346265e-03

5 1023 1.03886535e-03

6 2815 3.19646457e-04

7 7423 9.65789766e-05

8 18943 2.87339125e-05

9 47103 8.43749881e-06

\end{filecontents*}

% ...

\begin{tikzpicture}

\begin{loglogaxis}[

xlabel=Cost, ylabel=Error]

\addplot[color=red,mark=x] coordinates {

(5, 8.31160034e-02)

(17, 2.54685628e-02)

(49, 7.40715288e-03)

(129, 2.10192154e-03)

(321, 5.87352989e-04)

(769, 1.62269942e-04)

(1793, 4.44248889e-05)

(4097, 1.20714122e-05)

(9217, 3.26101452e-06)

};

\addplot[color=blue,mark=*]

table[x=Cost,y=Error]

{data1.txt};

\legend{Case 1,Case 2}

\end{loglogaxis}

\end{tikzpicture}

The second line graph is constructed by reading
coordinates from a conveniently formatted text
file, data1.txt. The file contains three columns
of data and a first row that provides the labels
for each column. Options x= and y= in the second
\addplot command select the desired x- and y-
coordinate sets according to the column names.
The above code yields:

101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

Cost

E
rr

or

Case 1
Case 2

The example below demonstrates the use of a
logarithmic scale for the y-axis only.

\begin{tikzpicture}

\begin{semilogyaxis}[

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

97

\begin{tikzpicture}

\tikzset{

every pin/.style={

fill=yellow!50!white,

rectangle, rounded corners=3pt,

font=\tiny},

small dot/.style={

fill=black, circle,

scale=0.3}

}

\begin{axis}[

clip=false,

title=How \texttt{axis description cs} works

]

\addplot {x^3};

% annotations

\node[small dot,

pin={[pin distance=2cm]20:{$(0,0)$}}]

at (axis description cs:0,0) {};

\node[small dot,

pin=-30:{$(1,1)$}]

at (axis description cs:1,1) {};

\node[small dot,

pin=-90:{$(1.03,0.5)$}]

at (axis description cs:1.03,0.5) {};

\node[small dot,

pin=125:{$(0.5,0.5)$}]

at (axis description cs:0.5,0.5) {};

\end{axis}

\end{tikzpicture} −6 −4 −2 0 2 4 6
−150

−100

−50

0

50

100

150

(0, 0)

(1, 1)

(1.03, 0.5)

(0.5, 0.5)

How axis description cs works

Figure 21: An example showing how, with the special coordinates system named axis description, in
pgfplots it is possible to define points relative to the bounding box of a plot.

ymin=1, ymax=1000,

xlabel=Index,ylabel=Value]

\addplot[color=blue,mark=*]

coordinates {

(1,8) (2,16) (3,32)

(4,64) (5,128) (6,256)

(7,512)

};

\end{semilogyaxis}

\end{tikzpicture}

The above code yields:

2 4 6100

101

102

103

Index

V
al

ue

The package pgfplots defines special coordinate
systems (cs) that make it easy to add annotations
to the plots. One of these reference systems is

named axis description. It has its point of co-
ordinates (0, 0) in the bottom left corner of the plot
bounding box, and its point (1, 1) at the top right
corner of the frame. A demonstration of this coor-
dinate system is shown in Figure 21. The annota-
tions of the plot are made by defining a style/shape
named small dot, and using the pin option of the
tikz \node operation.

A fairly elaborated example of line graph an-
notation is provided by Figure 22. Thanks to the
tikz library intersection, the pgf macro named
linelabel is defined in such a way that it can
be used as an option to \addplot. The option re-
ceives three arguments: the first is the normalized
ascissa (in range [0, 1]) of the point along the path
where the annotation is pinned (0 for the leftmost
point, 1 for the rightmost); the second argument
specifies the angle and the length of the pin line;
the third argument is the content of the annota-
tion (a formula or even a multi-line text). This
customization, too, is possible thanks to the node

and pin features in tikz.

8.3 The macro \addplot3

The command \addplot3 within an axis environ-
ment creates a three-dimensional plot. According
to the option and arguments, it can display a line
graph or a shaded surface.

The following example plots a helical curve:

\begin{tikzpicture}

\pgfplotsset{

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

98

\begin{tikzpicture}

% needs tikzlibrary: intersections

\pgfkeys{/pgfplots/linelabel/.style args

={#1:#2:#3}{

name path global=labelpath,

execute at end plot={

\path [name path global =

labelpositionline] (rel axis cs:#1,0)

-- (rel axis cs:#1,1);

\draw [help lines, text=black,

inner sep=0pt,

name intersections={

of=labelpath and labelpositionline}]

(intersection-1) -- +(#2)

node [label={#3}] {};

}

}}

\pgfplotsset{%

every axis legend/.append style={

cells={anchor=west},%

fill=gray!10,

font=\relsize{1},

at={(0.97,0.03)},

anchor=south east,thin,draw=none},

every axis title/.append style={font=\

relsize{1}},

every axis/.append style={font=\relsize{0}},

every axis x label/.append style={

font=\relsize{1},

yshift=0pt,xshift=0em},

every axis y label/.append style={

font=\relsize{2},

rotate=-90},

every axis/.append style={

thick,

tick style={thick}}

}

\tikzstyle{every pin}=[fill=white,draw=none,

font=\relsize{2}]

\begin{axis}[xlabel={x}]

\addplot [thick,

linelabel=0.8:{135:1.75cm}:

{[black]above left:x^2}] {x^2};

\addplot [thick,

blue,

densely dashed,

linelabel=0.85:{135:0.50cm}:

$\frac{3}{2}x^2$] {1.5*x^2};

\addplot [thick,

red,

dash pattern=on 5pt off 2pt,

linelabel=0.7:{135:1.25cm}:

$\frac{1}{10}x^3$] {0.1*x^3};

\addplot [thick,

dash pattern=on 1.2pt off 2pt on 5pt off 2pt,

linelabel=0.80:{-135:0.75cm}:{left:

\makebox[0pt][r]{$\left.

\begin{array}{rl}

\frac{1}{2}x^2 &\text{if }x\le 0\\[6pt]

-\frac{1}{5}x^3 &\text{if }x> 0

\end{array}

\right\}$}

}

]

{(x<0)*0.5*x^2 + (x>0)*(-0.20*x^3)};

\end{axis}

\end{tikzpicture}

−6 −4 −2 0 2 4 6

−20

0

20

40
x2

3

2
x2

1

10
x3

1

2
x2 if x ≤ 0

− 1

5
x3 if x > 0

}

x

Figure 22: An example of line graph annotations obtained introducing a customized option linelabel

to the command \addplot. The option works as a macro and is based on the tikz extension library
intersections.

every axis/.append style={

font=\relsize{-1},

line width=0.8pt,

tick style={line width=0.8pt}

},

major grid style={

line width = 0.4pt,

gray,

dash pattern=on 16pt off 4pt

}

}

\begin{axis}[

view={60}{20},% <== view point

xmin=-1.2, xmax=1.2,

ymin=-1.2, ymax=1.2,

grid = major,

xlabel=x, ylabel=y, zlabel=z,

every axis x label/.style={

at={(rel axis cs:0.5,-0.15,-0.15)},

font=\relsize{0}},

every axis y label/.style={

at={(rel axis cs:1.15,0.5,-0.15)},

font=\relsize{0}},

every axis z label/.style={

at={(rel axis cs:-0.15,-0.15,0.5)},

font=\relsize{0}},

variable=\t]

% the helix

\addplot3+[

domain=0:5.5*pi,

samples=70,

samples y=0,

no marks,

line width=1.5pt]

({sin(deg(t))}, % <== x(t)

{cos(deg(t))}, % <== y(t)

{2*t/(5*pi)}); % <== z(t)

% a line in 3d

\addplot3 +[->,no marks,line width=1.5pt]

coordinates {

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

99

(0,0,0)

(0,0,2)

(0,1.1,2)};

% a line in 3d with a tikz command

\draw[->,line width=1.5pt]

(axis cs:0,-1,0)

-- (axis cs:0,-1,1.5)

-- (axis cs:-1,-1,1.5);

\end{axis}

\end{tikzpicture}

The helix is defined as

x(t) = sin t , y(t) = cos t , z(t) =
2

5π
t

with 0 ≤ t ≤ 11

2
π (see domain option). The line

graph is made by connecting 70 three-dimensional
data points (see samples option). The mathemati-
cal expression of the curve is passed to \addplot3

as a triplet of functions of t after having declared
variable=\t as an option of the axis environment.
Two more lines are represented in the diagram.
One is made with the \addplot3 command it-
self (hence, by default is red) by connecting three
points: (0, 0, 0), (0, 0, 2), and (0, 1.1, 2). The other
line is made using the tikz command \draw by con-
necting three points: (0,−1, 0), (0,−1, 1.5), and
(−1,−1, 1.5).

The above code yields:

−1

0

1 −1
0

1

0

1

2

x
y

z

The following final example creates the plot
of a three-dimensional shaded surface. The sur-
face is constructed by evaluating the function
f(x, y) = x2 − y2 in a set of points on the xy-
plane. The shading algorithm is provided by the
pgfplots extension library patchplots.

\begin{tikzpicture}

\begin{axis}[width=0.98\linewidth,

ymin=-2.5, ymax=2.5,

xlabel={x}, ylabel={y}, zlabel={z

}

]

\addplot3[

% needs pgfplotslibrary: patchplots

patch, patch refines=3,

shader=faceted interp,

patch type=biquadratic]

table[z expr=x^2-y^2] {

x y

-2 -2

2 -2

2 2

-2 2

0 -2

2 0

0 2

-2 0

0 0};

\end{axis}

\end{tikzpicture}

The above code yields:

−2 −1 0 1 2 −2

0

2−4

−2

0

2

4

x
y

z

8.4 What else?

In this final part we really have only scratched
the surface of what can be done with pgfplots.
A more in-depth presentation of both basic and
advanced features of the package can be found in
De Marco and Giacomelli (2011). Examples
of quality manuscripts including several fine tuned
technical illustrations, diagrams and scientific plots
can be found on the author’s page of his course on
Flight Dynamics and Simulation at the University
of Naples Federico II.28

Scientific writers nowadays can rely on several
different applications and data visualization tech-
nologies for producing their own two- and three-
dimensional graphs. These include, to name a few:
Gnuplot, the Python libraries Matplotlib, Seaborn,
ggplot, Bokeh, and Plotly, the R libraries ggplot2
and Lattice, the Javascript libraries D3 and Plotly.js,
the numerical computing environments Matlab and
Mathematica, and the highly specialized software
Tecplot. Some of these tools provide their users
with the possibility to export their plots as tikz
or pgfplots code, e. g. the Gnuplot lua tikz termi-
nal29 or the Matlab script matlab2tikz.30

28. http://wpage.unina.it/agodemar/DSV-DQV/

#materiale-didattico

29. http://gnuplot.info/documentation.html

30. https://github.com/matlab2tikz/matlab2tikz

Agostino De Marco ArsTEXnica Nº 28, Ottobre 2019

100

The strength of pgfplots combined with tikz is
the excellent typographical quality of their graphi-
cal outputs. Apart from those given in this article
and the pgfplots online gallery,31 the reader can
find several online examples of publication quality
graphs.32 Being pgfplots able to parse the definition
of mathematical functions as well as to import nu-
merical data produced with third-party software, a
production work flow based on this package is prob-
ably the way to go for the majority of LATEX users.
Moreover, this approach promotes the automation
of production processes — from the collection of
data, to their import in pgfplots, to the drawing
and typesetting of the final image (in raster or
vector format), up to the inclusion of the image
in the master document. Experience confirms that
this approach brings about a tremendous speed up
of graphics production.

In cases where a certain third-party technol-
ogy must be used to produce graphic works, still
these can be successively annotated with LATEX
content. The suggested approach is to import them
in Inkscape and add LATEX objects with the Tex-
Text plugin. Examples of quality graphics match-
ing the style of websites with a lot of LATEX con-
tent are given by the flight simulation software li-
brary JSBSim documentation project,33 and by the
online teaching material of the Flight Mechanics
course for the Italian Air Force Academy student
pilots.34

9 Conclusion

This paper describes the most common scenar-
ios encountered by LATEX users when they face
the problem of producing quality graphics to in-
clude in their documents. In cases of diagrams,
pictures and more or less complicated illustrations
the two approaches based on package tikz and on
the Inkscape graphics vector software have been
presented. The last part of the article introduces
the package pgfplots for making scientific plots.

The paper is example driven and aims at stimu-
lating readers’ creativity, providing them as well
with several online references.

31. http://pgfplots.sourceforge.net/gallery.html

32. From the author, see also these sample projects on
Overleaf: https://www.overleaf.com/read/mgskyfdpttzt ,
https://www.overleaf.com/read/kqkvsrfjxnmz ,
https://www.overleaf.com/read/rcbqhpqqhccn .

33. https://jsbsim-team.github.io/jsbsim-

reference-manual

34. https://agodemar.github.io/

FlightMechanics4Pilots

References

Bah, Tavmjong (2011). Inkscape. Guide to a Vec-
tor Drawing Program. Prentice-Hall, Upper Sad-
dle River, NJ, USA, 4th edition.

Beccari, Claudio (2011). «The unknown
picture environment». ArsTEXnica, (11),
pp. 57–64. http://www.guitex.org/home/it/

numero-11.

De Marco, Agostino (2007). «Illustrazioni tridi-
mensionali con Sketch/LATEX/PSTricks/TikZ
nella didattica della Dinamica del Volo».
ArsTEXnica, (4), pp. 51–68. http://www.

guitex.org/home/numero-4.

— (2009). «Produrre grafica vettoriale di alta
qualità programmando asymptote». ArsTEXnica,
(8), pp. 25–39. http://www.guitex.org/home/

numero-8.

De Marco, Agostino and Roberto Gia-
comelli (2011). «Creare grafici con pgfplots».
ArsTEXnica, (12), pp. 12–38. http://www.

guitex.org/home/it/numero-12.

Feuersänger, Christian (2018). «Manual for
package pgfplots». https://ctan.org/pkg/

pgfplots.

Goosens, Michel, Frank Mittelbach, Sebas-
tian Rahtz, Denis Roegel and Herbert Voß
(2007). The LATEX Graphics Companion.
Addison-Wesley Publishing Company, Reading,
Mass.

Harris, Robert L. (1996). Information Graphics.
A Comprehensive Illustrated Reference. Manage-
ment Graphics, Atlanta, GA, USA.

Lamport, Leslie (1994). LATEX, a document prepa-
ration system. Addison-Wesley, Reading, MA,
2nd edition.

Tantau, Till (2016). «The pgf package». http:

//ctan.org/pkg/pgf.

van Dongen, Marc (2012). LATEX and Friends.
Springer-Verlag, Berlin, Heidelberg.

Voß, Herbert (2011). PSTricks – Graphics and
PostScript for TEX and LATEX. UIT – Cambridge,
Cambridge, UK, 1st edition.

⊲ Agostino De Marco
Università degli Studi di Napoli
Federico II
agostino dot demarco at unina

dot it

ArsTEXnica Nº 28, Ottobre 2019 Graphics for LATEX users

101

Presentations with Beamer

Grazia Messineo, Salvatore Vassallo

Abstract

In this article we briefly introduce the LATEX class
beamer for presentation. We give some tips to build
an effective presentation and we describe the main
features of the class.

Sommario

In questo articolo si dà una breve introduzione alla
classe LATEX per presentazioni beamer. Vengono
forniti alcuni suggerimenti per realizzare una pre-
sentazione efficace e descritte le principali funzioni
della classe.

1 Introduction

For years, people thought that Microsoft Power-
Point® was the only tool to make presentations.
More recently, Libre Office Impress® or Keynote®(for
Mac) have been used for the same purpose.

When a presentation contains a great amount of
mathematics and/or you want to keep its quality
high you can use LATEX packages to build it.

Many LATEX classes have been developed over
the years to write presentations. This paper focuses
on the Beamer class, while a brief review of other
classes will be made in paragraph 4.

2 Tips for a good presentation

Building a good presentation is not an easy task.
Most presentations are boring, because they are
too complicated, contain too many data, their or-
ganization is poor, the needs of the audience are
not taken into account and perhaps the speaker
reads it word by word. The result is an audience
who gets lost after a few minutes.

In Tantau et al. (2015) there is a good tutorial
for building presentations (“Euclid’s presentation”)
with some guidelines to make them effective.

When building a presentation, the author
should:

• know the room: it is a good idea to visit it
before the presentation and be aware of the
technical equipment available;

• know the audience: the author should know
how it is composed, what they already know
of the topic, which are their interests and what
background information they need;

• be aware of the time constraints.

The presentation should state clearly at the begin-
ning the purpose of the talk. The main body should
contain intermediate conclusions (if possible) and
then the final conclusion of the talk.

It should be clear and concise and focus on a
limited number of concepts.

Each slide should focus on one concept and be at
most 12 lines long. It should be shown and explain
in one minute. The author should also schedule a
question and answer moment for discussion.

Use of animations and special effects should be
limited. Background should be chosen carefully, as
well as colours.

A good use of images improves the quality of
the presentation.

3 Presentations in Beamer

The Beamer class is an excellent tool for creat-
ing presentations, both for didactic and scientific
purposes.

It was created in 2003 by Till Tantau for his PhD
defense presentation and immediately published
on CTAN. In 2010, maintenance was handed over
to Joseph Wright and Vedran Miletić, who are still
mantaining it. For the complete documentation of
the class, please refer to Tantau et al. (2015).

The class gives its best for creating presentations
to be displayed using (as the class name suggests)
a beamer, but it can also be used to create trans-
parency slides. It provides a great number of video
“effects”1 such as transitions, boxes and other ani-
mations.

Beamer output is a pdf file, so it is available on
all platforms with a pdf files viewer2.

Pdf files produced with the Beamer class are
interactive, so each slide can also contain buttons
to navigate into the presentation and it is possible
to have a bar (side, bottom or top bar) containing
an index, which is always visible and have hyper-
link useful to move from a part to another of the
presentation.

Beamer is a LATEX class, so a presentation cre-
ated with it has the same structure of all LATEX
documents: a preamble with all other packages and
users’ macros, a body divided into sections and
subsections. Slides (Beamer frames) are inserted in

1. The author and the mantainers, in the class manual,
suggest not to exceed with video “effects” and colorful
backgrounds, as they distract the audience.

2. Not all pdf viewers can display correctly Beamer effects,
such as transparencies.

102

each part of the body by using the corresponding
environment.

Beamer can be used with pdfLATEX, LATEX +
dvips, X ELATEX and LuaLATEX.

As pointed out in Voss (2012), the main features
of the class are:

• possibility to create printed, projected and
noted version of a presentation;

• plurality of options to manage all aspects (col-
ors, fonts, and so on);

• plurality of predefined layouts;

• possibility to manage very complex document
structure;

• automatic creation of navigation elements.

3.1 The preamble

A minimal preamble for a Beamer presentation can
be as follows:

\ documentclass { beamer }

\mode < presentation >

{\ usetheme { Boadilla }

\ usecolortheme { albatross }}

\ usefonttheme { serif }

\ usepackage [italian]{ babel }

% or other language

\ usepackage [utf 8]{ inputenc }

\ usepackage [T1]{ fontenc }

\ title [Short title] {Long Title }

\date {15 August 2000}

\ author { Author 1 \inst {1}

\and Author 2\ inst {2}}

\ institute [Politecnico di Torino]

\inst {1}

Department of Mathematics \\

Politecnico di Torino

\and

\inst {2}%

Department of Mathematics \\

Politecnico di Torino }

\ pgfdeclareimage [height =0.5 cm]{ logo}

{Logo file name}

\logo {\ pgfuseimage {logo }}

This preamble shows some characteristics of the
Beamer class: “modes” and “themes”.

With a unique file it is possible to obtain different
outputs: the presentation to be projected, a file
with the slides ready to be printed3, an article
version of the presentation, a file with talk notes.

The main file can contain instructions and text
which are to be used in one or more of this “modes”:
in our example, instructions \usetheme{Boadilla←֓

} and \usecolortheme{albatross} are contained in
the command \mode<presentation> thus they will be

3. This file usually does not contain transition effects, it
is less coloured and it often contains more than one slide
per page.

used in all modes except article, while the instruc-
tion \usefonttheme{serif} will be used in all versions
of the presentation.

Modes in beamer define the purpose for which
the file is created:

• beamer is the default mode and it is used for
files to be displayed with a projector;

• second is used when the author needs to create
material to be displayed on a second screen;

• handout is used to create printed versions of
the presentation (handout);

• trans is used to create transparencies;

• article transfers the control of the text to an-
other class, the article class.

The modes all and presentation are used for content
to be displayed, respectively, in all modes or in all
modes except of article.

Almost all the global aspects of the presentations
are defined in a theme.

Beamer contains global themes, which define
every characteristic of the layout of a presentation4

Beamer defines also:

• outher themes: they control all characteristics
related to the outer layout, such as header
and footer, navigation bars, logos, titles;

• inner themes: they control all aspects of the
layout of the slide content, such as frametitle,
description, itemize and enumerate environ-
ments, theorem, proof, blocks environment,
figures and tables and so on;

• color themes: they control the color palette of
the presentation (\usecolortheme{albatross} in
our example);

• font themes: they control the characteristics
of the fonts used in a presentation (in our
example, \usefonttheme{serif}).

Beamer, as many other packages and programs
for presentations, uses as a default option sans-serif
fonts.

As in every LATEX document, a title and a subti-
tle can be printed, as well as date and authors (with
the usual instructions). Please note the instruction
\inst which allows to declare the affiliation of an
author to a University, a school or a firm.

The instruction \logo allows to insert the insti-
tution logo or the conference one. It is declared as
a pgf5 image.

4. All predefined themes, both global, outer, inner, font
and color, are listed in Tantau et al. (2015).

5. The author of the Beamer class is also the author of
the pgf package, see Tantau (2013)

ArsTEXnica Nº 28, Ottobre 2019 Beamer Presentations

103

3.2 The title page

A presentation usually starts with a title page,
containing the title of the presentation, the authors
and affiliation, the date and the conference title.

This page can be created using the \maketitle

command alone, as an argument of the \frame

command (or environment), or by inserting in them
the \titlepage command:

\ begin { frame }

\ titlepage

\end{ frame }

3.3 The table of contents

Beamer allows to create a table of contents by
using the \tableofcontents[options] command.
The table of contents is inserted in the frame in
which the command appears.

The options allow to produce particular be-
haviours. The most useful ones are:

• currentsection makes visible only the contents
of the current section and its subsections and
semi-transparent the others. A similar be-
haviour is obtained for subsections with the
option currentsubsection;

• hideallsubsections hides all subsections, while
hideothersubsections hides all subsections ex-
cept the current one;

All the options, along with their behaviour, can
be found in Tantau et al. (2015) and allow a
very precise control of all elements of the table of
contents.

3.4 The document body

The Beamer class produces a document divided in
parts, sections and subsection. This structure
is used in the index of the presentation and, if used,
in the navigation bar. The structure can appear in
all modes or only in a particular one. For example,
the code

\section <beamer >{ This section appears ←֓

only in the beamer mode}

\section <handout >{ This section exists ←֓

only in the handout mode}

creates sections that appear only in the mode spec-
ified in <...>6.

Slides are created by the \frame command or
using the frame environment (please note that some
options are available only for the environment).

A frame always displays at least the content
written in the command or environment. The other
elements that can be displayed, depending on the
theme, are:

• a sidebar for the table of contents;

6. The same syntax can be used in other commands to ob-
tain the same behaviour, for example in the list commands,
see paragraph 3.4.2.

• a navigation bar (this one is always present un-
less explicitly eliminated, see paragraph 3.6);

• a bottom bar with some information, for ex-
ample author, affiliation, conference;

• a upper bar with the structure of the presen-
tation, i.e. section and subsection;

• the frame title.

Its content can be shown all together or in dif-
ferent moments, maybe with effects.

For example, the following code

\ begin { frame }

\ transglitter <1 -2 >[direction =45]

your text here

\end{ frame }

produces a slide with a glitter effect that sweeps
in the specified direction7.

Usually, each slide has a title and sometimes also
a subtitle. There are two ways to insert a title:

• by using the command \frametitle immedi-
ately after the header of the environment:

\ begin { frame }

\ frametitle {Your title }

your text here

\end{ frame }

• by specifying it in the frame environment:

\ begin { frame }[options]{ title }{←֓

subtitle }

your text here

\end{ frame }

The frame environment has many useful options.
Among them

• the allowframebreaks option allows to split the
content of a frame on more than one page
(please note that this option is deprecated, as
a slide should contain at most 12 lines, see
section 2).

• The allowdisplaybreak option allows large for-
mulae to split across slides;

• b, c and t manage the vertical alignment of
the slide (the default is c);

• fragile allows verbatim material to be inserted
in a slide;

• shrink allows to reduce the text by the specifi-
cated percentage if it is too long for a single
slide (please note that this option is depre-
cated, as a slide should contain at most 12
lines, see section 2).

7. For other transition effects, see Tantau et al. (2015).

Grazia Messineo, Salvatore Vassallo ArsTEXnica Nº 28, Ottobre 2019

104

3.4.1 Overlays

The content of each frame can be displayed all
together or, more often, in different steps. What
we usually want is to be able to hide and display
different parts of a slide. The easiest way to do
this is to use overlays to activate and deactivate
parts of a slide.

There are several ways to achieve this purpose8.
In the commands that require the specification of
the overlays, this one must be given in the optional
argument <...>: you can specify a single overlay
(<3>), many overlays (<3,5,9>), an interval (<2-4>),
all overlays until one specified (<-4>) or starting
from one specified (<2->).

The main commands for overlays are

• \pause: it is the simplest command. Beamer
shows the content of a frame until the com-
mand and the other part of the slide are shown
only when the slide is advanced by a click of
the mouse or a key press;

• \onslide<...>{text}: it is a more powerful
and flexible command, which shows text in
the specified overlays;

• \only<...>{text}<...>: if one or both overlay
specifications are given, text is inserted only
on the specified slides and is thrown away in
the other slides;

• \uncover<...>{text}: text is shown only on
the specified slides. In the others, it is still
typeset and it occupies space, but it is invisible.
A similar behaviour can be achieved with the
\visible and \invisible commands;

• \alt<...>{default text}{alternative text←֓

}<...>: if one (and only one) of the overlay
specifications is given, default text is
printed on the specified overlays and
alternate text on the others;

• \temporal<...>{before slide text}{default←֓

text}{after slide text}: this command prints
before slide text if the slides come before
the one indicated in the overlay specification,
default text on the slide indicated in the
overlay specification and after slide text

on the slides after the specified ones.

A detailed list of these commands is available in
Tantau et al. (2015) and many examples can be
found in Voss (2012).

Beamer treats the text that is not shown in an
overlay in two ways: as invisible text, which occu-
pies space and can have transparency effects, or as
text to be inserted only in the specified overlays,

8. Here we show commands to cover or uncover content
in slides. Please note that the same goal can be achieved
by the environment with the same or similar name (for
instance, onlyenv for \only).

while in the other it is somehow “thrown away”.
For instance, the command \only behaves in the
second way, while the command \onslide usually
behaves in the first way.

In Beamer many LATEX commands and environ-
ment (such as theorem) accept as an optional com-
mand the specification of the slides in <...>.

In this example

\ begin { frame }

\ textbf {bold line in all overlays }

\textbf <2 >{ bold line only on the second ←֓

overlay }

\textbf <3 >{ bold line only in the third ←֓

overlay }

\end{ frame }

the option in <...> specifies on which overlays the
\textbf command should be used.

In this example

\ begin { frame }

\ begin { theorem }<1->[Lagrange]

text of the theorem

\end{ theorem }

\ begin { proof }<2->

proof of the theorem

\end{ proof }

\end{ frame }

the text of the theorem appears in all overlays,
while the proof appears only from the second.

3.4.2 Lists

In Beamer you can (obviously) use the usual list
environments of LATEX. These environments have a
slightly different syntax which allows to specify the
behaviour of each element in a particular overlay.

It is possible to specify the overlays in which an
item should be displayed with the option <...> in
the command \item or specify that items are to
be displayed one by one with the option <+-> in
the itemize, enumerate or description environments:

\ begin { itemize }[<+->]

\item This item appears from the first ←֓

overlay .

\item This item appears from the second ←֓

overlay .

\item <1-> This item appears in the first←֓

overlay , as it is specified in the ←֓

option of the item itself .

\item This item appears from the third ←֓

overlay .

\end{ itemize }

3.4.3 Highlighting of text

Beamer has different commands or environments
to highlight parts of the text.

The two most useful commands are
\alert<...>{text}, which highlights text by
changing (usually) its color (by default in red)
and \structure<...>{text}, which marks text

as a part of the structure, which highlights
the text in the same colour and font of other
structural elements of the presentation (slide titles,
navigation bar, etc.).

ArsTEXnica Nº 28, Ottobre 2019 Beamer Presentations

105

Both commands can be used in an entire environ-
ment, such as itemize or enumerate, as the following
example shows (we suppose that the colour of the
text is black and the color of the alerted text is
red):

\ begin { itemize }[<+ -| alert@ +>]

\item This item appears in the first ←֓

overlay colored in red.

\item This item appears in the second ←֓

overlay colored in red , while the ←֓

first one becomes black .

\item This item appears in the third ←֓

overlay colored in red , while the ←֓

first and second ones become black .

\end{ itemize }

In this example, all items appear on the second
overlay, but are highlighted one after the other:

\ begin { itemize }

\item <2->\ alert <2> Item 1 appears on the←֓

second overlay , in red.

\item <2->\ alert <3> Item 2 appears on the←֓

second overlay , and it is red on ←֓

the third one.

\item <2->\ alert <4> Item 3 appears on the←֓

second overlay , and it is red on ←֓

the fourth one.

\end{ itemize }

To better understand the difference between the
two commands, you can see the following example.
The code

\ documentclass { beamer }

\ usepackage [utf 8]{ inputenc }

\ begin { document }

\ begin { frame }

\textbf <2 >{ Bold text}

\textit <2 >{ Italic text}

\ textcolor <2 >{ magenta }{ Magenta text}

\alert <2 >{ Text highlighted with the ←֓

command \ texttt { alert }}

\ structure <2 >{ Text highlighted with the ←֓

command \ texttt { structure }}

\end{ frame }

\end{ document }

produces a beamer presentation, the second slide
of which is shown in figure 1.

You can see different types of highlighting.
Please notice that the \structure command high-
lights the text in the same colour of the frame
title and the navigation bar (the elements of the
structure).

If you change the structure colour, frame title,
navigation bar and argument of the \structure

command change accordingly, as shown in figure
2.

Figure 1: The second slide of the presentation with the
default structure colour

Figure 2: The second slide of the presentation with the
changed structure colour

3.4.4 Boxes

Another way to highlight parts of the presentation
is by using coloured boxes. Some environments,
such as theorem, definition, example, build around
the text a coloured box (by default, the first and
the second use the structure colour, the third one
uses green). It is possible to create also different
boxes:

\ begin { block }<overlays >

{ header }

text

\end{ block }

\ begin { alertblock }<overlays >

{ header }

text highlighted in the alert colour

\end{ alertblock }

It is also possible to define boxes with the desired
colours or for desired purposes (for example, boxes
for exercises), using the environments beamercolor-
box and beamerboxesrounded:

\ setbeamercolor { postit }{ fg=black ,bg=←֓

yellow }

\ begin { beamercolorbox }[sep =1em ,wd =5 cm]{←֓

postit }

text

\end{ beamercolorbox }

\ setbeamercolor { uppercol }{ fg=white ,bg=←֓

green }

\ setbeamercolor { lowercol }{ fg=black ,bg=←֓

green }

Grazia Messineo, Salvatore Vassallo ArsTEXnica Nº 28, Ottobre 2019

106

\ begin { beamerboxesrounded }[upper =←֓

uppercol , lower =lowercol , shadow =true←֓

]{ Theorem }

$A = B$.

\end{ beamerboxesrounded }

3.4.5 Verbatim mode

Verbatim material in beamer needs a special treat-
ment. A slide which contains verbatim must be
declared with the option fragile. This option tells
that the verbatim code must be written on an ex-
ternal file which will be read back in order to treat
the material correctly:

\ begin { frame }[fragile]

verbatim text

\end{ frame }

Another way to insert verbatim text in a frame
is to use the semiverbatim environment:

\ begin { frame }

\ begin { semiverbatim }

verbatim text

\end{ semiverbatim }

\end{ frame }

3.4.6 Figures

Figures can be included in a beamer presentation
in two ways:

• with the usual command \includegraphics,
which has (as almost all commands in beamer)
an extended syntax:

\ includegraphics <overlays >[←֓

settings]{ file name}

which allows to specify also the overlays in
which the image must appear;

• with the couple of commands (from the
pgf package) \pgfdeclareimage and
\pgfuseimage:

\ pgfdeclareimage [settings]{ beamer ←֓

name }{ file name}

\ pgfuseimage [settings]{ beamer name←֓

}

In this case, the overlays in which the image
must appear are set with one of the commands
seen in paragraph 3.4.1.

This is an example of the two commands in a slide:

\ begin { frame }

\ includegraphics <1->{ image 1}%%% this ←֓

image appears on all overlays

\ includegraphics <2->{ image 2}%%% this ←֓

image appears from the second ←֓

overlay

\end{ frame }

\ pgfdeclareimage [scale =0.5]{ image 3}{←֓

images / image 3}

\ pgfdeclareimage [scale =0.7]{ image 4}{←֓

images / image 4}

\uncover <3 - >{\ pgfuseimage { image 3}} %%% ←֓

this image appears from the third ←֓

overlay

\only <4 >{\ pgfuseimage { image 4}} %%% this←֓

image appears only on the fourth ←֓

overlay

3.4.7 Time settings

Beamer offers the possibility to set the duration of
each overlay. This purpose can be achieved with
the command \transduration:

\ transduration < overlay specification >{←֓

number of seconds }

For instance, the code

\ transduration <1 >{10}

sets the duration of the first overlay to 10 seconds,
then the overlay is changed to the second.

3.4.8 Sounds and animations

A very interesting possibility offered by beamer is
to magnify parts of a very complicated slide or
very big figure (zoom effect) with the command
\framezoom:

\ framezoom < button overlay specification ←֓

>< zoomed overlay specification >[←֓

options]

(upper left x, upper left y)(zoom area ←֓

width ,zoom area depth)

For example, the code, taken from Tantau et al.
(2015)

\ begin { frame }

\ frametitle {A Complicated Picture }

\ framezoom <1 > <2 >(0cm ,0 cm)(2cm ,1.5 cm)

\ framezoom <1 > <3 >(1cm ,3 cm)(2cm ,1.5 cm)

\ framezoom <1 > <4 >(3cm ,2 cm)(3cm ,2 cm)

\ pgfimage [height =8 cm]{←֓

complicatedimagefilename }

\end{ frame }

produces three zooming areas for the big picture,
each one in a different position and to be displayed
on different overlays, starting from the second.

It is also possible to insert into the presentation
multimedial files, both audio and video. Please
note that the files will not be inserted in the pdf
file, which contains only a link to the audio or
video file. Thus it is necessary to have multime-
dial files with the presentation in order to display
them. Depending on the PC configuration, the file
will be displayed into the presentation or in an
external viewer. Audio files can be loaded into the
presentation with the command

\ sound [options]{ sound poster text }{ sound←֓

filename }

and videos can be loaded with the command

\ movie [options]{ poster text }{ movie ←֓

filename }

ArsTEXnica Nº 28, Ottobre 2019 Beamer Presentations

107

from the multimedia package.
The command

\animate < overlay specification >

allows to create animations by showing overlays in
rapid succession.

Settings of the animation can be modified with
the command

\ animatevalue < start slide -end slide > {←֓

name }{ start value }{ end value }

For example, if you create a sequence of pictures
with name animate1, animate2, . . . , animate10,
the following code, taken from Tantau et al.
(2015)

\ begin { frame }

\animate <2-9>

\ multiinclude [start =1]{ animate }

\end{ frame }

allows the creation of a simple animation by dis-
playing the images in rapid sequence. The com-
mand \multiinclude allows to load all images
with name animate followed by a number.

For a more detailed description of the use of
animations in beamer, see Pignalberi (2010).

3.5 Fonts

In beamer, fonts are managed through themes, as
described in paragraph 3.1.

The command \usefonttheme{default} loads a
sans serif font for all the presentation. Some char-
acter glyphs in mathematical text are replaced
by more appropriate versions automatically. This
produces a text with glyphs from two different
collections, which gives sometimes strange results.

Claudio Beccari has created the lxfonts package
to overcome the problems of the standard font
used for slides. The package and its usage are
fully described in Beccari (2007) and in Beccari
(2013).

To use this fonts in beamer it is necessary to
change the font theme from default to professional:

\ usefonttheme { professionalfonts }

This command tells beamer not to make any sub-
stitution, as it is managed by the font package.

The package is then loaded by the usual com-
mand

\ usepackage { lxfonts }

Please note that the package should be loaded
after having loaded all the other fonts packages.

A demo of the results of the package is contained
in the documentation, see Beccari (2013).

3.6 Navigation bar

The majority of beamer templates has a navigation
bar in the bottom right corner of each slide, as
shown in figure 3.

The symbols, from left to right, are:

Figure 3: Beamer navigation bar

• the overlay icon, a single rectangle with for-
ward and backward arrows to navigate from
an overlay to the others of each slide;

• the slide icon (or frame icon), a set of rectan-
gles with forward and backward arrows;

• a subsection icon, a highlighted line in a sym-
bolic table of contents, with forward and back-
ward arrows;

• the section icon, a highlighted line with
smaller lines below for subsections, with for-
ward and backward arrows;

• the presentation icon, a highlighted symbolic
table of contents;

• the search icon, a magnifying glass with for-
ward and backward arrows.

If these symbols are not needed, they can be dis-
abled with the code

\ setbeamertemplate { navigation symbols }{}

If other symbols are needed, they can be added
with the command \insert with the name of the
symbol attached. For example

\ insertframenavigationsymbol

allows to add the icon to navigate slides backward
and forward.

3.7 Multi-column layout

When building a presentation, it may be useful
to put the content of a slide on more than one
column. For instance, this layout can be useful to
insert into the slide a figure and its explanation on
the right side.

The code for building a multi-column layout is
the following

\ begin { columns }[settings]

\ begin { column }[position]{ width }

content of first column

\end{ column }

\ begin { column }[position]{ width }

content of second column

\end{ column }

...

\end{ columns }

This syntax makes all columns appear on the first
overlay of the slide. If you need to make them
appear one by one, you can use the commands
described in paragraph 3.4.1, for instance \only.

Grazia Messineo, Salvatore Vassallo ArsTEXnica Nº 28, Ottobre 2019

108

3.8 Advanced personalization: new
commands and environments

Beamer offers a wide number of ways to personalize
a presentation: it has commands for modifying the
layout, the theme, and so on.

Over the internet, you can find a lot of personal-
ized templates, you should only search for “beamer
templates” on every search engine.

If you want to create your personalized theme,
you can find a good introduction to personalization
in Fiandrino (2014).

Here we want to show how to create (or redefine)
commands or environment in beamer in order to
make them aware of overlays. We have seen all
along the paper that a lot of commands are rede-
fined to be visible in some overlays and invisible
in other (see paragraph 3.4.1 for some examples).

When defining or redefining a command or envi-
ronment, you can specify in the definition that it
can have a different behaviour on different overlays:

\ newcommand <>{ command name }[argument ←֓

number][default value]{ text}

\ renewcommand <>{ existing command name←֓

}[argument number][default value]{←֓

text}

\ newenvironment <>{ environment name }[←֓

argument number][default value]{←֓

begin text }{ end text}

\ renewenvironment <>{ existing ←֓

environment name }[argument number←֓

][default value]{ begin text }{ end ←֓

text}

The difference with the standard similar commands
of LATEX is that here the number of parameters
accepted is equal to argument number plus one,
being the latter the overlay specification for the
command or the environment to operate.

For instance, the code

\ newcommand < >{\ makemegreen }[1]{{\ color←֓

#2{ green }#1}}

produces a text which is coloured in green on the
specified overlays and in the normal colour on the
others.

Other examples can be found in Tantau et al.
(2015).

4 Other classes to write
presentations

We have shown the main features of the beamer
class to build presentations, as it is a widely used
tool for this purpose.

There are nevertheless many other classes that
can be used. Among the others, we note

• overlays: it allows to write presentations with
incremental slides;

• gridslides: it allows to create free form slides
with blocks placed on a grid. The blocks can
be filled with text, equations, figures and so
on;

• texpower: it is a bundle of packages that pro-
vide an environment for creating pdf screen
presentations;

• ffslides: it is a small set of macros added to
the article class, with the aim to easily de-
sign documents such as presentations, posters,
research or lecture notes, and so on;

• ifmslide: it is used to produce printed slides
with LATEX and online presentations with
pdfLATEX;

• powerdot: it is a presentation class for LATEX
that allows for the quick and easy development
of professional presentations;

• other classes or packages: lecturer, pdfslide,
talk, prosper, fancyslides, elpres, ppower4.

Powerdot is well described in Voss (2012); a wide
range of examples are available in https://www.

ctan.org/pkg/presentations-en.

References

Beccari, Claudio (2007). «I font per le slide
LATEX resuscitati». ArsTEXnica, (4), pp. 82–87.
http://www.guitex.org/home/numero-4.

— (2013). «Lxfonts – set of slide fonts based on
cm». CTAN:fonts/lxfonts.

Fiandrino, Claudio (2014). «Introduzione alla
personalizzazione di beamer». http://www.

guitex.org/home/images/doc/GuideGuIT/

intropersbeamer.pdf.

Pignalberi, Gianluca (2010). «Presentazioni a-
nimate in LATEX». ArsTEXnica, (10), pp. 33–40.
http://www.guitex.org/home/numero-10.

Tantau, Till (2013). «The TikZ and PGF Pack-
ages». http://sourceforge.net/projects/

pgf.

Tantau, Till, Joseph Wright and Ve-
dran Miletić (2015). «The beamer class».
CTAN:macros/latex/contrib/beamer/doc/

beameruserguide.pdf.

Voss, Herbert (2012). Presentations with LATEX.
Lehmanns media, Berlin, 1st edition.

⊲ Grazia Messineo
Università Cattolica Milano – IIS
“Falcone-Righi” Corsico
grazia dot messineo at unicatt

dot it

⊲ Salvatore Vassallo
Università Cattolica Milano
salvatore dot vassallo at

unicatt dot it

ArsTEXnica Nº 28, Ottobre 2019 Beamer Presentations

109

The Toptesi package

Typesetting a PhD thesis with LATEX

Claudio Beccari

Abstract

This tutorial uses the information given in the
previous five ones in order to describe how to use
the TOPtesi LATEX package to typeset a PhD thesis.
This package has a specific option to configure the
typesetting of such a kind of thesis in the format
agreed upon by ScuDo, the doctoral School of
Politecnico di Torino.

Sommario

Questa lezione raccoglie l’informazione fornita dal-
le cinque precedenti al fine di descrivere l’uso del
pacchetto TOPtesi per produrre con LATEX una tesi
dottorale. Questo pacchetto dispone di una speci-
fica opzione per configurare la tipocomposizione
della tesi nel formato concordato con la ScuDo, la
Scuola di Dottorato del Politecnico di Torino.

1 Introduction

The TOPtesi LATEX package (Beccari, 2019c,a)1

to produce theses of different levels has been
around for many years; the successive previous
versions started to become too complicated and
cumbersome. Now it has a modular structure and
a suitable module is selected by expressing options
in the form of key = value; in particular the type
of doctoral thesis to be typeset at the Doctoral
School of Politecnico di Torino is selected with
the key = value pair set to tipotesi=scudo. The
doctoral thesis style and structure are specific for
ScuDo; several other options select other styles for
other thesis types with other structures.

2 The class structure

Figure 1 shows the various modules that form the
TOPtesi bundle. Each module is a file by itself and
options are specified to select which module to use
in order to typeset the desired title page and to
configure the preamble of the document so that
the thesis fulfils its requirements.

The user can specify his/her preferred packages;
not any package, because it is important to avoid

1. The bibliography at the end of this paper contains
many references to bundles and packages shipped with
any TEX system complete installation, be it TEX Live or
MiKTEX. The references that carry the notice “Readable
with. . . ” are all already in the users’ computer where the
TEX system is installed so no Web search is necessary.

conflicts with the bundle modules and settings; but
there is an ample choice.

Notice that the input source file .tex is fed to
a toptesi.cls class, that receives the options and
passes them to the selected modules. The first one
is toptesi.sty; why another package when the class
could do everything is desired? Simply because any
user can choose to employ the .sty package with
a different class, for example book.cls, or report.cls,
or any other compatible class.

Myself, as the author of TOPtesi, I think it is not
worthwhile to do such a mixture, but my opinion is
evidently biased. I just want to emphasise that the
possibility does exist, but unusual classes might
form an unusual couple with toptesi.sty, and might
perform in a bad way. I cannot tell which classes
are compatible with toptesi.sty; I just can say that
report.cls is the base class on which toptesi.sty works
by default. Compatibility exists with book.cls, but
I did not made any tests with other non standard
classes.

Evidently the main class and the main pack-
age, with the possible support of the user loaded
packages, and possibly with the further bundle
topcoman.sty module, cooperate to the form of the
output .pdf file typeset contents.

The various values assigned to the tipotesi key,
select eight different modules to typeset eight dif-
ferent thesis types with different title page arrange-
ments and internal structures.

The topfront.sty module is maintained for back-
wards compatibility; but this module is selected
if no other module has been chosen (no option
or no value specified) or when a wrong or mis-
spelt value has been specified. Chances are that
the compilation ends correctly, but if the user gives
an attentive look to the result s/he might notice,
for example, wrong hyphenation or different labels
on the pieces of information that have been input,
for example a high school name in place of a uni-
versity name. But these occurrences should ring a
bell to the user in order to inform him/her that
some option value is wrong.

3 The option values

Let us describe the eight options

tipotesi=triennale Prepares a title page suited
for a bachelor degree final work and a suitable
structure; no extra packages are loaded
besides the few ones that shall be described in

110

.tex

toptesi.cls

toptesi.sty

O
pt

io
ns

t
i
p
o
t
e
s
i

=
va

lu
e

topfront (default)

toptesi-triennale

toptesi-magistrale

toptesi-dottorale

toptesi-scudo

toptesi-sss

frontespizio

custom

user loaded

packages
topcoman

.pdf

Figure 1: Version 6.x TOPtesi bundle flow diagram

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

111

the following sections. The default language
is Italian, but with the use of the declarations
\english or \italiano (or with suitable
groups or environments) it is possible to switch
back and forth between these two languages.

tipotesi=magistrale Prepares a title page suited
for a master thesis and a suitable structure;
no extra packages are loaded, as with the
bachelor degree option and, similarly, it is
possible to switch back and forth between
Italian and English.

tipotesi=dottorale Prepares a title page and a
suitable structure valid for doctoral theses
in general. This option should be suitable
for PhD students in other doctoral Schools.
Language switching is similar to the previous
thesis types. No extra packages are loaded.

tipotesi=scudo Prepares a title page and an
internal structure suitable with dissertations
to be defended after frequenting the Doctoral
School of Politecnico di Torino. Some other
packages are preloaded, and the default
language is English.

tipotesi=sss This unusual and unique option
is used to typeset a high school final work.
This module was asked for by high school
students who were already familiar with
LATEX. Unfortunately the Italian Ministry
of Education and the Parliament decided
to abolish the final work report and this
year 2019 is the first year where the final
high school state exam does not require the
preparation of a such report. The module is
conserved for backwards compatibility.

tipotesi=frontepsizio This option excludes the
internal module topfront to be used to typeset
the title page, but it loads the frontespizio
package that is alternative to this bundle
module since they are mutually incompatible.
This option does not forbid the user to employ
the alternative package, but the option must
be specified in order to avoid loading what
might be in conflict with the chosen package.

tipotesi=custom This option leaves the user
completely free to compose the title page “by
hand”, that is the user can use a titlepage
environment, where s/he can put whatever
piece of information, typesetting it with any
font of any size, any family, any series and any
shape available for that font. The structure
of the document remains the default one and
almost any extension package chosen by the
user can be loaded.

tipotesi= No option or no value or a wrong value
is specified; this is maintained for backwards
compatibility and as a fall back style in case
of errors.

This variety of choices requires a thick documen-
tation; the file toptesi.pdf and toptesi-it.pdf

are part of the bundle; they are directly accessible
through the texdoc terminal command with the
following syntax2:

texdoc toptesi.pdf

texdoc toptesi-it

The first text is completely in English, but most
of it is the documentation of the code; in spite of
this, when the codes of the various modules are
commented, there are many explanations, sugges-
tions and examples of how certain commands may
be used, or certain solutions may be tweaked, or
certain strings may be adjusted to the users’ needs.

The second text is mostly in Italian, but the
parts that are connected to the tipotesi=scudo
option are in English; it deals mostly on how to
compose the various thesis types and it explains
why there are so many differences in the title pages.

4 General information for various
thesis types

The structure of a thesis may vary according to
its level and to the scientific domain it is about.
Let us deal only with the three university levels:
bachelor, master, and doctoral thesis types.

4.1 Bachelor final work or bachelor thesis

In some countries and in some universities the
bachelor university courses are completed with
a final work that generally deals with what has
been learned during the degree course: it is “just”
an application of what the candidate did actually
learn during his/her studies. No one expects that
the final work contains new theoretical aspects.
The value of the final work is measured through
the quality of the application. Sometimes this final
work is labelled as bachelor thesis; actually it is
not excluded that something new appears in such
a thesis, but in general it is a smart application of
known practices.

This has an influence on the structure of the
thesis; in the sense that initial chapter(s) on the
state of the art are usually missing, and the same
is valid for the final chapters: conclusions, further
investigation, possible developments, and the like.

Therefore this type of document contains the
title page, seldom it contains a legal page, certainly
it contains the table of contents, and possibly the
list of figures and that of tables. There will be
an introductory chapter that describes what the
whole thesis is about and what was its purpose; one
or more chapters describing what has been done;
such chapters, depending on the scientific domain,
might be rich of figures, drawings, photographs,
and the like; they will contain tables of measures,
or material specifications, or tables of temporary

2. In the first case the extension is compulsory, because
without it the second file is opened.

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

112

or final results, or similar tables; if the thesis deals
with the design of an equipment, of a machinery, of
a plant, or a building, the executive drawings may
require large sheets of paper, folded in a particular
standard way, or outside the thesis collected in
cardboard tubes.

Some of this material may be created with LATEX,
but some, especially large drawings, require spe-
cial drawing equipment and/or special software
and special printers. Here I will not deal with the
special resources external to the typesetting proce-
dures.

Text and tables are done in LATEX; the latter are
more difficult to typeset, because it is difficult to
preview what is actually desired to obtain.

4.2 Master thesis

Master theses are real theses. They are supposed to
be defended in a formal examination session where
the candidate should describe his/her work and
defend it against the objections of the examining
committee. This type of examination is the tradi-
tional one that ends with a laurel wreath (corona
laurea in Latin) to be worn by the new Master.
Several mottos contain the word, in particular that
of the late Institution of Electrical Engineers (iee,
now merged with the iet): «Lauream ferat qui
meruit». The academic title in Latin is “Magister”,
the word where the name “master” comes from.

A master thesis should contain something really
new, some new theory, or some demonstration that
some conjecture is true. Sometimes a very good
master thesis may receive the declaration of being
worth of publishing.

Evidently the introductory part and the con-
cluding part of a master thesis are wider and more
detailed than the corresponding parts of a bachelor
thesis; nevertheless it is not the number of pages
the element that distinguishes a really good thesis;
among the glories of Politecnico di Torino there is
an engineer who stated and proved the theorem
of virtual works, now known as the Theorem of
Castigliano; Castigliano’s thesis did not go over
thirty pages.

The typographical elements of a master thesis
are more or less the same as those of a bachelor
thesis. The title page is different and the legal page
is often required.

4.3 The doctoral dissertation or PhD
thesis

Similarly, the doctoral dissertation is an even more
complete work of research than the master the-
sis; very often it reports on a research that the
candidate developed during his/her study period
on a PhD degree course, and partial results have
already been published on scientific journals.

The Latin academic title is “Doctor”, where the
modern title comes from, including the adjective

“doctoral” that qualifies the thesis, often called
dissertation.

The typographical elements of a doctoral disser-
tation are not very different from those already
described for the other theses. The title page might
contain a lot of information concerning the formal
examining commission.

The disciplines dealt by a doctoral dissertation
are the most varied and go deep into the details.
Every scientific discipline has its jargon and its
habits. It is possible to distinguish a thesis in hard
disciplines from those in soft ones by looking at
the footnotes and bibliographies; the body of the
text may contain a lot of mathematics, or a lot of
verbatim citations of other authors. Here comes
the utility of a specific LATEX class in order to
properly typeset these elements.

4.4 The thesis bibliography

All thesis types contain a bibliography; single ref-
erences in this bibliography are cited again and
again in the text body.

There are many ways to typeset bibliographies
and to cite their references. LATEX offers several
packages and programs to handle these typograph-
ical units.

The best way to handle a bibliography is to
write a bibliographic database where each record
describes a reference in a way suited to its nature:
a book, a report, a chapter, a contribution to a
collective book, and article in the proceedings of a
conference, an article in a journal, another thesis,
and so on; each type of reference may have different
elements: title, author(s), publishing house with
its location, volumes of a collection of proceedings,
dates, conference name and location, and so on.
Such a database is precious; but is not in a form
that LATEX can directly handle in order to produce
the references in a recognised style and the cita-
tions in the form needed by a specific discipline.
LATEX provides several bibliographic style files and
the TEX system installation has at least two main
programs that extract the necessary information
from the bibliographic database and feed such in-
formation to LATEX in a form that allows it to
typeset the bibliography with the proper style.

5 Lists and tables

Lists are of three main groups: itemising, enumer-
ating, descriptive lists. The items listed into an
itemising list are marked with a not alphabetic
symbol that is equal for all items; more often than
not this symbol is a bullet.

Enumerations number their items with ordered
symbols, typically arabic numbers, upper- or low-
ercase roman numbers, lower- or uppercase letters
of some alphabet. It is generally possible to label
one or more items of an enumeration so as to recall
them for reference purposes.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

113

Descriptions are similar to itemisations, where
each item is introduced by a word or a short phrase
that is being described in the item body; but,
differently from itemisations, each item may consist
of one or more full paragraphs.

In technical writings itemisations are part of the
paragraph that introduces them; therefore items
start with a lower case initial first word and never
end with a full stop, except possibly the last item
in the list. This implies that the list items cannot
contain more than a fraction of a paragraph; rather
it contains simple sentences, or simple phrases,
or single words; punctuation at the end of each
item may be made with commas and semicolons,
never periods or other terminal punctuation signs;
the item final punctuation may be omitted in a
displayed itemisation.

On the opposite, enumeration and description
items form paragraphs and start with an uppercase
letter and end with a full stop; such items may
contain more than a single paragraph.

These details must be taken care of by the user,
they cannot be handled in an automatic way by
LATEX.

Tables may be of different types; they may be
small or large, remain within the margins of the
printed block, or be wider; they may be in a normal
position or rotated 90◦ counterclockwise; they may
occupy one page or may be several pages long.

For each of these tables LATEX has various solu-
tions and it should be the user responsibility to
know what to do to handle a specific table and/or
which package to load that has a ready to use
solution.

In all cases the user should plan a table very
carefully; yes plan, because a table is not simple
text, where LATEX can do a beautiful job for split-
ting a sequence of words or similar entities into
lines of equal measure while minimising the inter
word space. Tables are bidimensional objects and
must be handled in a different way; LATEX can do
many things except typesetting in a beautiful way
a badly planned table.

6 Images of any kind

LATEX, as a mark up language, has all the necessary
commands for both drawing certain images and
importing certain types of already made images.
In any case it is impossible to produce any image
in a LATEX document simply by dragging a graphic
file from a folder to the editing window, as it is
possible to do, in certain cases, with some word
processors. Let us separate these two operations.

Importing images This is relatively sim-
ple because the fundamental command
\includegraphics is self explanatory. The
point is how to use correctly the various
options accepted by this command, and which

kind of images the command can include;
for what concerns the options, they will
be discussed further on; for what concerns
the images, all typesetting engines, except
the simple latex, can import images in the
formats (a) EPS, PDF, and MPS, that are
or may be of vectorial nature; and (b) JPG
and PNG, that refer to bitmapped formats;
such image files may be imported if and
only if they are well formed and contain the
metadata that specify their characteristics, in
particular their natural dimensions; otherwise
it is necessary to include such dimensions
within the options to the \includegraphics

command. This method can be used also
for other bitmapped image formats, but
it is often difficult to discover the correct
image natural dimensions. In any case such
bitmapped images cannot be scaled at will:
if they get downscaled they might loose
definition; while if they are upscaled, their
granularity becomes very evident: see figure 2
to notice the difference with a bitmapped
character and a vectorial counterpart, both
enlarged by a very large scaling factor.

Drawing images Any TEX system installation
contains several packages to make draw-
ings; the native LATEX environment picture,
that can be extended by loading package
pict2e ((Gäßlein et al., 2016); this exten-
sion was already documented by Leslie Lam-
port in the second edition of his LATEX man-
ual, (Lamport, 1994)); a larger extension is
obtained by loading package curve2e, (Bec-
cari, 2019b), that extends pict2e — fig-
ure 1 was drawn within a picture environ-
ment extended with package curve2e. Beauti-
ful drawings may be created with the powerful
packages TikZ (Tantau, 2019) and pgfplots
(Feuersänger, 2018); or with the even more
powerful package PSTricks; even with META-
POST, (Hobby, 2018); with the interactive
interface asymptote (Hammmerlindl et al.,
2018); with the external program gnuplot

(Miklavec, 2013).
Furthermore it is possible to download from
the Internet other programs that are LATEX
aware. The cited packages allow to execute
“programmed drawings” while the cited
programs generally work in an interactive
mode so that the user works with his/her
mouse instead of writing code. The subject
is too large to be described here even if some
information has been given in the previous
tutorials. For what concerns the packages
and the programs included in any complete
TEX system installation, the documentation
may be read by simply typing in a command
window texdoc followed by the name of the

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

114

♂
(a) (b)

Figure 2: Comparison between an enlarged bitmapped
charcter and its vectorial equivalent

package or of the program; this is what has
been recalled in the bibliography of this paper.

It is evident that if vectorial drawings are avail-
able their rendering is much better than with the
bitmapped ones. For photos the lossy compressed
bitmapped JPG format is acceptable, provided
that the pixel density (pixels per inch) is not too
small: a density of 150 pixels per inch is generally
good, but remember that the graphic file quadru-
ples its size if the pixel density is doubled; the user
must seek a compromise between pixel density and
quality of the rendering. The lossless compressed
bitmapped PNG format is better for line drawings
compared to the JPG one, but the compression
is less effective than with JPG drawings; at the
same time the lossy nature of the JPG format
may degrade line art by superimposing displaced
phantom replicas of the main drawing.

Vectorial formats are preferable, but beware: a
vectorial file, such as EPS or PDF, may contain
bitmapped images; therefore control very atten-
tively before using such a “fake” vectorial image;
such control is very simple: open the vectorial im-
age to be tested and enlarge it at least by a factor
of 10: if the quality of the image does not change
it is truly vectorial, otherwise it is a vectorial con-
tainer of a bitmapped image.

7 Mathematics

The mathematics of hard sciences (experimental
sciences) deal with quantities, i.e. symbols that
represent the pair measure plus unit of measure,
rather than mathematical variables; it is fundamen-
tal what has been described in a previous tutorial
on typesetting mathematics and on using package
siunitx (Smith, 2018).

Nevertheless there are some international regu-
lations, (ISO-31/XI, 1978), that require a specific
usage of math fonts for physics and technology;
in general mathematics are typeset with special
characters that are classified with the name of
math groups; these include the operators, letters,
symbols, and extensible delimiters groups; special
documents may require other groups. The latter
two groups are self explanatory; the former ones
may be confused with the roman and the italic

fonts; they are not to be confused, because even
if some of the glyphs appear identical, their prop-
erties are different. With the letters group the
difference is very noticeable: the phrase different
affinity (written with a text italic font) becomes
differentaffinity with the letters group, and it
becomes differentaffinity with italic font used by
the \mathit command. The lack of ligatures and
inter-word spaces is evident with the letters group;
with \mathit the ligatures are still there, but the
inter-word spaces are still missing.

The iso regulations (ISO-31/XI, 1978) in general
require specific usage of bold face series; roman,
italic, sans serif upright, and sans serif oblique
have special meanings, the details of which may be
found in the mentioned regulations and in other
texts; I would suggest the freely downloadable man-
ual (Thompson and Taylor, 2008), that explains
how to use units of measure and how to write math-
ematics; it also adds several pieces of information
that are very difficult to find elsewhere.

8 Nomenclature and glossaries

Strictly speaking a nomenclature list or a glossary
are not needed in a thesis of any type. But in
doctoral theses, that deal with research, a nomen-
clature, or glossary, or acronyms list may be useful.

LATEX offers several packages to typeset such
lists; the most common packages are the nomencl
(Veytsman et al., 2019), glossaries (Talbot,
2019), and acronym ones (Oetliker, 2015). It
should be stressed that such packages may com-
pose several such lists, but each one is specialised
in one of them; they require the use of an external
program to sort and format each entry; more is
said below in connection with the ScuDo doctoral
theses.

9 Indices

Again indices are not necessary in any thesis type.
Nevertheless the doctoral theses, due to their ad-
vanced contents, may benefit from the presence of
one or more indices.

Here we suggest the imakeidx package by Gre-
gorio (2016) because it can solve all the problems
of index production; it is highly configurable so
that it is possible to produce indices with a specific
name different from the default one and from the
names of other indices in the same document; it
is possible to decide to compose in one, two, or
three columns, and a specific index style for the
entries, plus a nice series of other customisations.
The tipotesi=scudo option preloads this package.

The documentation of imakeidx (Gregorio,
2016) explains not only the usage, but offers a
variety of examples and various tricks to tweak the
entry style.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

115

10 Archivable format

Most universities require every student to submit
a file containing his/her thesis to be archived for
legal documentation and possible information for
other people; Politecnico di Torino is one of them.

Any archivable document must fulfil the require-
ments stated by specific iso regulations. Such reg-
ulations have been published and updated several
times, (ISO 19005-1, 2005; ISO 19005-2, 2011;
ISO 19005-3, 2012); they are labeled by acronyms
such as PDF/A-1a, PDF/A-1b, and so on.

All regulations require the pdf format; they
require also certain requirements on imported pic-
tures and their color profiles; they require that the
used fonts are embedded in the file, at least the
subsets of the used characters, and that the fonts
be encoded according to the UNICODE standard;
no character in any font should have a vanishing
width. Moreover some of these regulations require
that the contents of the file be of the kind known
as Tagged PDF.

As of today, the TEX system typesetting pro-
grams based on the LATEX mark up cannot produce
tagged pdf files; in this very guIt Meeting another
speaker describes the work that is being done in
order to introduce this feature into the output pdf
files. Possibly in the near future all the programs
that use the LATEX mark up, at least LuaLATEX, will
be capable of producing tagged pdf files; LuaLATEX
is also convenient in order to handle UNICODE
encoded fonts.

pdfLATEX cannot be used because it can handle
only one-byte encoded fonts; the first “page” of
the UNICODE standard contains only the ascii
one-byte encoded subset, but this subset does not
contain either accented characters, or accent glyphs
to superimpose to the unaccented ones; therefore
pdfLATEX is out of the game.

X ELATEX, also, is out of the game; it is not im-
possible to use it, but in order to end with an
archivable format it is necessary to do some post-
processing and to accept some compromises.

Therefore only LuaLATEX is effectively suitable
for producing PDF/A files, at the moment just
non tagged pdf ones. Therefore the iso standard
obtainable is the one labeled PDF/A-1b.

Some universities would like to have archivable
documents accessible to impaired readers; the of-
ficial iso regulations for this task are still under
discussion, but work is being done also in the TEX
world, in particular by the Team on Accessibility
at the University of Turin. This Team has already
produced a package suitable for use by blind or
impaired vision readers (Ahmetovic et al., 2018);
work is still in progress.

11 Comments

The preceding sections mostly describe the type-
setting problems that are common to any thesis
type. Now it is time to concentrate on PhD the-
ses, in particular those that are conformant with
the requirements of the ScuDo Doctoral School of
Politecnico di Torino.

12 TOPtesi and its tipotesi=scudo

option

What has been described in section 4 about the-
sis types in general applies also to those to be
developed at the ScuDo Doctoral School unless
something special is unique for the latter ones.

The specific option tipotesi=scudo, to be speci-
fied to the toptesi class, configures the title page,
the copyright or legal page in the proper way, and
preloads a number of packages that are considered
essential for doctoral theses in the scientific do-
mains that form the various PhD degree courses
in the ScuDo Doctoral School.

All or most of these degree courses find their
counterparts in the international Institutions that
deal with engineering professions, including some
professions dealing with architecture. I mention
only the Institution of Electrical and Electronics
Engineers (ieee) simply because it is closer to my
scientific interests, but this is not a selective choice.

12.1 Facility for using either pdfLATEX or
LuaLATEX

With the tipotesi=scudo option the preamble of
the main source file is suitable to detect which
typesetting program is being used: pdfLATEX or
LuaLATEX. The former is perhaps the most suitable
to use when working on the thesis drafts before the
final version; the latter is suitable for producing
the final PDF/A compliant pdf file.

Actually it is up to the user to configure the
preamble for this task: the TOPtesi bundle con-
tains a toptesi-scudo-example.zip file that has
a complete commented example that is worth
studying in detail. Neglecting the comment lines,
this example file preamble contains the following
lines:

1 \documentclass[%

2 corpo=12pt, % optional;

3 % default font size:= 10pt

4 twoside, % recommended

5 tipotesi=scudo,

6 mybibliostyle, % necessary only if

7 % bibliography is typeset

8 % with different style

9 numerazioneromana,% roman page numbering

10 % just for testing

11 % don’t use in your thesis

12]{toptesi}

13

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

116

14 \ifPDFTeX

15 \usepackage[utf8]{inputenc}%

16 \usepackage[T1]{fontenc}

17 \fi

18 ...

19 \ifPDFTeX % using pdflatex

20 \usepackage{lmodern} % Default

21 %\usepackage{newtxtext,newtxmath}%

22 % Times eXtended for text and math

23 %\usepackage{fourier}% Utopia,

24 % Helvetica and "monospace = ?"

25 \else % using lualatex (or xelatex)

26 \usepackage{fontspec}

27 \defaultfontfeatures{Ligatures=TeX}

28 \setmainfont{Libertinus Serif}

29 \setsansfont{Libertinus Sans}

30 \setmonofont{Libertinus Mono}%

31 [Scale=MatchLowercase]

32 \usepackage{unicode-math}% add special

33 % math style option here

34 % for example [math-style=ISO]

35 % define one math font

36 \setmathfont{Libertinus Math}%

37 \fi

38 ...

39 \makeindex[intoc]% collect material

40 % to one index and list

41 % the index in the

42 % table of contents

43 ...

44 \ifmybibstyle % customise bibliography

45 \usepackage[autostyle]{csquotes}%

46 % necessary for biblatex

47 \usepackage[backend=biber,

48 style=philosophy-classic,

49 scauthors=all,

50 sorting=nyt,

51 natbib]{biblatex} % LaTeX

52 % specific bibliography

53 % handler

54 \addbibresource{\jobname.bib}%

55 % bibliographic data base(s)

56 \fi

57 ...

58

59 \ifPDFTeX \usepackage{indentfirst}\fi

60 \raggedbottom

61

62 \begin{document}

This (partial) preamble needs some comments.

1. The lines that contain only three dots, denote
skipped material that is not worth comment-
ing here; they mostly deal with variants re-
quired when the PDF/A version of the thesis
is required.

2. Lines from 1 to 11 show the document class
statement with the options; please notice that
the last two options are discouraged; option
numerazioneromana is for using roman numer-
als in the front matter; actually this style of
numbering is not necessary in modern doc-

uments; it was necessary when typographies
worked with metal type. In some disciplines
this traditional numbering is still appreciated,
but there is absolutely no need to use it simply
because it is available; use it to test the result,
but avoid using it in your real thesis.

3. The mybibliography option is discouraged be-
cause in scientific publications dealing with
the disciplines connected with engineering,
the concise numerical style is highly preferred.
Nevertheless some disciplines (or some PhD
students) prefer the author-year style or some
other style, so they can implement their choice,
but they have to explicitly use a code similar
to the one shown in lines from 43 to 55.

4. The various tests produced by the \ifPDFTeX

conditional command detect if the thesis is
being typeset by using pdfLATEX; else LuaTEX
or X ELATEX is assumed, even if X ELATEX is
discouraged as explained before.

5. In lines from 13 to 16 the necessary encod-
ings are specified if pdfLATEX is being used;
it is not necessary to specify such encodings
with LuaLATEX because UNICODE (or UTF-
8, UNICODE Transformation Format) is as-
sumed for both input and output.

6. Lines from 18 to 24 provide the normal use
of the Latin Modern Fonts but offer a couple
of (commented out) alternatives that may re-
place the standard Latin Modern fonts: the
Times fonts or the Utopia ones. According to
my experience, the Latin Modern fonts may
appear “too common”, but there is a reason;
they have optical sizes and are much better
suited for technical documents than any other
font that does not exhibit this feature. But,
of course, this is a question of personal taste.

7. Lines from 26 to 36 configure the neces-
sary fonts for typesetting with LuaLATEX; the
font handler fontspec (Robertson, 2019b) is
loaded; by default it uses the OpenType ver-
sion of the Latin Modern fonts; in this example
the Libertinus serif, sans serif, and teletype
text fonts are loaded; since math is an im-
portant part of any technical discipline, the
unicode-math package (Robertson, 2019a)
is loaded and the Libertinus Math font is se-
lected. A comment specifies that it is possible
to specify the math-style=ISO option to the
unicode-math package. I strongly recommend
to use this option because it fulfils almost all
the requirements of the iso regulation concern-
ing the style of writing prescribed for physics
and technology.

8. Line 39 configures the only index that is be-
ing produced; the command not only enables
collecting the material for the index, but also
specifies that an entry for such an index should
appear in the table of contents.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

117

9. From line 44 to line 56 there are the
conditional settings to configure a cus-
tomised bibliography; this is just a model,
but by experimenting with the example
toptesi-scudo-example.tex the user can
see what it typesets by commenting or un-
commenting the class option line 6. Of course
every time a style change is done it is necessary
to run the typesetter, then the bibliography
processor biber, than again the typesetter;
certainly the user has the necessary experience
on these points and it should be superfluous
to recommend this procedure.

10. Eventually in line 59, if pdfLATEX is being
used, the small package indentfirst (Carlisle,
1995) is called for indenting the first para-
graph of each sectional unit; by default such
first paragraphs are not indented, while with
LuaLATEX they are indented. This little pack-
age provides an identical behaviour with both
typesetting programs.

11. The last declaration in line 60 specifies that
pages should be typeset with a ragged bot-
tom. Of course this is an optional setting; this
particular example file contains many large
objects, therefore, in order to vertically justify
the text block, some glue would be inserted
between paragraphs and above and below ob-
jects in display; this procedure guaranties that
all text blocks have the same height, but that
filling white space is very annoying. Personally
I prefer a few pages to have uneven bottoms
than to have filling white space. Of course,
with a different contents, the specification
\raggedbottom might be superfluous.

The user can examine the source file of toptesi-

scudo-example and examine what has been omit-
ted from this description. Also the typeset docu-
ment explains certain details, besides displaying
several examples.

The user can copy the .tex file to another file
while changing its name: and s/he can play exper-
iments by changing some settings, or by testing
some other functionalities.

12.2 Splitting the source .tex file

The use of commands \includeonly and
\include help maintaining everything connected
with single chapters or initial or ending parts of
the thesis pretty clear and separate. The preamble
of the example file contains this short stretch of
code:

1 \includeonly{%

2 Chapter1/chapter1,%

3 Chapter2/chapter2,%

4 Chapter3/chapter3,%

5 Appendix1/appendix1,%

6 Appendix2/appendix2,%

7 References/biblio%

8 }

The various chapters are simple files starting with
the \chapter command and possibly ending with
\endinput; they do not contain any preamble and
are saved in their own folder; all folders must be
subfolders of the one that contains the main file.

The list of files to be included are written one per
line; in this way if one comments all lines except
one, it is possible to typeset just that file, with
the advantage that all cross reference data of the
other files remain available, of course only if the
other files have already been typeset. In this way
one might compile the first chapter alone; when
it is almost complete, its line gets commented out
and the next line is uncommented; therefore a
new typesetting run is done, and only chapter 2
is typeset and any cross reference to chapter 1 is
correctly used. The process proceeds quickly as far
as the end of the document, without loosing time
in typesetting again and again chapters that have
already almost reached their final state. When all
chapters are ready, it is time to uncomment all the
included file names, in order to fix some residual
details, and the final typesetting run creates the
whole document.

Of course this trick is applicable to any file to
be typeset with any LATEX typesetting engine; here
it is recommended because the completion of a
doctoral thesis, with its delicate structures and
advanced technical language in English (which is
the default language for the ScuDo doctoral theses)
requires a very attentive reading and correcting of
the various drafts; splitting the job into simpler
parts eases the task.

12.3 The ScuDo title page and the legal
page

Again the example file shows how to typeset the
title page and the legal page. The code of the file
is highly commented in order to explain variant
possibilities. Here I strip the comments out and
describe the basic ThesisTitlePage contents.

1 \begin{ThesisTitlePage}

2 \PhDschoolLogo{TiTDocScCropped}%

3 % Fake logo for this example

4 \ProgramName{Energy Enginering}

5 \CycleNumber{29.th}

6 \author{Mario Rossi}

7 \title{Writing your Doctoral~Thesis\\

8 with \LaTeX}

9 \subtitle{This document is an example

10 of what you can do\\with~the~TOPtesi

11 class}

12 \SupervisorNumber{2}

13 \SupervisorList{%

14 Prof.~A.B., Supervisor\\

15 Prof.~C.D. Co-supervisor}

16 \ExaminerList{%

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

118

Doctoral Dissertation
Doctoral Program in Energy Engineering (29.th cycle)

Writing your Doctoral Thesis
with LATEX

This document is an example of what you can do
with the TOPtesi class

Mario Rossi
* * * * * *

Supervisors
Prof. A.B., Supervisor

Prof. C.D. Co-supervisor

Doctoral Examination Committee:
Prof. A.B., Referee, University of …
Prof. C.D., Referee, University of …
Prof. E.F., University of …
Prof. G.H., University of …
Prof. I.J., University of …

Politecnico di Torino
February 29, 2123

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivativeWorks 4.0 International: see www.creativecommons.org.The textmay
be reproduced for non-commercial purposes, provided that credit is given to the original
author.

I hereby declare that, the contents and organisation of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

. .
Mario Rossi

Turin, February 29, 2123

Figure 3: The title page and the legal page

17 Prof.~A.B., Referee, University of \dots\\

18 Prof.~C.D., Referee, University of \dots\\

19 Prof.~E.F., University of \dots\\

20 Prof.~G.H., University of \dots\\

21 Prof.~I.J., University of \dots}

22 \ExaminationDate{February 29, 2123}

23 \Disclaimer{%

24 \noindent I hereby declare that, the

25 contents and organisation of this

26 dissertation constitute my own original

27 work and does not compromise in any way

28 the rights of third parties, including

29 those relating to the security of

30 personal data.

31 }

32 \end{ThesisTitlePage}

The example makes reference to the PhD School
logo; in this case the imported logo is a fake one,
because the original ones are downloadable only
by the students of the ScuDo doctoral school from
a reserved Internet address that I cannot access;
the School Registrar enables each student to access
the site.

All the personal names of this example are fake
ones; even Mario Rossi is the Italian equivalent
of the proverbial John Smith in English speaking
countries.

As it may be seen in figure 3 the logo is at the top
of the page and the other pieces of information are
distributed on the page with adequate labels. Such
labels might be changed (when allowed), by using

special commands that can be found in the English
part of the already mentioned documentation file
toptesi-it.pdf.

In figure 3 there are the statements for the li-
cence related to the contents of the document, and
the disclaimer where the signer, who is supposed
to sign in original on the dotted line, declares that
s/he respected both the intellectual property of
others and that s/he did not violate the privacy
rights of third persons. This disclaimer has been
agreed upon with the Director of the ScuDo doc-
toral school and cannot be changed, while the
“signature” part may be customised.

13 Structuring the thesis

It is not mandatory to segment the whole document
in partial files, as already described, but is very
useful.

It is very important to divide the inner material
in front, main and back matters; each of these
divisions may be further divided.

In table 1 it is possible to see the sequence of
the major sections, front, main and back matter,
and the placement of numbered and unnumbered
chapter level segments of a PhD thesis.

Most of the major sectioning with TOPtesi is
automatic and does not require intervention from
the user. Possibly the user has to avoid using the
starred or unstarred \chapter command in the
front matter, because the first occurrence of this

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

119

Table 1: Stucture elements of a PHD thesis

Front matter

Half title Generally absent in a PhD thesis.
Title page As specified by the ScuDo doctoral School.
Legal page As specified by the ScuDo doctoral School.
Dedication It is better to avoid dedications in PhD theses.
Acknowledgements Very seldom necessary. See below
Foreword Not necessary in a PhD thesis.
Table of contents It may be followed by the list of figures and the list of tables.
Introduction A PhD thesis should have an introduction, an unnumbered chapter that may

appear in the table of contents. The author describes the structure of the
thesis and shortly describes the motivation of performing his/her research
in that particular domain; sometimes, and in very special circumstances
s/he may acknowledge the support received by other people external to
Politecnico di Torino, or external Institutions.

Main matter

Numbered chapters A sequence of structured chapters, divided in sections, subsections and other
similar hierarchical divisions; generally sections below subsections are not
numbered; even if they are, they do not appear in the table of contents.

Numbered appendices Appendices, if any, appear at the end of the main matter only if they are
more than one, and therefore are numbered.

Back matter

Single appendix A not numbered single appendix appears at the beginning of the back matter.
Bibliography One or more bibliographies appear after the possible single appendix; gen-

erally there is just one bibliography, but sometimes the references may be
arranged in separate lists. Often the search of information useful for the
research at the base of the thesis was found in the Web. Each website entry
should contain the date of the last visit, otherwise the information is useless.

Glossary Glossaries, nomenclature lists, acronym lists, and the like are optional.
Index Optional in a PhD thesis, but not useless; one or more indices are generally

present in reference manuals rather than in theses.

command switches from front to main matter set-
tings. Alternative commands for a summary or
a dedication or an acknowledgements section are
already available in order to avoid an unwanted
shift to main matter.

But the problem may arise only with the Intro-
duction; if this consists of a few pages and is not
structured, an unnumbered chapter is in order, but
if this introduction is long and possibly structured,
then it is better that it is a numbered chapter
and therefore the normal \chapter command is
in order.

If a long not numbered and not structured In-
troduction is necessary the workaround is this:

1. Do not use roman numerals for the folios of
the front matter.

2. Use the following code

\setcounter{secnumdepth}{-1}

\chapter{Introduction}

〈Introduction body〉
\setcounter{secnumdepth}{2}

In facts the level for numbering chapters (see
table 2) is lowered to −1; then after the Intro-

duction is finished and before using again the
\chapter command the level is restored to
its original value of 2. It is impossible to use
groups to limit the scope of the new setting of
the LATEX counter to the group, because the
\setcounter command assigns a value to the
named counter in a global way.

14 The main matter

The main matter has all sectional units well num-
bered in a hierarchical way until a level that by
default is 2; see table 2; they are listed in the table
of contents to level 1. These values may be modi-
fied by changing the values contained in a couple
of LATEX counters:

\setcounter{secnumdepth}{〈level〉}
\setcounter{tocdepth}{〈level〉}

If the user wants to customise the table of con-
tents in such a way that it contains also the entries
for other sectioning commands, s/he can use the
command \setcounter because LATEX counters
may be assigned values only this way; but remem-

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

120

Table 2: Levels of sectional units

Sectional unit Level

part -1
chapter 0
section 1
subsection 2
subsubsection 3
paragraph 4
subparagraph 5

ber: the value assignment is global and there is no
grouping that may delimit its scope.

Obviously each chapter is long enough to be
sectioned in a hierarchical way. Remember: it is
meaningless to create a chapter with just one sec-
tion, as well as to create one subsection within one
section, and so on. Once a sectioning level contains
any number of sectioning units of higher level, it
cannot stop until a new section of the same level
is started. More clearly: section 2 of chapter 3 is
divided into subsections the first of which needs
not be immediately after the title of section 2, but
the last subsection of section 2 ends only when
section 3 starts.

Any sectional unit contains plain text and may
contain some material in display. Let us distin-
guish floating objects from fixed position objects
in display. The former objects float until the typo-
graphical rules encoded into the class let them be
extracted from their stack and actually inserted in
the output pages. The latter are relatively large
objects of different nature: they may be titles, for-
mulas, tables, figures, and so on, and they cannot
be broken across pages.

14.1 Formulas in display

A simple formula in display occupies a vertical
space on the page that is equivalent to at least
three lines of text; if the formula contains large
operators and fractions it may occupy even more
vertical space; if the formula is very long, it may
occupy a lot of vertical space that cannot be broken
across pages; arrays of formulas occasionally might
be broken across pages if suitable commands are
used and, certainly, if the array of formulas is not
grouped by a large brace.

Let us make an example: everybody knows that
the second degree equation3

x2 + 2ax+ b = 0

3. Sometimes the general solutions of the secondo degree
equation refer to general coefficients, such as in ax2+bx+c =
0. Elementary manipulation of the general equation, brings
it to the form used here.

has its solutions given by

x1,2 =

−a±
√
a2 − b if a2 > b

−a if a2 = b

−a± i
√
b− a2 if a2 < b

It is evident that the three forms of the solution
cannot be split across page breaks (nor across
columns when typesetting in twocolumn mode).

In any case the toptesi.cls class with option
tipotesi=scudo preloads a number of packages;
among these it preloads the amsmath (American
Mathematical Society, 2018), amsthm (Amer-
ican Mathematical Society, 2017), and, only
when typesetting with pdfLATEX, amssymb (Amer-
ican Mathematical Society, 2013); therefore
the whole machinery made available by the Amer-
ican Mathematical Society is already available;
the user is invited to read the documentation of
these packages, because they offer the user a large
number of functionalities very useful for technical
writings.

In typesetting mathematics the user should pay
attention to the iso rules concerning physics and
technology (ISO-31/XI, 1978); s/he should pay a
lot of attention to the various fonts that must be
used for this kind of math. In short terms the iso
rules say the following.

1. Math italics must be used for all scalar vari-
ables and physical constants.

2. Serifed upright fonts must be used for function
names, mathematical constants, and super-
and sub-scripts that represent appositions to
the variables.

3. Bold italics are used for matrices and vectors.
4. Bold roman fonts are used for sets, for which

the double stroke blackboard bold, if available,
may also be used.

5. Upright sans serif fonts are used to label ob-
jects in descriptive physical diagrams.

6. Oblique sans serif fonts are not used.
7. Upright bold sans serif fonts are not used.
8. Oblique bold sans serif fonts denote tensors.

Pay attention to Greek letters: by default
pdfLATEX uses oblique lower case letters and up-
right uppercase ones; iso rules require them all
to be oblique when they represent quantities;
with LuaLATEX and the option math-style=ISO
to unicode-math this situation is corrected; with
pdfLATEX one may resort to the pm-isomath pack-
age that provides a lot of commands to use the
proper family, series and shape for all symbols, not
only the Greek ones. But observe the following
three different uses of the symbols rendered with
a Greek pi: π designates the transcendental math
constant 3.141 592 653 589 793 . . . ; π represents the
measurable quantity “flat angle”; π represents the
physical particle “pion”; π may represent a ten-
sor. The pm-isomath package is incompatible with

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

121

LuaLATEX and is automatically skipped if the doc-
ument is typeset with this program. Moreover the
commands to address the various fonts proper-
ties and the single required glyphs are different
from those used with unicode-math with the math-
style=ISO option; see the documentation of both
packages to find out the differences. See also the
documentation of package isomath, (Milde, 2012);
pm-isomath was created to override some isomath
limitations; in facts the latter package provides
full functionality only when using certain math
fonts; pm-isomath supposedly works with any font
collection, but with some compromises.

Of course there is more than the above short sum-
mary, which can be used as a simplified reminder
that things are a little more complicated than what
we might remember from our early studies.

For physicists and technologists (engineers) the
iso regulations forbid empirical equations between
measures, because only the relations between quan-
tities are admitted. Furthermore only the SI units
are allowed and any other unit of measure is forbid-
den; therefore no CGSm, no CGSe, no CGS-Gauss;
no British or American units. The use of the siu-
nitx (Smith, 2018) package helps very much to use
quantity equations, to typeset tables containing
quantities, and so on.

One of the difficult things to remember is the
fact that appositions to the quantity symbols must
be typeset with roman fonts, while mathematical
subscripts must be typeset with italic math fonts:
therefore Vmax is correct, while Vmax is wrong; if
V represents a voltage, Vi may denote an “input”
voltage, while Vi represents the i-th element in an
ordered set of voltages.

Package amsmath allows to typeset matrices,
equation alignments; long expressions split at
proper points in order to fit the measure, and many
other features. For matrices see some examples in
table 3.

Table 3: The six matrix types that can be created with the
various commands made available by the amsmath package.
The matrices in this table are built with the environments
matrix, pmatrix, bmatrix, Bmatrix, vmatrix, Vmatrix

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

1 2 3
4 5 6
7 8 9

∥

∥

∥

∥

∥

∥

File toptesi-scudo-example.tex contains
some more examples. But I think that the best
way to become an “equation expert” is to practice
with all commands and environments described in
the documentation of the amsmath package.

Beware: most office suits and some TEX system
installations offer apps or dialog panes called “equa-
tion editors”. They might appear useful at the very
beginning, when the user is not yet comfortable
with the myriad symbols and environments offered
by the LATEX kernel and the various extension pack-
ages. Such devices seduce the beginners, as well as
they are seduced by editors like LYX that promise
to display in the editor pane the result of a TEX
system typesetting.

The above warning is to stress the point that
LATEX is a particular programming language that
allows to define new functions and functionalities;
those ready to use graphic user interfaces are pre-
built to do certain things while speeding up the
graphic visualisation of the result. Equation ed-
itors and editors like LYX cannot do more than
what they are programmed to do; actually modern
versions of LYX have functions capable to translate
TEX programming into LYX language; therefore if
you want to use a specific LATEX extension package,
you can feed it to LYX so that it may translate the
package code to its own language and save the re-
sult into a file that can be used in future instances.
Time consuming, but LYX effective. But you can-
not define your own commands to ease your own
work, unless you prepare an extension package and
submit it to the above mentioned LYX preprocess-
ing. Why then using an editor that requires such
preprocessing if any other editor works directly on
your source file with no restrictions? Just to see in
the editor pane something that resembles to what
you hopefully would like to obtain from TEX? By
experience I can say that in a long run it amounts
in a waste of time, and it is not worth the amount
of time you spend in preprocessing.

An example: figure 4 displays the editing pane
of LaTeXiT.app, the equation editor installed on
a Mac, when MacTEX, i.e. TEX Live for Mac, is
installed.

As you see in the screenshot shown in figure 4 in
the lower pane where you have to write LATEX code;
when you are finished, you click the bottom right
button “LaTeXiT”, and the app shows the result
in the upper pane. Isn’t that nice? Not quite: it
recognises only the standard LATEX commands, not
the extensions of any package, and in particular
the settings for fulfilling the iso regulations that
require a roman ‘e’ and a roman ‘d’ and suitable
spacing before the integrator.

Even if the LaTeXiT.app is a fine piece of soft-
ware, and the other equation editors generally be-
have more or less in the same way, don’t use equa-
tion editors! You get stuck within their limits.

14.2 Figures

We already said that LATEX can include graphic
files in the formats PDF, EPS, and MPS (possibly
vectorial), and JPG (lossy compressed bitmapped),
and PNG (lossless compressed bitmapped). LATEX

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

122

Figure 4: The graphic interface of the LaTeXit.app for
Mac

can include drawings composed with its internal
environments, and the various packages that allow
advanced programmed drawing. There are also ex-
ternal programs that can produce output in the
form of .tex files. At least one of these programs,
asymptote, is installed together with TEX Live.
This free software program is very useful for techni-
cal drawings; see for example (De Marco, 2009).

The user can install for example gnuplot, a
mathematical drawing software: you enter a text
file containing the necessary information about the
functions to be drawn and the settings for the dia-
gram, and the instructions for the output. With
suitable output settings, the result is a .tex file
that can be directly input into the user’s thesis;
see (Miklavec, 2013) to examine these function-
alities; but you have to download the gnuplot pro-
gram from its site https://sourceforge.net/

projects/gnuplot/files/gnuplot/; there are
versions for the three main platforms Windows,
Mac, and Linux; but there are also the source files,
so that it is possible to customise the executable
program to the specific needs of the user’s com-
puter and operating system.

Another external free software program is
Inkscape; it provides a graphical interface to draw
almost anything; a nice part is that the labels that
identify the various parts of the drawing are out-
put as a separate file that superimposes the labels
(typeset with the current fonts in the TEX output)
on the vectorial PDF graphic file it produces. This
property is highly desirable, and it is not very com-
mon that external programs can guarantee such
functionality.

In facts some diagrams may be created from
numerical tables set up with, say, Microsoft Excel

and exported in PDF format. But as anybody can
experience, the fonts used to label the axes and
other similar text labels are clearly set with fonts
that have nothing to do with those used to typeset
the user’s thesis.

The native LATEX extension packages, such as the
extended picture environment, the PSTricks bundle,
the TikZ bundle, the pgfplots bundle, all create fine
drawings while using the current fonts in the source
file. I would suggest to keep in mind such extension
packages, because the graphic output is certainly
very professional and typographically correct.

Some years ago a frequent user of the Italian
TUG forum, nicknamed Liverpool, opened a thread
dealing with tracing of lossodromic and ortho-
dromic routes on a 3D sphere projected on the
plane together with meridians and parallels, and
tracing those arcs in the background of the sphere
with thinner lines than those in the foreground. I
was very happy to participate in this program and
eventually I wrote the .dtx file that documented
the PGF/TikZ library used to trace some routes
in order to see the different paths along the or-
thodromic vs. the lossodromic route4 joining two
given points. The library eventually contained also
the specific commands to draw the two routes on
a gnomonic projection and on a Mercator map
(cylindrical projection). Liverpool eventually sent
me back the .dtx file that I correctly signed only
with his name; up to now this library is unpub-
lished. I think it is instructive to see at least the
results we reached.

Figure 5 displays a couple of examples; on the
left the routes connecting New York and Moscow
are displayed while on the right the corresponding
routes joining New York with Bangkok. The code
to draw one of the two maps is the following.

1 \documentclass{standalone}

2 \usepackage{pgfplots}

3 \pgfplotsset{compat=1.11}

4 \usetikzlibrary{quotes, rotte}

5

6 \begin{document}

7 \begin{tikzpicture}

8 \begin{axis} [x={(-0.866cm,-0.5cm)},

9 y={(0.866cm,-0.5cm)},

10 z={(0,1cm)},

11 anchor=origin, at={(0,0)},

12 disabledatascaling,

13 hide axis]

14 % Draw the globe

15 \addplot3 [surf, z buffer=sort,

4. Just to remember: the orthodromic route is the short-
est path on a spherical surface that joins two given points;
the lossodromic route is the path joining the given points
such that the compass bearing remains constant; the ortho-
dromic route, therefore, is an arc of a great circle, while the
lossodromic one, unless the given points lay on a parallel, is
an arc of a sort of spiral that winds on the spherical surface
from one pole to the other.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

123

NewYork

Mosca

NewYork

Bangkok

Figure 5: Two examples of routes joining two cities on the globe that are relatively close (New York and Moscow)
or distant from one another (New York and Bangkok). The red route is the orthodromic one and the blue one is the
lossodromic one.

16 fill opacity=0.6, white,

17 faceted color=blue!40,

18 samples=19, samples y=37,

19 variable=\u, variable y=\v,

20 domain=0:180, y domain=0:360]

21 ({2*cos(u)*sin(v)},

22 {2*sin(u)*sin(v)}, {2*cos(v)});

23 % Draw orthodromic route

24 \pic [partenza={(40.744,-73.982)},

25 arrivo={(13.725,100.51)},

26 raggio=2cm, red] {ortodromia};

27 % Draw lossodromic route

28 \pic [partenza={(40.744,-73.982)},

29 arrivo={(13.725,100.51)},

30 raggio=2, smooth, samples=50,

31 mark=*, mark size=1pt,

32 blue] {lossodromia};

33 % Label departure point

34 \pic [posizione={(40.744,-73.982)},

35 raggio=2, mark=*, mark size=1pt,

36 "NewYork", above] {coordinata=A};

37 % Label arrival point

38 \pic [posizione={(13.725,100.51)},

39 raggio=2, mark=*, mark size=1pt,

40 "Bangkok", right] {coordinata=B};

41 \end{axis}

42 \end{tikzpicture}

43 \end{document}

Some picture qualifiers are in Italian, because
Liverpool and I did not work out this TikZ library
for international use; here I just changed the com-
ment lines to English language. The interesting
point about these drawings is that geographical
coordinates of the departure and arrival points are
just given in (fractional) degrees of latitude and
longitude on the globe. This example shows quite
well the power of the graphic packages that are
part of any updated and complete TEX system

Table 4: The Smith family

The Smith family
Name Role Age Activity

John father 47 employee
Mary mother 44 primary school teacher
Johanne daughter 14 junior high student
Peter son 8 primary school pupil

installation. The code is not terribly complicated;
the difficult part, if nothing else is already avail-
able, is to write the macros shown above and that
may be saved in a TikZ library.

14.3 Tables

Tabular typesetting is possibly the most difficult
task in typography. When typographers were using
metal types, they would charge extra money for
books and other printed material that contained
tabular material. Of course with LATEX everything
is much easier, but creating professional tables is
still something that is out of our common expe-
rience; moreover, since most people create tables
using word processors, and since this kind of soft-
ware has limited performances, most of the time
the tables we happen to read are typeset in a
manner that is far from professional.

Of course a PhD thesis should have professional
tables. Some tables are already shown in the men-
tioned toptesi-scudo-example.pdf where the
same table is typeset in a non professional way, in
a better way and in a professional way.

But here we should go into the details.
In table 4 you can see a small table typeset with

the rules of the best typographical practice.
Notice the details.

1. The table does not contain any vertical rule.

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

124

2. The three horizontal rules have different mean-
ings; the first and the last are thicker and
delimit the table. The thinner middle rule sep-
arates the column headings from the other
column cells. No other rules are necessary and
even the first and last ones may be omitted.
There are very rare occasions when a middle
rule or a partial middle rule (spanning just a
subset of columns) might add something to the
table “meaning”. LATEX does not directly pro-
vide any means to fix the rule widths, but the
(almost compulsory) booktabs package (Fear,
2016) comes to rescue; in practice these pack-
age facilities should be used for any table.

3. There is no need to emphasise the table head-
ers with boldface or italic fonts, but it is not
forbidden.

4. The cells contents are left or right justified
within their cells; they might be also cen-
tred or form narrow paragraphs; in this last
case it is better that the paragraph is typeset
ragged right; LATEX provides these facilities,
but the array package helps very much with
other paragraph-like cell contents and with
very useful functionalities to customise whole
columns or single cells.

5. Any table cell may contain another full table,
i.e. the tabular environment may be nested.

6. In most countries, Italy included, the table
caption is set over the tabular material as in
table 4. In English speaking countries tables
have their caption under the tabular mate-
rial. There is no best practice, in the sense
that both placements are correct in the proper
country.

7. The example table natural width is too large
compared to the column width, but not so
large to suggest a top page centred full width
float position. This is a common situation even
if the document is being typeset in onecolumn
mode. In this case the solution that I chose
consists in reducing the font size; this is sim-
ple if the used fonts are continuously scalable,
or better, if they are piecewise continuously
scalable because they have available optical
sizes. In this paper, typeset with the Latin
Modern font collection that has optical sizes,
the chosen solution appears to be the most
comfortable one. Characters of size 8.5 pt are
too small to be read? Yes, may be; in this
case another solution might be to reduce the
inter-column whitespace width; by default it
is 12 pt wide, approximately 4 mm; there is
enough space to reduce the whole table with-
out reducing the font size too much. See then
table 5 where the font size is 9.5 pt and the
inter-column width is just 6 pt.

The above small list describes the best practice,
but it also underlines the big or small problems that

Table 5: The Smith family

The Smith family
Name Role Age Activity

John father 47 employee
Mary mother 44 primary school teacher
Johanne daughter 14 junior high student
Peter son 8 primary school pupil

come up with tables. By typesetting in onecolumn
mode, as the PhD ScuDo style requires, some of the
described problems may vanish or are reduced. One
suggestion I can give for tables that are too wide,
is to use the widetable (Beccari, 2018) package
with its widetable environment that computes the
necessary inter-column width in order to fit into
a specified width; of course, should it compute a
negative inter-column width, it issues a warning
and typesets the tabular material with the default
value.

In other circumstances the solutions might be
of different nature; one is to use the X column de-
scriptors that produce paragraph-like cell contents,
but their width is automatically computed to fit
the specified table width.

Another solution is to typeset a definitely too
large table in a sideways mode; the best practice
requires to rotate the sideways material 90◦ coun-
terclockwise independently of the fact that this
material falls on an even or odd page. Several
packages available for such rotations perform it in
such a way that the caption base is also facing the
outer trim margin. This is why I am not naming
any particular package.

All “regular” tables are not broken across page
breaks; since they are large objects, they need
to be floated, so that LATEX can find the best
place to output them. LATEX must fulfil certain
conditions to output all kind of floats: how tall
are they? how many at maximum may be in the
same page? in which position on the page: top,
bottom or within the text? how much residual
space remains on the page for regular text? when
in twocolumn mode should the float be in some
position of a column or should it span the whole
text block width? Actually this may be decided
by the user, but again, depending on the type, the
specific constraints similar to those for onecolumn
mode remain valid. Such constraints are somewhat
released when the float stack still contains some
floats, but the chapter is finished and they must
be all output before a new chapter starts; or when
the end of the document is reached.

But if a table is definitely too long it may be
typeset on several consecutive pages; the environ-
ments longtable and supertabular can do the job; I
feel more comfortable with longtable, but it is just
a question of personal taste: their performances
are almost the same. Provided they are not wider

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

125

than the text block height, there are also packages
to typeset long tables in a sideways manner, con-
tinuing to use the same rotation, page after page,
as far as the end of the table. I do not like such
sideways long tables, but I understand that in cer-
tain circumstances it is impossible to avoid them.
I think it is better to plan their construction in a
smarter way. Since automatic procedures cannot
be smarter than a human, humans should not rely
on the limited intelligence of those procedures.

15 Bibliography

The bibliography is an important part of a doctoral
thesis; it is not meant to document every piece of
information that appears in the thesis. It should
list the documents effectively read, the references
that mostly describe the state of the art, not only
in the discipline where the thesis may be classified,
but also in side disciplines that were used during
the development of the thesis.

A bibliography should not emphasise the visited
Internet sites, even if some information or some
data were taken from those sites; the explanation is
simple; even if they do not transmit superficial or
even fake data, they are not reliable; today they are
accessible; tomorrow they might have disappeared
from the Web. If the thesis is read by someone
else in, say, ten years from now, it is very likely
that more than a half of those sites will not exist
anymore.

This is a common experience, therefore I avoid
citing material that is not recorded in a stable way;
in this paper I cite TEX related documentation
because I assume that if you, the reader, are using
the TEX system, you have the references that I cite
on board of your computer.

15.1 The bibliographic database

The first step to create a bibliography is to create
a database where each record describes everything
connected with each reference in a formal way.
There are at least two programs that ease this
task.

1. The external program JabRef is a program
that runs in a Java virtual machine; it is
suitable for any operating system provided
it has the Java bundle installed; JabRef is
fully compatible with the TEX system. The
record names are sort of standard and the de-
scriptors of the various fields of each reference
are consistent and standard; if one uses non
standard descriptors, they are simply ignored
together with the description they address.
The program has its own graphical interface.

2. The external program BibDesk is only for Mac
platforms and is already available when TEX
Live is installed with MacTEX. This program
has its own graphical interface.

3. Actually there is a hard way to create a bib-
liographic database: it consists in using the
same text editor that is being used to handle
the .tex files. The user can use it to create
a .bib file containing the textual material of
each reference record; of course s/he should
have a clear understanding of the mandatory
and the auxiliary information that any type
of reference requires. The first two methods
are much superior because those programs
can fill in the mandatory descriptors for every
document type and let you add any other de-
scriptor or field that you find useful, even if
it will not migrate to the final typeset bibli-
ography.

4. It is strongly recommended to name the
database with the same name as the main
thesis file, but, of course, with the manda-
tory extension .bib. It is possible to enter a
comma separated list of database files into
the argument of \addbibresource. A thesis
should not contain hundreds of references, so
that it is not necessary to split a huge sin-
gle database in a number of smaller chunks;
sometimes it may be useful to keep the list
of URLs, the books, the articles, the internal
reports, and so on in separate databases. In
this case extreme care should be paid to the
fact that the citation keys must be unique
among the whole set of databases.

An example of bibliographic database is the
following.

@manual{man:ReferenceManual,

Author = {Claudio Beccari},

Address =

{\url{http://www.guitex.org/home/images

/doc/GuideGuIT/}},

Organization = {{\GuIT}},

Title = {{Il \LaTeX\ Reference Manual

commentato}},

Year = {2017}}

@misc{misc:toptesi,

Author = {Claudio Beccari},

Howpublished = {{PDF document}},

Note = {in

{\url{$TEXMF/doc/latex/toptesi/

toptesi.pdf}},

\url{$TEXMF/doc/latex/toptesi/

toptesi-it.pdf}},

Title = {{La classe \pack{TOPtesi}}},

Year = {2019}}

@book{book:Bringhurst,

Address = {{Vancouver, BC}},

Author = {Robert Bringhurst},

Publisher = {Hartley \& Marks},

Title = {The elements of typographic

style},

Year = {2004}}

@article{art:Caignaert,

Author = {Christophe Caignaert},

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

126

Journal = {\textsl{TUGboat}},

Number = {3},

Pages = {161-174},

Title = {A story of \textit{kpfonts}},

Volume = {31},

Year = {2010}}

@manual{man:ShortMathGuide,

Address = {Providence, Rhode Island},

Author = {Michael Downes},

Edition = {1.09},

Note =

{In \url{ftp://ftp.ams.org/pub/tex/

doc/amsmath/short-math-guide.pdf}},

Organization = {American Mathematical

Society},

Title = {Short math guide},

Year = {2002}}

@manual{man:Flynn,

Author = {Peter Flynn},

Note = {In {\url{CTAN/tex-archive/info/

beginlatex/beginlatex-3.6.pdf}}},

Title = {Formatting information ---

A beginner’s introduction

to typesetting with {\LaTeX}}}

@manual{man:xetex-companion,

Author = {Michel Goossens},

Note = {in \url{http://xml.web.cern.ch/

XML/lgc2/xetexmain.pdf}},

Organization = {{\LaTeX\, Team}},

Title = {The {\XeTeX} Companion --

{\TeX\ meets OpenType and Unicode}},

Year = {2011}}

As it can be seen, every record starts with an “at
sign” (@), followed by the name of a type of refer-
ence; most of these names are full words, but some
are simple abbreviations, such as misc (miscella-
neous) to be used when the reference is difficult to
be classified.

Each record content is enclosed within balanced
braces; it is divided in fields and each field has a
name followed by the “equals sign”, followed by a
balanced braces pair containing the field contents;
the only exception is the first field that contains
the citation key without any name; each field con-
tent is actually separated from the next one with
a comma. Except for the Author field, all other
fields, if they were not enclosed within balanced
braces, are transformed to lowercase except for the
first word initial letter. This is why it is better
to always enclose the field contents within braces.
This lowercasing would take place also with LATEX
macros; therefore during typesetting those low-
ercased macros become typesetting errors of the
type “Undefined control sequence”; tricky error,
because when the source .bib file is examined no
errors are found. But if the processed bibliography
file with extension .bbl is examined the error is
immediately spotted.

There are at least two ways to typeset a bibliog-
raphy from a bibliographic database that depend

on the bibliography external processor bibtex or
biber, and on the type of bibliography style cho-
sen.

The ScuDo doctoral thesis is typeset trough the
use of the biber processor, therefore here nothing
is said concerning the use of bibtex.

The toptesi-scudo.sty module presets the bibli-
ography processing through the biblatex package
(Lehman, 2018) and its options in order to get an
alphabetically ordered bibliography on the basis
of the author’s surname, but with each reference
identified by a number. The setting is as this:

1 \unless\ifmybibstyle

2 \usepackage[autostyle]{csquotes}

3 \usepackage[backend=biber,

4 style=numeric-comp,

5 citestyle=numeric,

6 sorting=nty,

7 natbib]{biblatex}

8 \addbibresource{\jobname.bib}

9 \fi

The test starting on line 1 and completed on
line 9 preloads the necessary packages and sets the
options to describe the bibliography style only if
the class option mybibliography was not specified
by the user. If it was, nothing is done and the user
becomes totally responsible to select the procedure
and the style s/he prefers if and only if s/he got
an authorisation from his/her supervisor. This is
because the style of the ScuDo doctoral theses
should be conformant to a model that lets anyone
recognise at first sight the school theses.

On line 2 the csquotes package (Lehman and
Wright, 2018) is loaded; this allows to adapt the
quotation marks to the style used in the country
where a specific language is used. Actually the
records of the bibliography database might contain
a field that qualifies the reference as one to be
written in a certain language; this is useful also for
the correct word hyphenation at line breaks.

Then from lines 3 to 7 the biblatex is loaded with
the necessary options; specifically:

backend=biber specifies that the biber processor
is used to extract and format the various ref-
erences.

style=numeric-comp specifies that the numeric
identification of every reference is used.

citestyle=numeric the same style is specified for
citations.

sorting=nty specifies that the sorting is principally
based on author names; for equal names, sort-
ing is based on titles; for equal titles, sorting
is based on year of publication.

natbib allows to use the same citation schemes es-
tablished by the natbib package (Daly, 2010).

Line 8 specifies that the bibliographic database
file is named \jobname.bib. In his/her thesis the

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

127

candidate may specify the names of other bibli-
ographic databases with similar commands; the
bibliography processor will examine the whole set
in order to extract and format the various entries.
The important point is that entries in all databases
have a unique citation key.

With the default settings the bibliography turns
out as in figure 6, while with the settings used in
the sample file toptesi-scudo=example.tex the
bibliography turns out as in figure 7.

All this implies that the biber program must
be run after at least one compilation of the thesis
and after any modification of the databases; but
it is not necessary to run it again and again after
each compilation of the thesis.

16 Nomenclature

Personally I find a glossary or a nomenclature list,
a list of symbols, a list of acronyms, whatever you
want to call them, useful just in certain circum-
stances. Of course a purist may distinguish those
lists for many details. But they have something in
common. All of them are lists of lexemes, and of
each one they explain what they mean or represent.

It is possible that in a doctoral thesis some words
appear to be used in a special or restricted way and
are not commonly known even to scholars in the
disciplinary field. I assume that such terms are very
rare and that the examining committee is made
up of experts. For the members of this committee
a nomenclature list should be superfluous.

Nevertheless it is possible that in the future the
thesis is read by people that are not so expert. For
these people a nomenclature list might be very useful.

The tipotesi=scudo already loads the nomencl
package; and already defines some categories of
names to be described. The example file toptesi-

scudo-example.tex makes some examples of
nomenclature entries (with silly definitions, just to
show how to use them); but the real bonus is that
this TOPtesi module already contains the shell-
escape commands necessary to typeset the nomen-
clature list just in one run. In facts in a “normal”
situation the user should enter with similar com-
mands into the main or one of the secondary files
the material that forms the nomenclature list; s/he
should compile the thesis, then s/he should open
a terminal or command prompt, and should enter
the necessary operating system command to run
the external program makeindex that processes the
TEX material that the typesetting program already
transferred to a raw nomenclature file; the result
of this external processing is a definitive .nls file,
that in the next typesetting run will become the
typeset nomenclature. It is more complicated to
describe it than to do it; but even so, everything is
already hardcoded into the ScuDo module, so that
the user should not care about anything related to
the nomenclature typesetting.

17 Index

The implemented process to create the nomencla-
ture is similar to the one used for creating an index,
but in this case the whole machinery is already in-
cluded into the imakeidx package that is preloaded
by the ScuDo module.

With indices the problem is more complicated
than for nomenclatures, because the user might
desire to make more than one index at the same
time.

Whatever is listed in an index is generally fol-
lowed not by a description as in a nomenclature,
but by the list of the pages in the thesis where some-
thing interesting is said concerning each lemma.
The page numbers might be typeset with differ-
ent fonts as it is done in the TEX book; where
a boldface page number is used to point to the
page where there is the lemma definition, a normal
upright page number is where the lemma is used
in a significant way; an italic page number may
represent the page where the lemma is used in an
application, and so on.

During the typesetting task the material to ap-
pear in the index or indices is collected and written
in one or more raw .idx files; before the typeset-
ting task is terminated the written files are trans-
mitted through operating system commands to
the external processing program that produces one
or more ordered index files; then, always before
terminating the typesetting task the processed files
are input into the main typesetting flow and the
index or indices are typeset. The whole procedure
is very handy and I do not use anything else to
produce the indices I need. And I think that this
way of processing indices and nomenclatures is the
most useful one.

It is assumed, of course, that nomenclature and
indices appear at the very end of the typeset thesis,
therefore after the appendices and the bibliogra-
phy.

17.1 Configuring \makeindex

The normal use of the indexing facilities require
that the preamble of the document contains the
\makeindex declaration. With package imakeidx
this declaration may be customised:

\makeindex[%

〈index name〉,
〈index title〉,
〈other options〉]

The 〈index name〉 is a symbolic name to distin-
guish which index should be activated with the
specified options; if this option is omitted, the set-
tings apply to the default index. This optional
〈index name〉 is also used to configure the \index

command to send its argument to the specified
index.

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

128

Figure 6: Bibliography with numerical labels

Figure 7: Author-year bibliography

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

129

Again the 〈index title〉 is useful to set a title
to each of several index files and to use it in the
printed indices. Of course, even if just one index
is created, it is possible to give it a title different
from the default one.

The 〈other options〉 refer to other details of each
index: for example it is possible to typeset an
index in a number of columns different from the
twocolumn default mode. The user is invited to
read the documentation of the imakeidx package
documentation (Gregorio, 2016).

17.2 Entering data to an index

Entering each entry to every index is done through
the \index macro. This is a very particular macro:
first, it is disabled when \makeindex declaration
has not been specified; second, the macro argument
has a very special syntax, because it is fed to the
external program makeindex that requires that
syntax. The original documentation by Leslie Lam-
port Lamport (1987) dates back to 1987, but with
minor variants is still valid. A general document
on making indices (Chen and Harrison, 2014) is
more recent because it is dated 2014, but still it
does not mention the enhancements provided by
package imakeidx.

The general syntax for entering index data is
the following (to be input in just one line):

〈first level〉!〈second level〉!〈sort entry〉
@〈typeset entry〉|〈address〉
Where 〈sort entry〉 is the string used to sort the
index, while 〈typeset entry〉 is what appears in
the index; for example, the user wants to enter
the word “Transistor” in boldface, but it does not
want to sort it among the capitalised entries: then
〈sort entry〉 will be “transistor” and the 〈typeset
entry〉 will be “\textbf{Transistor}”. Moreover
〈address〉 is the way to typeset the page number,
or the string to use so as to point to another entry.
The 〈first level〉 entry and 〈second level〉 entry are
used only when the 〈typeset entry〉 should appear
hierarchically under other entry levels.

It is convenient to define handy macros that use
the correct syntax; for example in this paper I
use the command \pack to enter package names
in upright sans serif font: if I wanted to create an
index containing the package names grouped under
a first level entry “packages”, in the preamble I
would define the following code (that requires the
use of the xparse package, The LATEX 3 Project
Team (2018)):

\newcommand\packagestyle[1]{\textsf{#1}}

\NewDocumentCommand\pack{s m}{%

\packagestyle{#2}\IfBooleanTF{#1}{}%

{\index{packages!#1@\packagestyle{#2}}}%

}

The first definition establishes how I want to
typeset package names; the second definition (that

requires the xparse facilities) defines a command
\pack that accepts an optional star and a manda-
tory name of a package. If the first optional ar-
gument is a star, the command just typesets the
package name, otherwise, besides typesetting the
package name in the document, it sends the in-
dexing information to the output idx file; the ex-
ternal program makeindex (automatically invoked
by imakeidx) creates an entry "packages" and a
subentry with the name of the package typeset
with the proper font. Therefore I have available
two ways of using the command \pack:

• \pack*{〈package name〉} to simply typeset
the 〈package name〉 in the document; and

• \pack{〈package name〉} to typeset the
〈package name〉 in the document and simulta-
neously send the subentry 〈package name〉 to
the index.

If the user wishes to create more than one in-
dex, in the preamble of the document s/he should
customise more than one \makeindex declaration,
for example

\makeindex[intoc]

\makeindex[name=places,

title=List of places,

intoc, columns=1]

By so doing the user sets two indices, the first
one is the normal one with the default name and
it is listed in the table of contents. The second,
named places, has the title “List of places”; it is
typeset in onecolumn mode; it is listed in the table
of contents.

In the body of the document, the user introduces
such commands as in this text example:

Albert Einstein was born in

Ulm\index[places]{Germany!Ulm@Ulm} and

while he was working in

Bern\index[places]{Switzerland!Bern@Bern}

started working on the theory of

restricted relativity%

\index{relativity!restricted@restricted}.

The mechanism is pretty simple to be used; and
it becomes simpler if the user defines suitable
macros to enter the necessary information just
once; the xparse package has facilities to define
macros that accept almost any kind of manda-
tory and optional arguments. The difficult part
of making indices remains the author choice of
which lemma instances s/he wants to mark with
the \index command.

18 Archivable format

Politecnico di Torino requests a copy of each thesis
to be submitted to the registrar when each student
submits the formal application in order to defend

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

130

his/her thesis. These copies must be “demateri-
alised”, i.e. in PDF format, provided that this pdf
file fulfils the regulations issued by the Interna-
tional Standards Organisation (iso) for long term
archivability. Such iso regulations were first issued
in 2005, and in the following years they received
further additions. The documentation of the pdfx
package, (C.V. Radhakrishnan et al., 2018), de-
scribes the various levels of iso conformity and
describes how to obtain conformant PDF files by
using the package.

The LATEX based typesetting engines that are
part of the TEX system up to now cannot produce
files with tagged contents, named Tagged PDF files.
This means that today such engines can produce
PDF files that are conformant only to the PDF/A-
1b regulations. In another paper Ulrike Fisher is
going to describe the progress in modifying these
engines in order to produce tagged PDF files, and
therefore files that can be conformant with the
more stringent regulation PDF/A-1a and also to
other more recent standards.

The constraints a PDF/A-1b conformant docu-
ment must fulfil deal with some delicate points.

PDF level Even the PDF language underwent to
several upgrades so that the iso established for
PDF/A-1b files that the PDF language level
should be exactly 1.4, no less, no more. More
recent iso standards allow higher language
levels.

Fonts The fonts used in the document must be
vectorial; bitmapped fonts are absolutely for-
bidden. Glyphs with zero width are forbidden.
Unfortunately some standard TEX math fonts
do not fulfil such constraint. The TOPtesi bun-
dle contains a patch to this problem, but actu-
ally there is no need to do any patch when the
typesetting engine is LuaLATEX and Unicode
math fonts are used.

Encoding UNICODE and certain TrueType fonts
are accepted; Type 1 fonts are accepted only
if the file with the correspondence of their
glyph addresses with UNICODE is included.
For this reason it is better to avoid Type 1
fonts and therefore it is necessary to typeset
the PDF document with LuaLATEX. It would
be possible to use also X ELATEX, but special
postprocessing would be required.

Colors Colors should be only RGB (and/or
grayscale, but let us forget this color code,
since it is already covered by the RGB pro-
file).

Color profile The used color profile must be in-
cluded within the mandatory metadata.

Metadata Special metadata must be included
and they must not be compressed within the
PDF file, so that they are always readable
without uncompressing the file.

Dublin Agreement data The metadata con-

cerning the Dublin Agreement have to be in-
cluded in the proper form.

It is evident that the requirements are pretty
stringent even for the less stringent regulation
among the various levels of the iso rules.

With the ScuDo doctoral school dissertation,
things are pretty safe, because the preamble exam-
ple contained in the toptesi-scudo-example.tex

guarantees a very high success in producing
PDF/A-1b compliant files.

The preamble of the document should be as
follows5:

1 \documentclass[%

2 corpo=12pt, % font size

3 twoside, % recommended

4 tipotesi=scudo,

5]{toptesi}

6 ...

7 \begin{filecontents*}{\jobname.xmpdata}

8 \Author{Mario Rossi}

9 \Title{Writing Your Ph.D. Thesis

10 with LaTeX}

11 \Subject{Doctoral dissertations

12 in the SCUDO doctoral school}

13 \Keywords{PDF\sep

14 PDF/A\sep

15 ISO 19005\sep

16 LaTeX\sep

17 PhD Thesis\sep

18 Engineering\sep

19 SCUDO}

20 \Publisher{Politecnico di Torino}

21 \end{filecontents*}

22 ...

23 \usepackage[a-1b]{pdfx}

24 \ifPDFTeX

25 ...

26 \else

27 \usepackage{fontspec}

28 \defaultfontfeatures{Ligatures=TeX}

29 \setmainfont{Libertinus Serif}

30 \setsansfont{Libertinus Sans}

31 \setmonofont{Libertinus Mono}%

32 [Scale=MatchLowercase]

33 \usepackage[math-style=ISO]{unicode-math}

34 \setmathfont{Libertinus Math}%

35 \fi

36 ...

37 \makeindex[intoc]% configure indexing

38

39 \unless\ifcsname ver@hyperref.sty\endcsname

40 \usepackage{hyperref}\fi

41 \hypersetup{%

42 pdfpagemode={UseOutlines},

43 bookmarksopen,

44 pdfstartview={FitH},

45 colorlinks,

5. The example file contains a lot of descriptive com-
ments; for brevity here the comments are neglected as well
as unnecessary options and commands.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

131

46 linkcolor={blue},

47 citecolor={blue},

48 urlcolor={blue}

49 }

50 \includeonly{%

51 ...

52 }

53 %

54 \begin{document}

The toptesi-scudo module is conceived in such
a way as to preload all the necessary packages; in
particular the filecontents package (Pakin, 2018)
is preloaded for convenience. In facts the starred
or unstarred environment filecontents that is used
in lines from 7 to 21 in the above code, normally
would not overwrite the file it is supposed to create;
therefore, in order to change the environment con-
tents even for the simple correction of a typo, it is
necessary to delete the already existing .xmpdata

file, otherwise the correction does not appear in
the output file. With the use of the filecontents
package this feature is eliminated and the file is
overwritten each time the document is typeset.

The environment output file \jobname.xmpdata

has this special name that assures that the gener-
ated file has the same name as the thesis main file
and the specified correct extension.

This file contains the metadata that depend on
the specific document; all other necessary metadata
are fixed information provided by the pdfx package
invoked with the a-1b option which specifies the
document PDF file should be conformant with the
PDF/A-1b regulation.

The .xmpdata file contains certain metadata,
each one preceded by its keyword; the metadata
concerning that example document contain the
name of the Author as “Mario Rossi” (the Italian
equivalent of the Anglo-American John Smith); the
main title for the Title descriptor and a short but
descriptive phrase for the Subject; some Keywords

are also listed separated by the special separator
\sep required by package pdfx. Of course more
specific metadata with other descriptors may be
specified; the whole list is found in the documen-
tation of package pdfx.

The lines from 24 to 35 contain the test to dis-
cover if the typesetting engine is pdftex or some-
thing else. We already discussed this feature in
subsection 12.1 and here we skip what deals with
pdfLATEX.

As the reader can observe, package pdfx is loaded
as the very first one (besides those that are already
preloaded); this package loads hyperref (Rahtz
and Oberdiek, 2018) with the option pdfa so that
certain features of hyperref are modified in order
to fulfil the hyperlinking requirements set forth
by the iso rules; this is why in lines 39 and 40
the preamble tests if package hyperref has already
been loaded and in case it loads it without any

option. Such options are set with the command
\hypersetup that assures to avoid any conflict be-
tween the options passed to the package by pdfx
and this second possible call. Option clashes pro-
duce error messages difficult to correct; so it is
better to avoid them in advance.

The text and math fonts loaded with the fontspec
facilities are those called Libertinus, a revisited set
of OpenType fonts obtained from the Libertine
ones; apparently the latter are not maintained any
more, and Michael Sharpe reworked, corrected and
enriched them and called them with a different,
although similar, name; they lack the optical sizes
but do a very good job. The math version must
be specified after the unicode-math package has
been loaded; here I specified the math-style=ISO
option because I recommend it very strongly for the
ScuDo doctoral theses in engineering disciplines.

19 Conclusion

In this paper I described the problems that arise
when typesetting theses in general and how most of
these problems have been tackled with the TOPtesi
bundle. I entered into the details of the module
needed to create typographically pretty nice theses
for the ScuDo Doctoral School of Politecnico di
Torino. In any case the requirements set forth by
the School are all satisfied; all necessary macros
and environments have been defined and are avail-
able to the authors.

The authors may introduce more macros and en-
vironments in order to create their theses. But what
is really important, I wish them to be proud of their
researches and their results; they will be proud also
of the appearance of their typeset results.

References

Ahmetovic, D., T. Armano, M. Berra,
C. Bernareggi, A. Capietto, S. Coriasco,
N. Murru and A. Ruighi (2018). «Axessibility:
creating PDF documents with accessible formu-
lae». ArsTEXnica, (26), pp. 50–54.

American Mathematical Society (2013). The
amssymb package. Version 3.01. Readable with
texdoc amssymb.

— (2017). Using the amsthm package. Version
2.20.3 – Readable with texdoc amsthm.

— (2018). User’s guide for the amsmath package.
Readable with texdoc amsmath.

Beccari, Claudio (2018). The widetable pack-
age. guIt. Version 1.5. Readable with texdoc

widetable.

— (2019a). Il pacchetto TOPtesi. guIt. Version
6.2.03. Readable with texdoc toptesi-it.

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

132

— (2019b). The extension package curve2e. guIt.
Version 1.61. Readable with texdoc curve2e.

— (2019c). The TOPtesi bundle. guIt. Version
6.3.02. Readable with texdoc toptesi.pdf and
in Italian texdoc toptesi-it.

Carlisle, David (1995). The indentfirst package.
TUG. Readable with texdoc indentfirst.

Chen, Pheong and Michael A. Harrison (2014).
«Index preparation and processing». PDF doc-
ument. The original document is older; this is
an updated version by Dan Lueking and Karl
Berry. Readable with texdoc ind.

C.V. Radhakrishnan, Hàn Thế Thành,
Ross Moore and Peter Selinger (2018). Gen-
eration of PDF/X- and PDF/A- compliant
PDFs with PdfTeX. River Valley Technologies,
Trivandrum, India. Version 1.6 upgraded and
valid also for LuaLATEX. Readable with texdoc

pdfx.

Daly, Patrick W. (2010). Natural sciences cita-
tions and references — Author-year and numer-
ical Schemes. TUG. Version 8.31b. Readable
with texdoc natbib.

De Marco, Agostino (2009). «Produrre
grafica vettoriale di alta qualità programmando
asymptote». ArsTEXnica, (8), pp. 25–39.

Fear, Simon (2016). Pubblication quality tables in
LATEX. TUG. Version 1.618033. Readable with
texdoc booktabs.

Feuersänger, Christian (2018). Manual for pack-
age pgfplots. TUG. Version 1.16. Readable
with texdoc pgfplots.

Gäßlein, Hubert, Rolf Niepraschk and
Josef Tkadlec (2016). The pict2e package.
TUG. Version 0.3b. Readable with texdoc

pict2e.

Gregorio, Enrico (2016). «The package
imakeidx». PDF document. Version 1.3e, Read-
able with texdoc imakeidx.

Hammmerlindl, Andy, John Bowman and
Tom Prince (2018). Asymptote: the vector
graphics language. TUG. Version 244. Read-
able with texdoc asymptote.

Hobby, John D. (2018). METAPOST– A users’
manual. TUG. Version 2.00 (2.0rc2). Readable
with texdoc metapost.

ISO 19005-1 (2005). ISO 19005-1:2005 –
Document management – Electronic docu-
ment file format for long-term preservation.
International Organization for Standardiza-
tion, Geneva. http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=38920.

ISO 19005-2 (2011). ISO 19005-2:2011 –
Document management – Electronic docu-
ment file format for long-term preservation.
International Organization for Standardiza-
tion, Geneva. http://www.iso.org/iso/

iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=50655.

ISO 19005-3 (2012). ISO 19005-3:2012 – Doc-
ument management – Electronic document file
format for long-term preservation. International
Organization for Standardization, Geneva. http:

//www.iso.org/iso/home/store/catalogue_

ics/catalogue_detail_ics.htm?ics1=37&

ics2=100&ics3=99&csnumber=57229.

ISO 31/XI (1978). Mathematical signs and sym-
bols for use in the physical sciences and technol-
ogy. International Organization for Standardiza-
tion, Ginevra. Regulation ISO 31/XI/–1978. Up-
dated with regulation ISO 80000-2: http://www.

iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=31887. See
also (Thompson and Taylor, 2008).

Lamport, Leslie (1987). MakeIndex: an Index Pro-
cessor for LATEX. TUG. Readable with texdoc

makeindex.

— (1994). A document preparation system —
LATEX — User’s guide and reference manual.
Addison Wesley, Reading, Mass., 2nd edition.

Lehman, Philip (2018). The biblatex package –
Programmable bibliographies and citations. TUG.
Version 3.12. Readable with texdoc biblatex.

Lehman, Philip and Joseph Wright (2018). The
csquotes package — Context sensitive quotation
facilities. TUG. Version 5.2d. Readable with
texdoc csquotes.

Miklavec, Mojca (2013). Using context and
tikz terminals for gnuplot in ConTEXt. Read-
able with texdoc gnuplot. This document gives
insructions to install the external program
gnuplot, version 4.6.0 or later, and to configure
it to be used by the typesetting programs of the
TEX system.

Milde, Günter (2012). isomath – Mathematical
style for science and technology. TUG. Readable
with texdoc isomath.

Oetliker, Tobias (2015). An acronym environ-
ment for LATEX 2ǫ. tug. Verison 1.41. Readable
with texdoc acronym.

Pakin, Scott (2018). The filecontents package.
TUG. Version 1.4. Readable with texdoc

filecontents.

ArsTEXnica Nº 28, Ottobre 2019 Typesetting a PhD thesis with LATEX

133

Rahtz, Sebastian and Heiko Oberdiek (2018).
Hypertext marks in LATEX: a manual for hyperref.
TUG. Readable with texdoc hyperref.

Robertson, Will (2019a). Experimental Unicode
mathematical typesetting. Th unicode-math pack-
age. TUG. Version 0.8n. Readable with texdoc

unicode-math.

— (2019b). The fontspec package. Font selection
for X ELATEX and LuaLATEX. TUG. Version 2.7b.
Readable with texdoc fontspec.

Smith, Joseph (2018). siunitx — A comprehensive
(SI) units package. TUG. Version 2.7s. Readable
with texdoc siunitx.

Talbot, Nicola L.C. (2019). User manual for
glossaries.sty v4.42. TUG. Version 4.42. Readable
with texdoc glossaries.

Tantau, Till (2019). TikZ & PGF. TUG. Ver-
sion 3.1.1 – Readable with texdoc tikz or with
texdoc pgf or with texdoc pgfmanual.

The LATEX 3 Project Team (2018). The xparse

package – Document command parser. TUG.
Readable with texdoc xparse.

Thompson, Ambler and Barry N. Taylor (2008).
Guide for the Use of the International Sys-
tem of Units (SI). NIST – National Institute
of Standards and Technology. NIST Special
Publication 811 – 2008 Edition. Url: https:

//www.nist.gov/pml/special-publication-811-

extended-contents.

Veytsman, Boris et al. (2019). nomencl: a package
to create a nomenclature. TUG. Version 5.1.
Readable with texdoc nomencl.

⊲ Claudio Beccari
Emeritus Professor
of Politecnico di Torino
claudio dot beccari at polito

dot it

Claudio Beccari ArsTEXnica Nº 28, Ottobre 2019

134

Creating accessible pdfs with LATEX

Ulrike Fischer

Abstract

This article describes the current state and planned
actions to improve the accessibility of pdfs created
with LATEX as it is currently undertaken by the
LATEX Team.

Sommario

Questo articolo descrive lo stato attuale e le azioni
pianificate per migliorare l’accessibilità dei pdf crea-
ti con LATEX così come garantito dal LATEXT̃eam.

1 Accessibility of pdf

The pdf language is at its core a page descrip-
tion programming language. It describes very ac-
curately how text and graphical elements look and
where they are placed on a page. But it doesn’t
describe the semantical meaning of the elements
and the reading order: by looking at the code there
is no way to know if a text is a section heading or
some watermark or a footnote or if it belongs to a
tabular. You can’t know where a sentence has its
continuation on another page or how many words a
text contains, and sometimes it is even impossible
to identify the characters: you only see some glyph
index number and copy & paste can give gibberish.

This all isn’t a problem as long as the pdf is
merely meant for printing or viewing but it restricts
its use for digital processing like copy & paste, auto-
matic extraction of billing data, reflowing or using
the pdf with a screen reader. For such uses you
need accessible, structured, extractable content.

«Accessibility» as a standard is described in
PDF/UA. It is also included in other standards
like PDF/A-1a and PDF/A-2a (the «a» stands
for accessible). The standards contain a number
of requirements that should help retrieving the
content for further processing: for example, that
every character has a unicode representation (no
gibberish when copy & pasting), that word spaces
are correctly marked up (so that reflowing works),
that the language of the document and the text
is declared (so that a screen reader can guess the
pronunciation), that pictures have sensible alter-
native descriptions. And most importantly: that
the document is tagged. This last requirement is
responsible for adding structure information to the
content. It marks up content as section or tabular
cell or list item. This improves navigation in the
document with, for example, a screen reader, but
also exporting to other formats like xml.

TUG maintains a webpage with various links

to relevant standards, articles and packages, (see
TUG, 2019).

2 Creating a tagged pdf

Tagging consists of two main tasks: at first in the
stream object of a page every bit of content must
be marked and labelled with a number MCID n.

The following listing shows a small example.
The BDC and the EMC lines are the start and end
markers needed for tagging. The /H1 indicates that
the content is part of a sectioning element.

stream

/H1 <<MCID 0>> BDC

BT

/F17 14.3462 Tf 124.802 706.129

Td [(0.1)-1100(Section)]TJ

ET

EMC

In the next step a number of pdf objects must be
created to describe the structure tree. Every object
contains references to the parent /P and to one
or more kid elements /K. The leaf nodes are the
MCID n created in the first step. A typical object
looks roughly like this:

5 0 obj

<<

/Type /StructElem

/S /H1

/P 4 0 R

/K <</Type /MCR /MCID 0>>

>>

endobj

This is a structure element of the type /H1 (and
so a sectioning element) and it has one kid element,
the text of the section marked above.

Beside this a number of additional settings and
objects must be added to the pdf for crossreferenc-
ing and «administration».

3 Changing LATEX

Measured in computer time LATEX is quite old.
LATEX is not only a format: it was always meant to
be extended by packages and classes and over the
time many people contributed to LATEX. It has a
quite large user base with very varied demands re-
garding stability, features and development. LATEX
is still used with a variety of engines: pdfTEX,
X ETEX, LuaTEX, (u)pTEX and backends (dvips,

135

dvipdfmx). One could compare LATEX to an old
city: lots of houses built at different times in differ-
ent styles by various people, some modern, some
older, some are in a good state, other are falling
apart but nevertheless home to someone.

This means that changing LATEX is not easy: We
can’t break lots of packages and old documents
even if the reward is accessible pdfs. And we have
to consider that documents must be compilable
in TEX systems of varying age for example when
uploading them to some journal.

A very important aspect of the project long
term is to develop a change strategy and manage
the integration of core support across the LATEX
universe.

4 First Steps towards tagging

Tagging pdf with LATEX has been on the agenda
for quite some time. Babett Schalitz wrote a thesis
about it in 2007, Ross Moore had a number of
talks and articles at TUG since then too. When I
considered to work on the topic some time ago I got
code from both and decided rather quickly that at
first some work on the basics was needed. Tagging
should in my opinion not be done by creating a
package that patches all sorts of commands in other
packages: this is much too fragile. It needs proper
support in the LATEX kernel and proper support
in the main classes and packages. I also thought
that to identify the needed support and to test
implementations and interfaces concrete code was
needed. So I wrote the package tagpdf. The package
offers core commands to tag a document and to
activate some of the other requirements needed to
make a pdf accessible. The low-level code to mark
up a text as a section looks roughly like this:

\tagstructbegin{tag=H1}

\tagmcbegin{tag=H1}

Section

\tagmcend

\tagstructend

The \tagstructXX commands create the struc-
ture, while the \tagmcXX commands add the MCID

marks to the page stream.
The tagpdf package currently works with

pdfLATEX and LuaLATEX – with lualatex the re-
sults are the best as one doesn’t have to worry
about the behaviour at page breaks – but with
the help of the work on the pdfresources project
described below it should be possible to extend it
to other engines and backends.

5 LATEX-dev

Another important step towards accessible pdfs
was the implementation of the latex-dev format
by the LATEX team and the maintainers of TEX-
Live and MiKTEX: latex-dev is a pre-release of

LATEX from the development branch and made
available on CTAN. It allows users of a current
TEX distribution to test their documents and code
against the upcoming LATEX release by simply using
a latex-binary with the addition -dev attached.

latex-dev has not been created solely with tag-
ging in mind but it will help us to coordinate and
test changes with package and class authors and
so it is an important part of the project.

6 Pdf resource management

When tagging a pdf one has to add a number of
settings to pdf dictionaries which can be described
as «global resources». As already mentioned in an
answer (Oberdiek, 2015), LATEX has no interfaces
for this:

Unhappily, the LATEX format has over-
slept the PDF development quite entirely.
Managing global resources is the prime
task for an OS, format in TEX speek. Be-
cause of the missing resource manager,
both [tikz and transparent] packages do
what most packages do, they think they
are alone and add their stuff to the re-
source, . . .

With tagging entering the scene it was clear that
something needed to be done to remedy this prob-
lem and so the pdfresource project in the LATEX
github was created: it contains a (still quite ex-
perimental) expl3-style which offers commands to
add contents to pdf resources in a controlled way.
It also offers backend independent interfaces to
a number of core commands needed when writ-
ing objects to a pdf. The package works with the
main engines (pdfTEX, LuaTEX and X ETEX) and
backends (dvipdfmx and – more or less – dvips).

The main task for the next months is to test the
code, to integrate it into the kernel and to adapt
existing packages to use it. The number of packages
which should use the pdf resource manager is not
very large but it includes important packages like
hyperref, tikz, media9, pdfx.

7 Adapting the engines

Another open issue that emerged during the last
year was missing functionalities in engines and
backends. For example pdfTEX is not ready for
pdf 2.0: it has no command to set a major pdf
version. As pdf 2.0 adds important features needed
for accessibility (the concept of associated files)
this is clearly something that should be changed.
It would be also useful if pdfTEX could execute
code at shipout time as it can be done with luatex
with \latelua. The dvipdfmx backend and dvips
are missing additional color stacks.

Ulrike Fischer ArsTEXnica Nº 28, Ottobre 2019

136

8 Adding hooks

As already shown in section 2 and 4, tagging a pdf
requires adding quite a number of commands. Obvi-
ously all the standard structures should if possible
add the needed code automatically. For this hooks
are needed at the right places. The «right place»
has firstly a technical meaning: with the exception
of LuaTEX, the tagging code inserts whatsits; this
means it can change the output if used in the wrong
place (as sometimes anchors set by hyperref do).

But more importantly the «right place» means
that we need to identify the owner of the code
which should insert the tagging code. For example
sections are generally created with \@startsec-

tion. So this kernel command looks like a natural
place to insert hooks for tagging commands. On the
other hand chapters and parts have special com-
mands created by the classes. Does it make sense
if the kernel handles the one part and the classes
the other? Another example are bibliographies and
glossaries: packages like biblatex and glossaries look
like the natural owner here – and both packages
have already lots of hooks which make it easy to
implement tagging – but both also use standard
structures like lists or tabulars and additions to this
generic environments could clash with their needs.

This means that beside a pdf resource manager
we also need a hook management. And we need
lots of real use cases and examples to be able to
investigate the various dependencies.

9 Mathematics

How to tag maths is still an open problem. There
are quite a number of possibilities to make it ac-
cessible.

• One is to attach the LATEX source code ei-
ther as file or verbatim with /Actualtext to
the math structure. For a number of environ-
ments this can be automated quite well as
the axessibility package demonstrate (but it
is difficult for inline math input with $..$).
The usability with a screen reader is not bad
– even if not every word was correctly read
aloud in my tests – but it requires that the
user understands LATEX input syntax and with
large equations and complicated grouping it
can be quite difficult to follow and to navigate
through subequations. The usability can be
improved if one invests the time to manually
split the math and add explaining words.

• Another possibility is to mark all the maths
bits with mathml structure names. At least
with LuaTEX this can probably be done more
or less automatically – proof of concepts are
the ConTEXt format and TEX4ht. But it is
unknown wether screen readers or other ap-
plications can actually use the information.

• A third possibility is to convert the equation
to mathml, for example with mathjax, and
attach it as associated file to the structure.
But here too it is unclear how such a mathml
can be processed by the pdf consumer. It is
also unknown which flavour of mathml should
be used in this case.

The pdf standard requires that glyphs and sym-
bols are mapped to unicode. Here too variants are
possible. a could be mapped to U+1D44E (Math-
ematical Italic Small A) or U+0061 (Latin Small
Letter A),

∫

could mapped to U+222B (Integral)
or to \int (as it is done by the package mmap).
The first alternative sounds more unicode-like but
actually the screen readers don’t seem to know
what to do with the symbols.

The main task here is to get more information
to be able to decide about which route to follow.

10 Contacts

Quite a number of questions and projects circle
around the pdf specification, the needs of users
and of pdf consumer applications. To get tagging
working it is not enough to know how TEX works.
So one important part of the tagging project is to
get in contact with people having inside knowledge
about pdf and pdf consumer applications in vari-
ous pdf related organizations and to promote the
project in the TEX world to get user feedback.

11 Summary

Adding tagging facilities to LATEX is a large project
with many aspects. Happily it doesn’t have to be
done in one large jump: with the tagpdf package
is it already possible for adventurous users with a
bit of knowledge in TEX programming to tag quite
large documents. Despite the clear warning in the
documentation that it isn’t meant for production
I already got a number of feedbacks of successful
uses. This gives hope that it can evolve to a stable
and usable system.

References

Oberdiek, Heiko (2015). «tikz and transparent in-
compatibility». https://tex.stackexchange.

com/a/253417/2388.

TUG (2019). «Pdf accessibility and pdf
standards». https://www.tug.org/twg/

accessibility/.

⊲ Ulrike Fischer
LATEX Project
Mönchengladbach
fischer at troubleshooting-tex

dot de

ArsTEXnica Nº 28, Ottobre 2019 Creating accessible pdfs with LATEX

137

Axessibility 2.0: creating tagged PDF documents

with accessible formulae

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov,

A. Kozlovskiy, N. Murru

Abstract

PDF documents containing formulae generated by
LATEX are usually not accessible by assistive tech-
nologies for visually impaired people (i.e., by screen
readers and Braille displays). The LATEX package
axessibility.sty that we developed manages
this issue, allowing to create PDF documents where
the formulae are read by such assistive technolo-
gies, through the insertion of hidden comments. In
this paper we describe the evolution of the package,
that in the latest version automatically generates
also the tagging of the formulae. The package how-
ever does not generate documents tagged according
to the PDF/UA standard.

Sommario

I documenti PDF contenenti formule generati da
LATEX non sono solitamente accessibili mediante
tecnologie assistive per persone con disabilità vi-
sive (i.e., screen reader e display Braille). Il pac-
chetto LATEX axessibility.sty da noi sviluppato
risolve questo problema, permettendo di creare do-
cumenti PDF in cui le formule vengono lette da
tali tecnologie assistive, tramite l’inserimento di
commenti nascosti. In questo articolo descriviamo
l’evoluzione del pacchetto, che nella più recente
versione genera automaticamente anche il tagging
delle formule. Il pacchetto però non genera docu-
menti etichettati secondo lo standard PDF/UA.

1 Introduction

PDF documents are widely used to digitally pub-
lish scientific content, such as papers or text-
books. Mathematical formulae, frequently con-
tained within such documents, are not accessible
by screen reader users because they are commonly
rendered as bi-dimensional images. The burden of
making digital documents accessible to visually-
impaired persons is often left to the document
author, who needs to provide descriptions for each
visual content in the form of alternate text. This
procedure is time consuming, error-prone and it
needs to be done by a sighted person. Additionally,
in the case of mathematical formulae, a verbal de-
scription does not provide the same information as
the original mathematical notation. In many cases
no alternate text is even provided because authors

are not aware of the accessibility needs of screen
reader users.

In this paper, we show the features of the pack-
age axessibility.sty (whose first version is also
described in Armano et al. (2018)) that provides
the first method for an automatised production
of accessible PDF documents with mathematical
contents through LATEX. We would like to highlight
that this package does not produce fully tagged
PDF, such as the standard PDF/UA, but it al-
lows to obtain a PDF where formulae are marked
and described using the /Alt and /ActualText

attributes.

2 Related Work

Assistive technologies for people with visual impair-
ments (e.g., screen readers, Braille displays, mag-
nifiers) are used effectively and proficiently to read
and edit digital documents containing structured
text. Instead, still many accessibility issues remain
for what concerns documents including mathemat-
ical formulae and images (e.g., diagrams, graphs,
technical drawings; Archambault et al. (2007);
Armano et al. (2014)). A number of studies have
been conducted to improve non-visual access to
scientific content, mainly along two research lines:
to facilitate editing of scientific documents through
non-visual tools, and to enable people with sight
impairments to read scientific documents in digital
formats.

The former research work has led to different
multimodal systems that are now available to au-
thor scientific documents through non-visual tools.
For instance, the LAMBDA editor (Bernareggi,
2010) is used mostly by blind people to write and
process text and mathematical formulae through
Braille display and speech output. This system
adopts a sequential code to represent mathemati-
cal notation, specifically designed for blind people
and usable only in this editor. Hence, it has got
widespread only among some communities of blind
people and it cannot become a mainstream tool
to produce accessible scientific content by sighted
people, too. A different approach consists in edit-
ing LATEX documents through speech and Braille
support (Pepino et al., 2006; Melfi G., 2018;
Yamaguchi et al., 2008; Manzoor et al., 2018,
2019; Sorge, 2016). This approach has the advan-
tage to rely on LATEX, which is a de facto standard

138

for authoring scientific documents. Unfortunately,
since these tools are produced for a small commu-
nity, due to the rapid evolution of technology, they
often incur in maintainance and compliance issues.

For what concerns reading digital scientific
documents, many studies have been undertaken
to create non-visual reading tools for the most
widespread digital formats. In particular, research
has focused on web publishing Microsoft Word,
LATEX and PDF documents. In recent years,
mathematical content has been published on the
web through images of formulae, by embedding
MathML in the web page or through MathJax, a
JavaScript display engine for mathematical formu-
lae. Images of formulae are inaccessible to screen
readers, hence they can be adapted to be read by
screen readers only through a proper alternative
text (e.g., the LATEX equivalent). On the contrary,
MathML and MathJax can be used to create ac-
cessible web pages. MathML, especially the con-
tent markup, can be interpreted by most common
screen readers to generate a verbal description of
the formula (Bernareggi and Archambault,
2007; Sorge et al., 2014). Moreover, MathPlayer, a
web browser plug-in for rendering MathML on the
screen, through speech output and on Braille de-
vices, enables hierarchical navigation of mathemat-
ical formulae, including bi-dimensional notations
such as matrices (Soiffer, 2018). MathJax can
be embedded in web pages making available adapt-
able accessibility features for representing and nav-
igating formulae (e.g., LATEX, ASCIIMath or CSS
representation; Cervone et al. (2016); Cervone
and Sorge (2019)). Taking Microsoft Word into
account, mathematical formulae can be read by the
speech synthesizer or on a Braille display through
MathPlayer. Nonetheless, due to the visual fea-
tures of Microsoft Word, interaction with screen
readers is often not easy. LATEX documents can be
read by people with sight impairments either read-
ing the source file on the Braille display or through
editors that support speech reading of LATEX (e.g.,
ChattyInfty by Science Access Net; Pepino et al.
(2006); Melfi G. (2018); Yamaguchi et al. (2008);
Manzoor et al. (2019)). Furthermore, also con-
verters from LATEX to some national Braille codes
for mathematics are available (Papasalouros and
Tsolomitis, 2017). Since national Braille codes
can represent only a limited amount of mathemat-
ical notations, these converters can transform only
a subset of the source LATEX document.

For PDF files, frequently used as a medium for
publishing digital scientific documents, the acces-
sibility of mathematical content has been devel-
oped in the scope of the so-called Tagged PDF,
which embeds the document semantics directly
into the visual representation of the page. Both
ISO 32000-1:2008 (specifying PDF 1.7) and the
recent ISO 32000-2:2017 (for PDF 2.0) suggest the

use of MathML syntax for describing the semantics
of mathematical formulae. In addition, PDF 2.0
standard opens the door for any alternative syntax
(for example, the original LATEX representation of
the formula), which can be associated with any
structure element in Tagged PDF. However, due
to the novelty of this approach, it is not yet sup-
ported by the screen readers and, thus, may be
considered only in the long-term scope.

Another approach widely supported by the ma-
jority of the screen readers is to add accessibil-
ity features to mathematical content as alternate
text. It can be specified manually using, for exam-
ple, a proprietary editor such as Adobe Acrobat.
Guidelines have been produced to create accessible
PDF according to this procedure (Uebelbacher
et al., 2014) with a focus on mathematical content
(Moore, 2009, 2014; Borsero et al., 2016).

However, this approach requires the availability
of a suitable editor, and it entails additional labor
from the document author. Furthermore, alternate
text most often does not carry the same semantic
value as the original mathematical content. Yet
another approach consists in transforming PDF
files into LATEX or HTML+MathML documents
by performing OCR (Baker et al., 2010; Suzuki
and Yamaguchi, 2017). However, the resulting
document has to be proofread because of possible
recognition errors. Proofreading process is usually
time consuming and it has to be done by a sighted
person who can compare the PDF document with
the OCR result.

3 The axessibility LATEX package

We provided a solution to the problem described
above through our package axessibility, see, e.g.,
Ahmetovic et al. (2018a,b); Armano et al.
(2018). In its most recent version, release 2.0, which
will soon be available in CTAN, we employed the
tagpdf package, created by Ulrike Fischer (see Fis-
cher (2019)), replacing the accsupp package, on
which the 1.x versions of the axessibility package
relied. The package implements insertion of the
original LATEX formulae as properties of the Span
elements containing visual representation of the
mathematical content in the resulting PDF docu-
ment, by means of the commands provided by the
tagpdf package.

In more detail, each inline or display formula
in the source LATEX document is wrapped into
a marked content sequence (see the documenta-
tion of the tagpdf package for more details on the
difference between structure elements and marked
content sequences in Tagged PDF). In addition, the
original formula is added to this marked content
sequence as /ActualText and /AltText. These
properties are read by screen readers and braille
displays instead of the ASCII representation of the
formula, which is often incorrect. Additionally, the

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

139

package adds a minimal Tagged PDF structure
to the output PDF. This includes at the moment
the top level Document structure element to mark
the beginning and the end of the document and
the P (paragraph) tag for each formula. Further
extension of this set of tags (like automatic tagging
of all paragraphs, section headers, etc) is still a
work in progress. For details about the structure
of a PDF document, we refer to the ISO standards
32000-1:2008 (2008); 32000-2:2017 (2017).

As the tagpdf package, the axessibility 2.0 pack-
age is currently experimental and it is aimed for
individual tests and experiments.

3.1 Usage

To create an accessible PDF document for visually
impaired people, the authors just need to include
the axessibility package into the preamble of their
LATEX project. The supported mathematical en-
vironments will then automatically produce the
/ActualText and /AltText contents and include
them in the produced PDF file. Formulae will also
be automatically tagged, as well as the document
environment. The tagging of other text tokens
(paragraphs, sections, etc.), at the moment, has to
be inserted manually, under the guidelines of the
tagpdf package.

The environments for writing formulae which
are presently supported are \(, \[, equation*,
equation, align*, and align. Hence, any formula
inserted using one of these environments is acces-
sible and tagged in the corresponding PDF doc-
ument. The click-copy of the formula LATEX code
from the PDF reader, to be pasted elsewhere, is
presently not working with this new release.

Inline and displayed mathematical modes acti-
vated by the old syntaxes $. . . $ and $$. . . $$ are
not supported by the axessibility package (as in
the previous versions). However, external scripts
provided as companion software can address, at
some extent, the problem of source files where the
old TEX syntax is used (see Section 4 below).

Below, an example of LATEX code, illustrating
the usage of axessibility, jointly with tagpdf.

\ documentclass { article }

\ usepackage {etoolbox , axessibility }

\begin{ document }

\ tagstructbegin {tag=P}

\ tagmcbegin {tag=P}

A simple displayed formula :

\ tagmcend

\ tagstructend

\ begin{ equation *}

x=\ frac {3a^2}{n+m}

\end{ equation *}

\ tagstructbegin {tag=P}

\ tagmcbegin {tag=P}

A multiline formula , aligned ,

with label:

\ tagmcend

\ tagstructend

\begin {align}

70xy ^2+105 x^2y -35 xy7

& = 35\ left (2xy ^2+3x^2y-xy7\ right) =

\\

& = 35x\left (2y^2+3xy -y7\ right) =

\\

& = 35xy\left (2y+3x -7\ right)

\end{align}

\end{ document }

We observe that, in these cases, the author can
write the formulae without adding anything else.
Moreover, inside the source code of the PDF file,
we find /ActualText and /AltText contents, with
the (Hex) LATEX code inside, automatically gener-
ated by the axessibility.sty package, as well
as the equation tags, namely:

/P

<</MCID 1

/Alt <FEFF 002000200078003 D005C

00660072006100630020007 B

00330061005 E 0032007 D007B

006E002B006D007D0020 >

/ ActualText <FEFF 002000200078003 D005C

00660072006100630020007 B

00330061005 E 0032007 D007B

006E002B006D007D0020 >

>>

and

/P

<</MCID 3

/Alt <FEFF 0037003000780079005 E

0032002 B 0031003000350078

005E 00320079002 D 00330035

007800790037002000260020

003D 002000330035005 C006C

006500660074002000280032

00780079005 E 0032002 B0033

0078005 E 00320079002 D0078

00790037005 C 007200690067

00680074002000290020003 D

0020005 C005C 002000260020

003D 0020003300350078005 C

006C 00650066007400200028

00320079005 E 0032002 B0033

00780079002 D 00790037005 C

007200690067006800740020

00290020003 D 0020005 C005C

002000260020003 D 00200033

003500780079005 C006C0065

006600740020002800320079

002B 00330078002 D 0037005 C

007200690067006800740020

0029 >

/ ActualText <FEFF 0037003000780079005 E

0032002 B 0031003000350078

005E 00320079002 D 00330035

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

140

007800790037002000260020

003D 002000330035005 C006C

006500660074002000280032

00780079005 E 0032002 B0033

0078005 E 00320079002 D0078

00790037005 C 007200690067

00680074002000290020003 D

0020005 C005C 002000260020

003D 0020003300350078005 C

006C 00650066007400200028

00320079005 E 0032002 B0033

00780079002 D 00790037005 C

007200690067006800740020

00290020003 D 0020005 C005C

002000260020003 D 00200033

003500780079005 C006C0065

006600740020002800320079

002B 00330078002 D 0037005 C

007200690067006800740020

0029 >

>>

respectively. Here the /Alt and /ActualtText

keys are followed by the UTF-16 encoded values
in the Hexadecimal format. So, this makes our
solution fully Unicode compliant.

We note that such use of /Alt and /ActualText

keys is not fully aligned with the best practices of
PDF accessibility techniques. But it does open the
door for real world tests and further experiments.
In particular, the screen reader will read correctly
the LATEX commands. Moreover, the JAWS and
NVDA dictionaries that we created provide the
reading in the natural language, in the case that
the user does not know the LATEX commands. It
is strongly recommended to use the most recent
version of tagpdf (available through the GitHub
website), as well as the most updated versions of
the TexLive distribution.

3.2 Technical Overview

In axessibility we first load the requested packages,
configure tagpdf, and define a pair of internal vari-
ables.

\ NeedsTeXFormat {LaTeX2e}

\ ProvidesPackage { axessibility }

\ RequirePackage { tagpdf }

\ tagpdfsetup { tabsorder =structure ,

uncompress ,activate -all ,

interwordspace =true}

\ tagpdfifpdftexT

{

\ pdfcompresslevel =0

%set language / can also be done

with hyperref

\ pdfcatalog {/ Lang (en -US)}

\ usepackage [T1]{ fontenc }

\ input glyphtounicode

\ pdfgentounicode =1

}

\ tagpdfifluatexT

{

%set language / can also be done

with hyperref

\ pdfextension catalog {/ Lang (en -US)}

\ RequirePackage { fontspec }

\ RequirePackage { luacode }

\ newfontface \ zerowidthfont { freeserif

}

\ directlua {

pdf. setcompresslevel (0)

pdf. setmajorversion (2)

pdf. setminorversion (0)

}

}

\ RequirePackage { amsmath }

\ RequirePackage { amssymb }

\ RequirePackage { xstring }

\ newtoks \ @mltext

\ newtoks \ @mltexttmp

Then, we redefine the document environment, so
that the PDF file is automatically tagged at the
Document level.

\ makeatletter

\let\ begin@document =\ document

\let\ end@document =\ enddocument

\ renewcommand {\ document }{\

begin@document \ tagstructbegin {tag=

Document }}

\ renewcommand {\ enddocument }{\

tagstructend \ end@document }

\ makeatother

Subsequently, we redefine the inline formula envi-
ronment, to make it accessible, inserting its (hid-
den) LATEX code. We also define an internal com-
mand to produce a space (which is useful in passing
parameters to some of our redefined environments).

\ makeatletter

\ newenvironment { temp@env }{%

\ relax\ ifmmode \ @badmath \else $\fi%

\ collect@body \wrap }{%

\relax\ ifmmode \ ifinner $\ else\

@badmath \fi\else \ @badmath \fi}

\ protected \def \(#1\) {\ begin { temp@env

}#1\ end{ temp@env }}

\ makeatother

\ newcommand {\ auxiliaryspace }{ }

The core of the package is represented by the
wrapping procedures. The first one, \wrap, is used
for both the inline, as well as the displayed single
line, formulae environments (numbered and un-
numbered), which we redefine in order to obtain
their automatic tagging and insertion of the cor-
responding LATEX code in the /ActualText and
/AltText contents. The wrapper receives as pa-
rameter the code within the environment, obtained
by means of the \collect@body command (from
the amsmath package), and passes it to the tagging
commands defined in tagpdf.

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

141

\ makeatletter

\long\def\wrap #1{

\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {#1} ,

actualtext -o=\ detokenize \

expandafter {#1}}

\ tagmcbegin {tag=P,alttext -o=\

detokenize \ expandafter {#1} ,

actualtext -o=\ detokenize \

expandafter {#1}}

#1

\ tagmcend

\ tagstructend

}

\ makeatother

\ makeatletter

\ renewenvironment { equation }{%

\ incr@eqnum

\ mathdisplay@push

\ st@rredfalse \ global \ @eqnswtrue

\ mathdisplay { equation }%

\ collect@body \wrap\ auxiliaryspace }{%

\ endmathdisplay { equation }%

\ mathdisplay@pop

\ ignorespacesafterend

}

\ makeatother

\ makeatletter

\ renewenvironment { equation *}{%

\ mathdisplay@push

\ st@rredtrue \ global \ @eqnswfalse

\ mathdisplay { equation *}%

\ collect@body \wrap\ auxiliaryspace }{%

\ endmathdisplay { equation *}%

\ mathdisplay@pop

\ ignorespacesafterend

}

\ makeatother

\ makeatletter

\ protected \def \[#1\]{\ begin { equation

*}#1\ end{ equation *}}

\ makeatother

The next two procedures, \wrapml and
\wrapmlstar, perform the same task for
the multiline environments. We need a different
routine here, due to the more involved typesetting
procedure of multiline environments like align and
align*, which are likewise redefined.

\ makeatletter

\long\def\ wrapml #1{

\def\ @mltext {\ detokenize \ expandafter

{#1}}

\def\ @mltexttmp {}

\ StrBehind [6]{\ @mltext }{ }[\ @mltexttmp

]

\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]

\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },

actualtext -o=\ detokenize \

expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },

actualtext -o=\ detokenize \

expandafter {\ @mltext }}

#1

}

\ makeatother

\ makeatletter

\long\def\ wrapmlstar #1{

\def\ @mltext {\ detokenize \ expandafter

{#1}}

\def\ @mltexttmp {}

\ StrBehind [5]{\ @mltext }{ }[\ @mltexttmp

]

\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]

\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },

actualtext -o=\ detokenize \

expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },

actualtext -o=\ detokenize \

expandafter {\ @mltext }}

#1

}

\ makeatother

\ makeatletter

\ renewenvironment {align }{%

\ collect@body \ wrapml \ auxiliaryspace

\ start@align \@ne\ st@rredfalse \m@ne

}{%

\ math@cr \ black@ \ totwidth@

\ egroup

\ ifingather@

\ restorealignstate@

\ egroup

\ nonumber

\ ifnum 0= ‘{\ fi\ iffalse }\fi

\else

$$%

\fi

\ ignorespacesafterend

\ tagmcend

\ tagstructend

}

\ renewenvironment {align *}{%

\ collect@body \ wrapmlstar \

auxiliaryspace

\ start@align \@ne\ st@rredtrue \m@ne

}{%

\ endalign

}

\ makeatother

\ endinput

We are presently working to make \wrapml and
\wrapmlstar more flexible, so that they will work
correctly with all the other multiline environments
provided by the amsmath package. This will make

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

142

all of them accessible and tagged, as those illus-
trated above. At the moment, the package works
correctly when typesetting with both pdfLATEXas
well as LuaLATEX.

4 Supporting Software

In addition to the axessibility package, we developed
additional software to address two use cases: 1) Pre-
processing Scripts for the application of axessibility
on existing documents, and 2) Screen Reader Dic-
tionaries for natural language reading of formulae
made accessible with axessibility. We are currently
working on these supporting software, to fix some
of the issues we detected through user’s reports
and suggestions, and to expand their applicability
range.

4.1 Preprocessing Scripts

axessibility restricts the syntax that can be used to
write mathematical formulae to specific environ-
ments and math mode syntax. Instead, existing
documents may contain unsupported syntax, and
therefore cannot be used with axessibility without
being first opportunely edited. We provide Axess-
cleaner, an external script written in Python and
Perl, through which it is possible to substitute
unsupported commands and environments with
suitable replacements, thus enabling the use of
axessibility on existing LATEX documents.

An additional issue lies in the usage of user-
defined macros in the LATEX code. While this is
a common practice to avoid code repetitions and
simplify document authoring, it can limit the ac-
cessibility of formulae with axessibility. Indeed,
axessibility is transparent to commands used in
math environments, which means that it will in-
clude standard LATEX as well as custom macros
within the PDF replacement text. However, cus-
tom commands used by an author may bear no
meaning for other readers. Thus, Axesscleaner also
replaces user defined macros with their content, in
order to only contain standard LATEX code within
the PDF replacement text.

4.2 Screen reader dictionaries

Mathematical formulae included as PDF replace-
ment text using axessibility are easy to read by
LATEX proficient users, using either a screen reader
or a braille display. However, for novice users, the
LATEX code read by a screen reader may be difficult
to comprehend.

To address this problem, we also provide dic-
tionaries for NVDA and JAWS screen readers,
which convert LATEX commands contained within
the PDF replacement text created by axessibil-
ity into their natural language counterparts (e.g.,
’\frac{2}{3}’ becomes “two thirds”). We are cur-
rently developing additional screen reader scripts
to enable interactive navigation of formulae, and

we are exploring more sophisticated natural lan-
guage processing techniques to personalize formula
reading considering their complexity and context,
as well as user’s proficiency with math.

5 Acknowledgements

The authors wish to thank the several volunteers
with visual impairment who provided their funda-
mental contribution.

References

32000-1:2008, ISO (2008). «Document man-
agement - Portable document format - Part
1: PDF 1.7». International standard, ISO.
Https://www.iso.org/standard/51502.html.

32000-2:2017, ISO (2017). «Document man-
agement - Portable document format - Part
2: PDF 2.0». International standard, ISO.
Https://www.iso.org/standard/63534.html.

Ahmetovic, Dragan, Tiziana Armano, Cris-
tian Bernareggi, Michele Berra, Anna Capi-
etto, Sandro Coriasco, Nadir Murru, Al-
ice Ruighi and Eugenia Taranto (2018a).
«Axessibility: a LATEX Package for Mathemati-
cal Formulae Accessibility in PDF Documents».
In Conference on Computers and Accessibility.
ACM.

Ahmetovic, Dragan, Tiziana Armano,
Michele Berra, Cristian Bernareggi,
Anna Capietto, Sandro Coriasco,
Nadir Murru and Alice Ruighi (2018b).
«Axessibility: creating PDF documents with ac-
cessible formulae». ArsTEXnica, (26), pp. 50–54.
https://www.guitex.org/home/it/numero-

26-ottobre-2018.

Archambault, D., B. Stoger, D. Fitzpatrick
and K.: Miesenberger (2007). «Access to
scientific content by visually impaired people».
Upgrade.

Armano, T., A. Capietto, M. Illengo,
N. Murru and R. Rossini (2014). «An overview
on ict for the accessibility of scientific texts by
visually impaired students». In SIREM/SIE-L
Conference.

Armano, T., A. Capietto, S. Coriasco,
N. Murru, A. Ruighi and E. Taranto (2018).
«An automatized method based on LATEX for the
realization of accessible PDF documents contain-
ing formulae». In Proc. ICCHP. Lecture Notes
in Computer Science, Springer.

Baker, Josef B., Alan P. Sexton and
Volker Sorge (2010). «Faithful Mathematical
Formula Recognition from PDF Documents». In

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

143

Proceedings of the 9th IAPR International Work-
shop on Document Analysis Systems. ACM, New
York, NY, USA, DAS ’10, pp. 485–492. http:

//doi.acm.org/10.1145/1815330.1815393.

Bernareggi, C. (2010). «Non-sequential mathe-
matical notations in the LAMBDA system». In
Proc. ICCHP. Springer.

Bernareggi, C. and D. Archambault (2007).
«Mathematics on the web: emerging opportuni-
ties for visually impaired people». In Conference
on Web accessibility. ACM.

Borsero, M., N. Murru and A. Ruighi (2016).
«Il LATEX come soluzione al problema dell’accesso
a testi con formule da parte di disabili visivi».
ArsTeXnica. https://www.guitex.org/home/

it/numero-22-ottobre-2016.

Cervone, Davide and Volker Sorge (2019).
«Adaptable Accessibility Features for Mathemat-
ics on the Web». In Proceedings of the 16th Web
For All 2019 Personalization - Personalizing
the Web. ACM, New York, NY, USA, W4A ’19,
pp. 17:1–17:4. http://doi.acm.org/10.1145/

3315002.3317567.

Cervone, Davide, Peter Krautzberger and
Volker Sorge (2016). «Towards Universal Ren-
dering in MathJax». In Proceedings of the 13th
Web for All Conference. ACM, New York, NY,
USA, W4A ’16, pp. 4:1–4:4. http://doi.acm.

org/10.1145/2899475.2899494.

Fischer, U. (2019). «The tagpdf package, v0.61».
CTAN repository. https://ctan.org/pkg/

tagpdf.

Manzoor, Ahtsham, Murayyiam Parvez, Sule-
man Shahid and Asim Karim (2018). «As-
sistive Debugging to Support Accessible LATEX
Based Document Authoring». In Proceedings of
the 20th International ACM SIGACCESS Con-
ference on Computers and Accessibility. ACM,
New York, NY, USA, ASSETS ’18, pp. 432–
434. http://doi.acm.org/10.1145/3234695.

3241013.

Manzoor, Ahtsham, Safa Arooj, Shaban Zul-
fiqar, Murayyiam Parvez, Suleman Shahid
and Asim Karim (2019). «ALAP: Accessible
LATEX Based Mathematical Document Author-
ing and Presentation». In Proceedings of the
2019 CHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA,
CHI ’19, pp. 504:1–504:12. http://doi.acm.

org/10.1145/3290605.3300734.

Melfi G., Stiefelhagen R., Schwarz T. (2018). «An
Inclusive and Accessible LATEX Editor». In Proc.
ICCHP. Lecture Notes in Computer Science,
Springer.

Moore, R.: (2009). «Ongoing efforts to generate
tagged PDF using pdfTEX». TUGboat, Vol.30,
No 2.

— (2014). «PDF/A-3u as an Archival Format for
Accessible Mathematics». In Watt, CICM.

Papasalouros, A. and A.: A Tsolomitis (2017).
«Direct TeX-to-Braille transcribing method».
Science Education for Students with Disabilities.

Pepino, Alessandro, Corinna Freda,
Fiorentino Ferraro, S Pagliara and
Francesco Zanfardino (2006). «“BlindMath”
a new scientific editor for blind students». In
Proc. ICCHP. Lecture Notes in Computer
Science, Springer.

Soiffer, N. (2018). «Mathplayer: web-based math
accessibility». In Conference on Computers and
Accessibility. ACM.

Sorge, Volker (2016). «Supporting Visual Im-
paired Learners in Editing Mathematics». In
Proceedings of the 18th International ACM
SIGACCESS Conference on Computers and Ac-
cessibility. ACM, New York, NY, USA, ASSETS
’16, pp. 323–324. http://doi.acm.org/10.

1145/2982142.2982212.

Sorge, Volker, Charles Chen, T. V. Raman and
David Tseng (2014). «Towards Making Mathe-
matics a First Class Citizen in General Screen
Readers». In Proceedings of the 11th Web for All
Conference. ACM, New York, NY, USA, W4A
’14, pp. 40:1–40:10. http://doi.acm.org/10.

1145/2596695.2596700.

Suzuki, Masakazu and Katsuhito Yamaguchi
(2017). «ChattyBooks and ChattyBook Ser-
vice». In Proceedings of the 14th Web for All
Conference on The Future of Accessible Work.
ACM, New York, NY, USA, W4A ’17, pp. 30:1–
30:2. http://doi.acm.org/10.1145/3058555.

3060619.

Uebelbacher, A., R. Bianchetti and M. Ri-
esch (2014). «Pdf Accessibility Checker (PAC
2): The First Tool to Test PDF Documents for
PDF/UA Compliance». In Proc. ICCHP. Lec-
ture Notes in Computer Science, Springer.

Yamaguchi, Katsuhito, Toshihiko Komada,
Fukashi Kawane and Masakazu Suzuki (2008).
«New features in math accessibility with infty
software». In International Conference on Com-
puters for Handicapped Persons. Springer, pp.
892–899.

D. Ahmetovic et al. ArsTEXnica Nº 28, Ottobre 2019

144

⊲ D. Ahmetovic
Dipartimento di Informatica,
Università degli Studi di Milano
dragan dot ahmetovic at unito dot it

⊲ T. Armano
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
tiziana dot armano at unito dot it

⊲ C. Bernareggi
Dipartimento di Informatica,
Università di Milano
cristian dot bernareggi at

unimi dot it

⊲ A. Capietto
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
anna dot capietto at unito dot it

⊲ S. Coriasco
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
sandro dot coriasco at unito dot it

⊲ B. Doubrov
Dual Lab, Belgium
boris dot doubrov at duallab dot com

⊲ A. Kozlovskiy
Dual Lab Bel, Belarus
k dot sasha1994 at gmail dot com

⊲ N. Murru
Dipartimento di Matematica “G. Peano”,
Università degli Studi di Torino
nadir dot murru at unito dot it

ArsTEXnica Nº 28, Ottobre 2019 Axessibility 2.0: tagged PDFs with accessible formulae

145

Uno script bash di ausilio alla redazione di manoscritti

Gianluca Pignalberi

Sommario

La fase di redazione di manoscritti ci pone spesso
di fronte a una serie di cattive pratiche reiterate
dagli autori. La correzione interamente manuale
può essere fonte di dimenticanze. Vediamo come
uno script bash ci consente di minimizzarle.

Abstract

A manuscript editing session puts us in front of
a series of authors’ repeated bad practices. An
entirely-by hand correction can be source of over-
sights. We will see how a bash script allows us to
minimize them.

1 Introduzione

Il mio lavoro di impaginatore LATEX mi mette mol-
to più spesso di fronte a manoscritti redatti con
un word processor che a manoscritti redatti con
LYX o direttamente in LATEX.1 In base a quanto
visto direttamente, è raro che gli utenti di word
processor mantengano alta la propria attenzione a
qualcosa che non sia il contenuto quando redigono i
proprî manoscritti. La loro negligenza relativa alle
regole tipografiche più elementari e logiche fa sì
che ai redattori si presentino sovente dei documen-
ti dall’aspetto rabberciato e povero, quando non
confuso e incoerente, dal punto di vista tipografico.

1. Molti autori usano scorrettamente i glifi e ciò
danneggia il testo agli occhi dei redattori e dei
lettori più esigenti e pignoli.

2. Altri, non necessariamente diversi, non fan-
no caso all’interezza delle porzioni di testo
alle quali applicano determinate proprietà.
Ciò può introdurre dei problemi nell’eventuale
ebook, oltre ad aumentare la dimensione del
file .tex risultante dalla conversione.

3. Molti autori tendono a non usare gli stili: que-
sto può far sì che l’aspetto di elementi di pari
semantica non sia coerente.

4. Molti autori, o forse il word processor da
essi utilizzato, tendono a impostare incoe-
rentemente più lingue all’interno dei proprî
documenti.

1. La percentuale attuale è circa il 2% di manoscritti
LATEX e 0 % di manoscritti LYX e Libre/OpenOffice. Serve
specificare quale programma è usato nel 98% dei casi?

Il lavoro del redattore è già messo a dura prova
dalla correzione del testo: come esposto in Rawlin-

son (1976) ed esemplificato in Polidoro (2012),
il cervello umano è in grado di leggere correttamen-
te le parole con la prima e l’ultima lettera poste
correttamente e le altre mescolate e magari con
qualche refuso, fungendo così da correttore ortogra-
fico e rendendo difficile la correzione delle bozze.2

Quando si arriva al momento di controllare tutte
quelle piccole minuzie relative alle più elementari
regole tipografiche, tale lavoro può diventare anco-
ra peggiore. Due famosi studî psicologici (Simons e
Levin (1998) e Simons e Chabris (1999)) hanno
mostrato come l’attenzione umana nei confronti di
un compito ci renda ciechi ai cambiamenti anche
macroscopici del mondo circostante. Posso suppor-
re, non essendo stato in grado di reperire studî
specifici, che anche l’attenzione selettiva, oltre alla
capacità di “correzione inconscia” che forse funzio-
na anche sui simboli, influisca negativamente sul
lavoro del redattore.

L’articolo porterà avanti due finalità: 1) l’analisi
di alcuni casi in cui un autore o un word processor
mettono alla prova il lavoro del redattore (di alcuni
casi spiegheremo la semantica o le cause, chiarendo
ulteriormente la natura degli errori commessi) e
2) la scrittura di uno script bash che scovi per
noi tutti i casi esplicitati nell’articolo e potenzial-
mente dannosi nei file LATEX, nativi o convertiti
dagli originali word processor. A causa della mia
predilezione per i sistemi Unix-like la seconda fi-
nalità sarà principalmente indirizzata agli utenti
di tali sistemi (come Linux e Mac OS X), ma non
disdegna gli utenti di Windows che abbiano in-
stallato un interprete di comandi bash sul proprio
computer (Cygnus Solution-Red Hat (2019)
oppure Bruessow (2017) tra le soluzioni più note).
Lo script avrà il solo compito di analisi perché in
alcuni casi, discussi puntualmente nell’articolo, la
correzione automatica non farebbe che aumentare
i problemi.

L’articolo prosegue così: la sezione 2 presenta
brevemente la struttura dell’algoritmo3 alla base

2. Fortunatamente esistono i correttori ortografici che
possono aiutare su questo fronte. Qualche word processor
si spinge al controllo semantico. . .

3. Ricordiamo che i termini algoritmo e procedura non
sono equivalenti. L’algoritmo (Bertossi, 1990, 11) «che
significa procedimento [. . .] indica la descrizione precisa delle
azioni che un esecutore deve compiere per giungere alla
soluzione di qualsiasi problema computazionale. [. . .] [P]uò
essere considerato come un manipolatore di dati che, a fronte
di certi dati d’ingresso consistenti con la natura del problema
da risolvere (dati di input), produce altri dati come risultato

146

dello script descrivendone le parti più significative
del codice; le sezioni 3–6 discuteranno alcuni casi
d’uso reali tra quelli che ricadono nei punti 1–4
del precedente elenco e il relativo codice bash.
Poiché alcuni di questi casi sono significativi
per la sola lingua italiana, adattare lo script
per altre lingue comporterà modificare alcuni
test oppure cancellarne alcuni per aggiungerne
di significativi nella lingua prescelta. Prima di
concludere, la sezione 7 presenterà per intero lo
script, ne descriverà alcuni dettagli implementativi
e lo metterà all’opera su alcuni file di prova per
testarne il funzionamento e mostrarne i risultati.

2 Impostazione dello script

Sebbene niente possa (ancora) sostituire l’accurato
controllo umano di un testo scritto da un umano,
un aiuto automatico nei compiti più ripetitivi è
sempre benvenuto. Uno dei compiti più ripetitivi
che si possa immaginare è controllare se tutte le
voci di una checklist siano presenti o meno in un
documento, specie se questo è costituito da più
di qualche file (o di qualche pagina se siamo di
quelli che lavorano coi fogli stampati). Ritengo che
a qualunque redattore possa far comodo avere un
programma che controlli la checklist in sua vece
e gli faccia un rapporto su quali file contengano
quali voci. La presenza di un rapporto riduce e
circoscrive i controlli manuali e, soprattutto, funge
da promemoria sulle eventuali correzioni da fare.
Il programma avrà le sembianze di uno script bash
che scriverà per noi il rapporto come conseguenza
dell’analisi di uno o più file di testo (che ricordiamo
essere il formato dei file .tex) alla ricerca dei casi
discussi nelle prossime sezioni.4

Per prima cosa vogliamo che lo script usi bash
indipendentemente dalla shell in uso.5 Dunque la
prima riga conterrà la sequenza di caratteri nota
come shebang6 e il comando completo di percorso
assoluto:7

del problema (dati di output)». «Un algoritmo descritto per
mezzo di costrutti tipici di un linguaggio di programmazione
è comunemente detto procedura» (Bertossi, 1990, 13).

4. L’idea di produrre un tale script è nata successivamen-
te all’idea di un articolo che descrivesse gli errori più frequen-
ti degli autori, argomento tutto sommato abbastanza circo-
scritto. La versione dello script qui presentata è embrionale,
forse didattica e quasi per niente testata in casi reali. In una
versione precedente dell’articolo il redattore ha giustamente
evidenziato l’incapacità dello script di trattare nomi di file
contenenti degli spazî. Tutte le altre mancanze dello script,
dal controllo sull’esistenza dei file di input alla scelta arbi-
traria del nome del file contenente il rapporto passando per
la suggerita inefficienza, verranno implementate in futuro.

5. Alcuni sistemi Unix usano, di default o per scelta
amministrativa, shell diverse da bash, quali sh, [t]csh, ksh
e molte altre.

6. Così viene chiamata, per esempio, su Powers et al.

(2002). Altre fonti, quali Wikipedia (2019) ne danno altre
versioni e possibili significati.

7. Bisogna comunque ricordarsi di rendere lo script ese-
guibile, altrimenti il sistema operativo non lo riconoscerà
come comando e non lo eseguirà.

#!/bin/bash

Immediatamente dopo vogliamo controllare che
l’analizzatore abbia ricevuto in input almeno un
file:8

1 if␣[[␣$BASH_ARGC␣<␣1␣]];␣then
2 ␣␣echo␣"Uso:␣editanalyze␣<file\
3 ␣da␣analizzare >"
4 ␣␣echo␣"Es.:␣editanalyze␣*.tex\
5 ␣(controlla␣tutti␣i␣file␣con\
6 ␣estensione␣.tex)"
7 ␣␣echo␣"␣␣␣␣␣editanalyze\
8 ␣capitolo1.tex␣(controlla\
9 ␣il␣solo␣file␣capitolo1.tex)"

10 ␣␣echo␣"␣␣␣␣␣editanalyze\
11 ␣capitolo [1-5]. tex␣(controlla\
12 ␣i␣file␣capitolo1 -capitolo5\
13 .tex)"
14 ␣␣exit␣1
15 fi

Questo pezzo di codice controlla che il coman-
do abbia ricevuto almeno un argomento (riga 1;
$BASH_ARGC vale 0 se non abbiamo dato argomen-
ti al comando); in caso negativo, stampa alcune
righe riassuntive sull’uso dello script, mostrando
esplicitamente la possibilità di ricorrere a wild-

card e a espressioni regolari (Goyvaerts, 2019)
(righe 2–13), quindi interrompe l’esecuzione dello
script uscendo con codice di errore 1 (riga 14). Se il
test precedente è negativo (cioè $BASH_ARGC > 1)
abbiamo passato almeno un parametro e quindi lo
script può continuare.

Vogliamo che il rapporto, memorizzato nel file
report.txt, contenga l’elenco dei file in cui è sta-
to riscontrato ognuno dei casi oggetto di analisi,
elenco preceduto dall’indicazione del relativo caso,
come per esempio:

Il carattere ° si trova in
1.tex
3.tex

Capiamo quindi che i casi da esaminare si ridu-
cono alla presenza o meno di uno o più caratteri
(una stringa) in configurazioni più o meno lineari.
Prima di vedere l’algoritmo, diamo due definizioni
di comodo:

Definizione 1. Un file è positivo (all’analisi) se
contiene almeno un’occorrenza del testo cercato.

Definizione 2. Un file è negativo (all’analisi)
se non contiene neanche un’occorrenza del testo
cercato.

8. Da notare che i testi dentro le virgolette dopo ogni
comando echo vanno scritti su una riga. Nel caso la riga sia
troppo lunga, potremo interromperla col carattere di fuga

(comunemente detto di escape) \. Facciamo attenzione al
numero di spazî dopo di esso per mostrare sullo schermo il
testo di aiuto pulito e ordinato. In tutti i successivi brani
di codice eviteremo l’uso esplicito del carattere di fuga e
lasceremo a LATEX l’incombenza di mandare a capo (solo
tipograficamente) le righe troppo lunghe.

ArsTEXnica Nº 28, Ottobre 2019 Uno script bash di ausilio alla redazione di manoscritti

147

L’algoritmo proposto è il seguente:

stampa sullo schermo il caso da analizzare
per ognuno dei file ricevuti in input

il file è positivo?
SÌ: stampa il caso nel rapporto

stampa il nome del file nel rapporto
esci dal ciclo

NO: non fare niente
per ognuno dei rimanenti file da analizzare

il file è positivo?
SÌ: stampa il nome del file nel rapporto
NO: non fare niente

Il primo ciclo assicura che il caso verrà stampato nel
rapporto solo se c’è un file positivo, il cui nome ver-
rà inserito nel rapporto. Il secondo ciclo controlla i
rimanenti file e stampa nel rapporto i soli positivi.
Scritto in bash-like, l’algoritmo si presenta così:

1 echo␣"ANALISI␣DEL␣CASO␣IN␣ESAME"
2 count=0
3 for␣i␣in␣"$@";␣do
4 ␣␣if␣(␣CONDIZIONE␣DI␣TEST␣);␣then
5 ␣␣␣␣echo␣"TESTO␣DEL␣CASO␣IN␣ESAME"␣

>>␣report.txt
6 ␣␣␣␣echo␣"$i"␣>>␣report.txt
7 ␣␣␣␣break
8 ␣␣fi
9 ␣␣count=$[$count +1]

10 done
11 args=("$@")
12 for␣((␣count=$[$count +1];␣$count <

$BASH_ARGC;␣count=$[$count +1]␣))
;␣do

13 ␣␣CONDIZIONE␣DI␣TEST
14 done

Le locuzioni “condizione di test”, “analisi del
caso in esame” e “testo del caso in esame” sono
in linguaggio naturale e andranno sostituite con
del codice o delle scritte significative che vedremo
nelle prossime sezioni. Soffermiamoci brevemente
sul significato del codice scritto finora.

Le righe 1, 5 e 6 stampano qualcosa; a video se
l’ultimo carattere della riga è ", su file in modalità
append se dopo le virgolette di chiusura troviamo
la sequenza >> seguita dal nome di un file. La
riga 3 è un ciclo che assegna alla variabile i il
contenuto di "$@"9. Quest’ultimo, stando a Ramey

e Fox (2010, p. 24), «è un parametro speciale che
si espande nei parametri posizionali partendo da
uno. Quando l’espansione avviene entro i doppî
apici, ogni parametro si espande in parole separate.
Cioè, "$@" è equivalente a "$1", "$2". . . ». Dunque
"$@" è un vettore contenente i parametri passati

9. Le virgolette servono a salvare la situazione nel caso
il nome del file contenga degli spazî: senza le virgolette
un unico nome contenente spazî verrebbe suddiviso in una
sequenza di tanti nomi di file quanti sono gli spazî più
uno. Nel caso questi “nomi” non corrispondano a niente
avremo dell’output di grep che ci avverte dell’inesistenza
del file. Ma se i nomi errati corrispondono a qualche file,
l’analizzatore scandaglierà dei file che forse non erano da
analizzare.

allo script e i assumerà il contenuto di ognuna
delle celle di detto vettore, cioè i nomi dei file da
analizzare.

La riga 4, così come la riga 13, deve testare una
condizione. Nelle prossime sezioni espliciteremo
una gamma di esse.

Per fare in modo che il secondo ciclo inizi dal
primo file non ancora analizzato sfruttiamo il con-
tatore (count) inizializzato a 0 nella riga 2 e in-
crementato di 1 ogni volta che troviamo un file
negativo nel primo ciclo. Nel secondo ciclo dobbia-
mo iniziare a valutare dal file successivo all’unico
positivo trovato. Purtroppo non è possibile scandi-
re $@ indicizzandolo come un array, quindi dovremo
assegnarne il contenuto a un array (che chiamere-
mo args e che sappiamo partire dall’elemento 0,
non da 1 come $@) e scandire quest’ultimo dalla
posizione successiva a count fino alla fine.

I lettori più attenti saranno già insorti: se la
riga 13 deve verificare una condizione di test per
decidere cosa fare dopo, dove sono l’if e il then pre-
senti nell’analoga riga 4? Risponderemo a questa
domanda nella prossima sezione.

3 Caso 1: glifi errati

3.1 Analisi del caso

Il caso dei glifi errati è un caso in cui non sempre è
possibile procedere a una correzione indiscriminata
perché spesso non possiamo sapere se tale glifo è
errato o no se non analizzando il contesto.

Un caso esemplare è l’uso del simbolo dei gradi
(°) al posto della ‘o’ soprasegnata (º).10 Agli occhi
dei non amanti della tipografia i due simboli pos-
sono sembrare uguali, ma non lo sono e veicolano
due significati diversi: la ‘o’ soprasegnata indica
che il numerale immediatamente precedente dev’es-
sere letto non come cardinale (uno, due, tre. . .) ma
come ordinale maschile (primo, secondo, terzo. . .);
il simbolo dei gradi va letto come “grado” o “gra-
di” se preceduto rispettivamente da 1 o dagli altri
numeri e indica un angolo (normalmente espresso
in gradi sessagesimali: un angolo giro vale 360°)
o una temperatura se diversamente indicato.11 In
entrambi i casi (o soprasegnata e simbolo di gradi
angolari) il simbolo va attaccato al numero che
lo precede. Tipograficamente una ‘o’ soprasegnata
mantiene le caratteristiche di forma, spessore e
orientazione della ‘o’ del font in uso (alcuni font

10. Per amor di par condicio, di recente mi è capitato di
rileggere un libro (Polidoro, 2012) in cui la o soprasegnata
è usata per indicare i gradi!

11. Per indicare una temperatura, il simbolo ° va seguito
da una lettera senza alcuno spazio tra i due glifi: C a indicare
i gradi Celsius (scala in cui 0 indica la temperatura di
congelamento dell’acqua e 100 quella di ebollizione), F per i
gradi Fahrenheit (in cui le due temperature precedenti sono,
rispettivamente, 32 e 212). Inoltre il simbolo va staccato con
uno spazio breve insecabile (\,) dal numero che lo precede.
Attenzione a un errore comune: la temperatura indicata in
gradi Kelvin usa il solo simbolo K, senza °.

Gianluca Pignalberi ArsTEXnica Nº 28, Ottobre 2019

148

le aggiungono una sottolineatura, ma non tutti, e
comunque detta sottolineatura non ci sarà mai se
usiamo il comando o invece
di \textordmasculine) mentre il simbolo dei gra-
di ha spessore uniforme e nessuna orientazione (di
fatto è una piccola circonferenza; normalmente i
manuali come Oetiker et al. (2018) consigliano
l’uso del comando matematico \circ all’esponente
o di \textdegree del pacchetto textcomp. Notiamo
che possiamo usare il simbolo di gradi presente sul-
la tastiera solo usando textcomp; diversamente avre-
mo un errore in compilazione con pdfLATEX). Nella
tabella 1 vediamo i glifi ingranditi per meglio ap-
prezzarne le differenze. Mi si potrebbe obiettare che
le ‘o’ dei font Sans Serif sono più facilmente confon-
dibili, ma non necessariamente queste sono disegna-
te come circonferenze o sono di spessore uniforme
(cose che avvengono, per esempio, nel font Futura).

Tabella 1: A sinistra la ‘o’ soprasegnata (tra parentesi
quella ottenuta con comando di soprascrittura); a destra il
simbolo dei gradi (tra parentesi quello ottenuto col coman-
do matematico e quello col comando testuale, identico al
simbolo di riferimento).

º (o) ° (◦,°)
Molti autori, però, ignorano o fingono di ignorare

le differenze elencate e mostrate. Pertanto trovano
comodo o lecito usare un simbolo presente sulla
totalità delle tastiere. Tale simbolo sembra pro-
prio essere quello desiderato e non occorre dover
impazzire a cercare quello corretto all’interno di
sterminate mappe di caratteri.

Entrambi i simboli si trovano alla destra di nu-
meri cardinali (scritti in cifre) e, dunque, solo la
lettura del testo ci permette di capire se l’autore
intendeva scrivere le cifre in gradi o le abbrevia-
zioni di numeri ordinali. Quindi non è possibile
applicare una sostituzione indiscriminata senza la
certezza che tutti i casi ricadano in una e una sola
delle due possibilità.

3.2 Codice di analisi

È arrivato il momento di svelare il “mistero” dei
test introdotto alla pagina 3. Iniziamo proprio dalla
ricerca del carattere °. All’interno dell’if della
riga 4 scriveremo:

grep␣--silent␣-E␣°␣"$i"

quindi l’intera riga 4 sarà:

if␣(␣grep␣--silent␣-E␣°␣"$i"␣);␣then

Vediamone il significato, che potrebbe risultare
oscuro a qualche lettore, a partire dalle singole
componenti:
if: comando di bash che esegue un test di verità/fal-
sità. Esegue i comandi seguenti la clausola then solo
nel caso in cui il test nelle parentesi sia vero o valga 0;

grep (Magloire et al., 2017): comando che stam-
pa le righe di un file contenenti una stringa o
pattern di riferimento (in pratica cerca la presenza
di uno o più termini o di un’espressione regolare
in uno o più file). Se tale stringa di riferimento è
presente, lo stato di uscita di grep sarà 0. L’op-
zione --silent sopprime il normale output del
programma (cioè la riga contenente la stringa di
riferimento, eventualmente preceduta dal nome del
file, che non vogliamo nell’output dello script) e l’e-
ventuale codice 2 emesso in caso di errore (maggiori
dettagli su Magloire et al. (2017, 12)) mentre
l’opzione -E permette le espressioni regolari estese.
Friedl (2006) dedica diverse pagine alle espres-
sioni regolari di egrep. Questo comando è ormai
deprecato e sostituito proprio da grep -E;
°: stringa o pattern di riferimento, in questo caso
costituita da un solo carattere;
"$i": contenuto della variabile i dentro cui (riga 2
del listato alla pagina 3) troviamo i nomi dei file
passati come parametri al comando di analisi.

Il “test” da scrivere nella riga 13, invece, non pre-
vede l’uso di if perché procederemo diversamente,
usando l’espressività del sistema Unix e dei suoi
comandi:

grep␣-l␣-E␣°␣"${args[$count]}"␣>>␣report.txt

Prima di analizzare per intero il “test”, vediamo
il significato delle singole parti:
grep -l -E °: di grep e -E già sappiamo; -l è
l’opzione che sopprime il normale output di grep
per stampare il nome dei file di input in cui sia stata
trovata un’occorrenza della stringa di riferimento;
"${args[$count]}": contenuto della cella count-
esima dell’array args (ne sappiamo lo scopo dalla
fine della sezione 2);
>> report.txt: ridirezione dell’output su file (qui
chiamato report.txt) in modalità append (con
scrittura di seguito a quanto già presente nel file;
differisce dalla modalità write perché quest’ultima
sovrascrive qualunque contenuto).

Alla luce di quanto appena visto, il “test” signifi-
ca: stampa i nomi di tutti e soli i file specificati in
input in cui trovi un’occorrenza della stringa ° e
scrivili alla fine del file report.txt. Naturalmente
non ci sarà alcuna scrittura nel rapporto se grep

non trova alcuna stringa di riferimento in un file.
Ora abbiamo tutti (o quasi) gli elementi per

arricchire lo script di tutti i controlli che riterremo
necessarî.

3.3 Altri glifi errati

Due casi in cui l’errore è imputabile più al word
processor che all’autore coinvolgono le virgolette
“intelligenti”. Il primo si ha quando scriviamo la
forma abbreviata di un decennio, ad esempio gli

anni ’20. I normali word processor, vedendo che
l’apostrofo è stato digitato dopo uno spazio, riten-
gono trattarsi di una virgoletta aperta e cambiano

ArsTEXnica Nº 28, Ottobre 2019 Uno script bash di ausilio alla redazione di manoscritti

149

glifo, col risultato di avere gli anni ‘20. Il secondo
caso si ha, invece, quando a una parola terminante
con l’apostrofo succede una parola virgolettata, ad
esempio l’“attor giovane”. Qui il word processor fa
il “ragionamento” inverso: le virgolette sono state
digitate senza avere uno spazio precedente, quindi
devono essere virgolette chiuse. Dunque avremo
ottenuto la stringa l’ ”attor giovane”. Ovviamente
non possiamo sapere a priori se ogni eventuale oc-
correnza ricade in quanto già esposto o nei possibili
“virgoletta aperta + numero cardinale” e “virgoletta
chiusa + virgolette chiuse”. Un controllo manuale
dirimerà la questione.

Trovare questi casi è semplice: basta sostituire
nel test il carattere ° con la stringa ‘[0-9] o con
’”. Insomma, sono tutte variazioni sul tema per
cui funzionano anche le espressioni regolari.

Altri casi che potremmo voler controllare sono:

• spazî precedenti le interpunzioni. La comples-
sità dell’analisi deriva dal fatto che gli autori
possono aver compreso gli spazî in uno stile e
nel risultante .tex dovremo tener conto delle
parentesi graffe: [␣]}*[␣]*[.,:;];

• spazî forzati (\\\␣ è la stringa di riferimento
da dare a grep), che il convertitore di un
comune word processor inserisce anche nei casi
in cui siano stati digitati più spazî consecutivi.
Ciò inficia la proprietà di LATEX di considerare
più spazî consecutivi come un singolo spazio;

• trattini (dash, en-dash, em-dash). Qui la
stringa di riferimento è più complicata per-
ché gli autori tendono a “mescolare una
gran quantità di. . . stili”. Diciamo che
può essere utile iniziare il controllo da
[A-Za-z.,:;␣]-[A-Za-z.,:;␣] e le sue va-
rianti con en-dash (codice Unicode 2013) e
em-dash (codice Unicode 2014). Naturalmen-
te il compito del redattore è verificare che ogni
trattino analizzato sia stato usato secondo le
norme redazionali.

Lascio al lettore trovare altri casi simili
appartenenti alla stessa classe di problemi.

4 Caso 2: scorretta applicazione

delle proprietà al testo

Spesso vedo, o mi vengono segnalate dagli editor
che rivedono i miei impaginati, porzioni di testo
di stile incoerente. Gli utenti di word processor
hanno la comodità di poter selezionare una o più
parole a cui applicare il grassetto, il corsivo e il
sottolineato evidenziandole col mouse e poi pre-
mendo un pulsante (il maiuscoletto e l’inclinato
sono normalmente di applicazione più farraginosa).
Bene!, proprio questa comodità sembra incremen-
tare la disattenzione: trovo sovente parole per metà

in corsivo12 e per metà in tondo e interpunzioni
comprese nel corsivo quando dovrebbero essere in
tondo. Come possiamo far esaminare questi due
casi a grep?

Il primo caso, indice di trascuratezza, può es-
sere esaminato abbastanza facilmente cercando
quelle occorrenze di testo in cui qualche caratte-
re precede o segue un comando \text..13 senza
alcuna interruzione. Questo è un caso (al pari di
quelli discussi nella sezione 3.3) in cui l’uso delle
espressioni regolari permette sintesi espressiva ed
efficienza programmativa. Le stringhe da ricercare
sono, rispettivamente:14

[0-9A-Za-z]\\\ text(it|bf|sc|tt|sl)

e

\\\ text(it|bf|sc|tt|sl){[^}]*}[0 -9A-Za
-z]

Il secondo caso è abbastanza simile: dobbiamo
controllare la presenza di parti di testo con comandi
\text.. contenenti del testo che inizia e/o finisce
con un segno di interpunzione. All’interno del grep
possiamo scrivere le seguenti espressioni regolari
entro una coppia di virgolette:

\\\ text(it|bf|sc|tt|sl){[^}]*[␣
]*[. ,:;][␣]*}

e

\\\ text(it|bf|sc|tt|sl){[. ,:;][␣
]*[^}]*}

rispettivamente per le interpunzioni alla fine e
all’inizio di un \text..

Un terzo caso, non rilevabile da un redattore
umano che guardi solo il pdf perché non porta
conseguenze visibili ai documenti finali, riguarda
sempre la scorretta applicazione delle proprietà al
testo: una stringa viene resa in uno stile o peso in
due o più riprese. Questo si traduce in due o più
comandi \text.. consecutivi, intercalati o no da
spazî. Perché dovremmo voler rilevare questi ca-
si? Perché nell’eventuale ebook prodotto a partire
da quei sorgenti viene inserito uno spazio in corri-
spondenza dei due \text.. consecutivi (anche non
intervallati da uno spazio) e può capitare che detto
spazio divida una parola, introducendo un refuso.
Quindi sarà utile cercare la seguente stringa:

\\\ text(it|bf|sc|tt|sl){[^}]*}[␣]*\\\
text(it|bf|sc|tt|sl)

12. L’uso del termine corsivo è di comodo. Quanto detto
vale per il grassetto e le altre forme elencate.

13. In questo caso il . è una wild card che indica qualun-

que carattere (dovrei specificare in questa sede “tra quelli
leciti”).

14. Ho evitato di comprendere il sottolineato, il cui
comando è \underline, per questione di inopportunità
tipografica.

Gianluca Pignalberi ArsTEXnica Nº 28, Ottobre 2019

150

5 Caso 3: mancanza di stile

Raramente mi sono capitati manoscritti in cui
gli autori abbiano usato gli stili. Nel linguaggio
degli elaboratori di testo (ma anche degli editor
html), gli stili sono delle proprietà visuali e strut-
turali da applicare a una porzione di testo. Per
esempio, Intestazione 1, Titolo, Citazione, sono
stili reperibili nel menù Stili di LibreOffice Wri-
ter e sono gli equivalenti di \section,15 \title,
\begin{quote} \end{quote} di LATEX.

Poiché gli autori sono spesso restii a strutturare
il loro testo, l’elemento da ricercare (meglio, di
cui ricercare l’assenza) è proprio la traccia della
struttura. Dunque in questo caso dovremo fare una
ricerca “negata”. Ad esempio, visto che normalmen-
te un manoscritto convertito da un word processor
sarà convertito come articolo, ci basterà cercare la
presenza (o meglio l’assenza) di \section.

Come modifichiamo l’if della riga 4 per trovare
il primo file in cui non sia presente il comando
\section? È semplice: se il test visto in precedenza
doveva testare una condizione di verità (la presenza
di un simbolo), ci basta negare quella condizione
per testare la falsità (l’assenza di un simbolo o di
una stringa di testo):

if␣(␣!␣grep␣--silent␣-E␣\\\ section␣$i␣
);␣then

La negazione si esplicita col punto esclamativo (!).
Per il test successivo, quello della riga 13, sfrut-

tiamo un flag di grep diverso da -l usato finora:
-L. Questo flag permette a grep di elencare tutti e
soli i file, tra quelli analizzati, che non contengono
la stringa di riferimento:

grep␣-L␣-E␣\\\ section␣${args[$count]}␣
>>␣report.txt

Certamente un file non strutturato darà più la-
voro al redattore rispetto a un file già strutturato
anche se quest’ultimo, proprio in virtù di una strut-
turazione arbitraria da parte del convertitore o
incompleta da parte dell’autore, non lo esenterà da
un lavoro di “promozione” dei comandi di struttura
(\section→\chapter, \subsection→\section

e così via. Mi raccomando: non nell’ordine inver-
so. Perché? La risposta alla fine dell’articolo.) o
dall’applicazione manuale del testo citato o altro.

6 Caso 4: documenti fintamente

plurilingue

Mi capita spesso che i documenti convertiti da un
word processor a LATEX contengano una quantità
da enorme a spropositata di \selectlanguage e
\foreignlanguage (col termine “spropositata” in-
tendo decine di \selectlanguage e centinaia di
\foreignlanguage in manoscritti di non più di

15. Sembra che il convertitore di Writer non contem-
pli altro tipo di documento che non sia un articolo, da lì
l’equivalenza Intestazione 1-\section.

50 cartelle). La presenza del primo è giustificabile
senz’altro all’inizio del documento per impostare
la lingua principale e, sporadicamente, all’interno
di un documento in caso ci siano lunghe porzioni
di testo di cui specificare la lingua. Un uso indiscri-
minato, spesso paragrafo per paragrafo nel caso di
conversione automatica, non è giustificabile. La pre-
senza del secondo comando, \foreignlanguage,
è giustificabile in tutti i casi di porzioni di testo,
possibilmente brevi, scritte in una lingua diversa
da quella principale.

Una presenza spropositata dei due comandi in
un manoscritto convertito da un word processor
può indicare che l’autore non abbia etichettato
correttamente il testo in base alla lingua, o che
abbia lasciato la lingua preimpostata per redigere
un manoscritto in un’altra lingua. Naturalmente
il convertitore non può conoscere le intenzioni del-
l’autore e dunque si limiterà a porre quei comandi
nei punti esatti in cui ne ravvisa la necessità. Fac-
ciamo un esempio. Supponiamo che l’autore abbia
scritto il testo della figura 1 evidenziandolo allo
stesso modo. Quando selezionerà l’inglese, questo
verrà applicato a tutto il titolo evidenziato.

Allo stesso modo di come molti autori metto-
no i grassetti e i corsivi, anche mettere le lingue
col mouse comporta degli inconvenienti. Volendo
applicare l’inglese allo stesso testo, ma evidenzia-
to come nella figura 2 comporterà impostarlo per
ognuno dei due pezzi evidenziati; il risultato del-
la conversione sarà avere due \foreignlanguage

consecutivi anziché uno.
Quello appena discusso sarebbe un caso già otti-

male o subottimale. Purtroppo la maggior parte
delle volte gli esiti delle conversioni sono ben peg-
giori, con lingue impostate con qualche criterio
oscuro e sbagliate (ignoro il motivo per cui trovai
impostato il polacco per contrassegnare dei titoli
di libri in francese e inglese. . .)

Comunque, basta fare un paio di ricerche sulle so-
le stringhe selectlanguage e foreignlanguage.
Non è detto che la presenza di tali comandi in un
documento sia indice di errore e quindi starà al
redattore analizzare se e cosa correggere.

7 Il test finale

L’algoritmo bash-like così come scritto alla pagi-
na 3 non è granché utile se tradotto pedissequamen-
te nel programma: andrebbe ripetuto e adattato
per ognuno dei casi da analizzare. Ciò sarebbe uno
spreco di memoria (limitato, ma spreco), di tempo
di digitazione (pure al netto del copia e incolla) e,
soprattutto, di manutenzione (immaginate di aver
scritto male un test dal punto di vista semantico
prima del copia e incolla; lo script è stato fatto
per analizzare centinaia di casi e dovete correggere
il test per tutte le centinaia di casi). Possiamo tro-
vare un automatismo che ci permetta di usare lo
stesso codice per tutti i casi simili, un po’ come le

ArsTEXnica Nº 28, Ottobre 2019 Uno script bash di ausilio alla redazione di manoscritti

151

. . . nel loro fondamentale A Programming Approach to Computability gli autori. . .

Figura 1: L’autore selezionerà l’inglese per il testo evidenziato.

. . . nel loro fondamentale A Programming Approach to Computability gli autori. . .

Figura 2: L’autore dovrà selezionare l’inglese per ognuna delle porzioni di testo evidenziate.

funzioni del linguaggio C? Sì, esiste: basta sfruttare
gli array come già fatto per i parametri di input.

Le figure 3 e 4 mostrano l’intero codice dello
script di analisi (editanalyze), suddiviso per mo-
tivi di spazio ma in maniera significativa: una figura
contiene la parte “dichiarativa”, l’altra quella “im-
perativa”.16 Nel codice mostrato nella figura 3 riem-
piamo una per una le celle di sei array. Questi sei
vettori contengono il pattern di ricerca (stringa),
il testo di output a video (caso) e il testo da scrive-
re nel rapporto (testo) per il test di positività e gli
analoghi per il test di negatività (stringan, cason,
teston). Tali array, espandibili man mano che ci
si presentano nuovi casi da voler includere nell’ana-
lisi, ci permettono di parametrizzare gli elementi
variabili nel codice, che non dovremo più duplicare
per ogni caso da analizzare. Per ognuno degli array
scriveremo una variabile col valore delle celle riem-
pite, così da non dover cambiare valori all’interno
del ciclo che testa in sequenza tutti i casi noti
(trattiamo una variabile come fosse una costante).

Sempre nella figura 4, dopo il test sugli argo-
menti, notiamo che viene cancellata un’eventuale
vecchia versione di report.txt, quindi ci sono due
blocchi analitici: quello per tutti i casi di positività
rispetto a un pattern e quello per verificare l’unico
caso studiato in cui ci interessa che il pattern sia
assente. Avremmo potuto accorpare in un unico
codice i due casi? In definitiva si tratta di aggiun-
gere o togliere un punto esclamativo a un test e
sostituire un -l con un -L o viceversa. La cosa
sarebbe fattibile in diversi modi: mi viene in mente
di usare sed e su Unix & Linux Stack Exchange
suggeriscono, in aggiunta, di usare uno script Perl
per modificare quanto necessario o di sostituire lo
script con uno script esterno. Ma perché vogliamo
complicarci la vita, complicando anche quella del
sistema operativo (quelli moderni sono progettati
per evitare programmi con codice automodificante
perché fonte di potenziali problemi di sicurezza e
di determinismo esecutivo oltre che, aggiungerei,
di leggibilità del codice), solo per risparmiare 1 KB
di codice e provare a imitare i puntatori a funzio-
ne del C? Personalmente non mi avventurerò per
questa via.

Passiamo al test. Abbiamo costruito quattro file
contenenti ognuno alcuni casi tra quelli elencati

16. Le virgolette ai termini dichiarativa e imperativa in-
dicano un significato forzato. Bash, a differenza di linguaggi
come il C, non distingue le due fasi e la suddivisione data
qui è più formale che sostanziale.

nell’articolo. Il loro contenuto è mostrato nella
tabella 2.

La figura 5 riporta il contenuto del rapporto
generato dall’esecuzione dello script sui quattro
file (editanalyzer *tex).

8 Conclusioni

Il lavoro del redattore può essere molto pesante
quando arriva il momento di controllare tutte quel-
le piccole minuzie relative alle più elementari regole
tipografiche. Uno strumento automatico di analisi
delle minuzie può essere di grande aiuto, sia dal
punto di vista dell’esaustività, sia da quello della
velocità.

Questo articolo ha voluto fornire il suo contri-
buto alla spiegazione degli errori commessi dagli
autori, chiarendone la semantica e i motivi quando
opportuno, e alla costruzione di uno strumento
automatico di controllo.

Quest’ultimo punto si concretizza in uno script
bash che permette di controllare uno o più file di
testo alla ricerca di una serie di errori tipici e che ge-
nera un rapporto descrittivo della corrispondenza
file-caso analizzato. Starà poi al redattore determi-
nare quali occorrenze dovranno essere corrette e
come correggerle.

Infine, questo lavoro potrebbe essere conside-
rato un primo passo verso il controllo esaustivo
automatico della corretta applicazione delle norme
tipografiche in un manoscritto.

Ringraziamenti

L’obbligatorio ringraziamento va al Consiglio Scien-
tifico del guIt per aver valutato positivamente il
lavoro e per i consigli datimi. Ma il ringraziamen-
to grande va all’ottimo redattore che mi ha fatto
notare alcune imprecisioni, dimenticanze e lungag-
gini nel testo e alcune dimenticanze nel codice del
programma. La sua osservazione — in puro stile
Pierre de Fermat — sulla dubbia efficienza dello
script porterà in un prossimo futuro all’eventuale
adozione di comandi alternativi a grep in base al
risultato di test sulla velocità di esecuzione su una
serie di testi di diverse dimensioni.

Risposta al quesito proposto alla

pagina 6

Se iniziamo la promozione dal livello più basso, dun-
que sostituendo \subparagraph con \paragraph,

Gianluca Pignalberi ArsTEXnica Nº 28, Ottobre 2019

152

#! /bin/bash

Parte da modificare in base ai casi da analizzare
Array dei pattern di ricerca "positiva" e dei messaggi per l’utente
stringa[1]="°"
caso[1]="Analisi della presenza del simbolo °..."
testo[1]="\nIl carattere ° si trova in"
stringa[2]="‘[0-9]"
caso[2]="Analisi della presenza dell’apostrofo sbagliato prima degli anni..."
testo[2]="\nL’apostrofo sbagliato prima degli anni si trova in"
stringa[3]="’”"
caso[3]="Analisi della presenza della sequenza ’”"
testo[3]="\nLa sequenza ’” si trova in"
stringa[4]="[]}*[]*[.,:;]"
caso[4]="Analisi della presenza di spazi prima delle interpunzioni..."
testo[4]="\nSpazi prima delle interpunzioni si trovano in"
stringa[5]="\\\ "
caso[5]="Analisi della presenza di spazi forzati..."
testo[5]="\nSpazi forzati si trovano in"
stringa[6]="[0-9A-Za-z.,:;]-[0-9A-Za-z.,:;]"
caso[6]="Analisi della presenza di trattini brevi..."
testo[6]="\nTrattini brevi si trovano in"
stringa[7]="[0-9A-Za-z.,:;]–[0-9A-Za-z.,:;]"
caso[7]="Analisi della presenza di trattini medi..."
testo[7]="\nTrattini medi si trovano in"
stringa[8]="[0-9A-Za-z.,:;]—[0-9A-Za-z.,:;]"
caso[8]="Analisi della presenza di trattini lunghi..."
testo[8]="\nTrattini lunghi si trovano in"
stringa[9]="[0-9A-Za-z]\\\text(it|bf|sc|tt|sl)"
caso[9]="Analisi della presenza di lettere o numeri prefissi a un comando \textxx..."
testo[9]="\nLettere o numeri prefissi a un comando \\\textxx si trovano in"
stringa[10]="\\\text(it|bf|sc|tt|sl){[^}]*}[0-9A-Za-z]"
caso[10]="Analisi della presenza di lettere o numeri postfissi a un comando \textxx..."
testo[10]="\nLettere o numeri postfissi a un comando \\\textxx si trovano in"
stringa[11]="\\\text(it|bf|sc|tt|sl){[^}]*[]*[.,:;][]*}"
caso[11]="Analisi della presenza di interpunzioni alla fine di un comando \textxx..."
testo[11]="\nInterpunzioni alla fine di un comando \\\textxx si trovano in"
stringa[12]="\\\text(it|bf|sc|tt|sl){[.,:;][]*[^}]*}"
caso[12]="Analisi della presenza di interpunzioni all’inizio di un comando \textxx..."
testo[12]="\nInterpunzioni all’inizio di un comando \\\textxx si trovano in"
stringa[13]="\text(it|bf|sc|tt|sl){[^}]*}[]*\\\text(it|bf|sc|tt|sl)"
caso[13]="Analisi della presenza di comandi \textxx consecutivi..."
testo[13]="\nComandi \\\textxx consecutivi si trovano in"
stringa[14]="selectlanguage"
caso[14]="Analisi della presenza di comandi \selectlanguage..."
testo[14]="\n\selectlanguage si trova in"
stringa[15]="foreignlanguage"
caso[15]="Analisi della presenza di comandi \foreignlanguage..."
testo[15]="\n\\\foreignlanguage si trova in"
casip=15

Array dei pattern di ricerca "negativa" e dei messaggi per l’utente
stringan[1]="\\\section"
cason[1]="Analisi dell’assenza di \section..."
teston[1]="\nIl comando \section non si trova in"
casin=1
Fine parte da modificare

Figura 3: Codice dello script di ausilio ai redattori.

ArsTEXnica Nº 28, Ottobre 2019 Uno script bash di ausilio alla redazione di manoscritti

153

if [[$BASH_ARGC < 1]]; then
echo "Uso: editanalyze <file\

da analizzare>"
echo "Es.: editanalyze *.tex\

(controlla tutti i file con\
estensione .tex)"
echo " editanalyze\

capitolo1.tex (controlla\
il solo file capitolo1.tex)"
echo " editanalyze\

capitolo[1-5].tex (controlla\
i file capitolo1-capitolo5.tex)"
exit 1

fi

rm report.txt

Analisi dei casi positivi (presenza di un pattern nei file)
for ((n=1 ; n<=$casip; n=n+1)); do

echo ${caso[$n]}
echo "Pattern di ricerca: " ${stringa[$n]}
count=0
for i in "$@"; do

if (grep --silent -E "${stringa[$n]}" "$i"); then
echo -e ${testo[$n]} >> report.txt
echo "$i" >> report.txt
break

fi
count=$[$count+1]

done
args=("$@")
for ((count=$[$count+1]; $count<$BASH_ARGC; count=$[$count+1])); do

grep -l -E "${stringa[$n]}" "${args[$count]}" >> report.txt
done

done

Analisi dei casi negativi (assenza di un pattern nei file)
for ((n=1 ; n<=$casin; n=n+1)); do

echo ${cason[$n]}
echo "Pattern di ricerca: " ${stringan[$n]}
count=0
for i in "$@"; do

if (! grep --silent -E "${stringan[$n]}" "$i"); then
echo -e ${teston[$n]} >> report.txt
echo "$i" >> report.txt
break

fi
count=$[$count+1]

done
args=("$@")
for ((count=$[$count+1]; $count<$BASH_ARGC; count=$[$count+1])); do

grep -L -E "${stringan[$n]}" "${args[$count]}" >> report.txt
done

done

exit 0

Figura 4: Seguito del codice dello script di ausilio ai redattori.

Gianluca Pignalberi ArsTEXnica Nº 28, Ottobre 2019

154

Il carattere ° si trova in

1.tex

3.tex

L’apostrofo sbagliato prima degli anni si trova in

2.tex

3.tex

La sequenza ’” si trova in

1.tex

3.tex

Spazi prima delle interpunzioni si trovano in

2.tex

3.tex

Spazi forzati si trovano in

1.tex

3.tex

Trattini brevi si trovano in

2.tex

3.tex

Trattini medi si trovano in

1.tex

3.tex

Trattini lunghi si trovano in

2.tex

3.tex

Lettere o numeri prefissi a un comando \textxx si trovano in

1.tex

4.tex

Lettere o numeri postfissi a un comando \textxx si trovano in

2.tex

4.tex

Interpunzioni alla fine di un comando \textxx si trovano in

1.tex

4.tex

Interpunzioni all’inizio di un comando \textxx si trovano in

2.tex

4.tex

Comandi \textxx consecutivi si trovano in

1.tex

4.tex

\selectlanguage si trova in

2.tex

4.tex

\foreignlanguage si trova in

1.tex

4.tex

Il comando \section non si trova in

1.tex

3.tex

Figura 5: Contenuto del rapporto sull’analisi dei quattro file riportati nella tabella 2.

ArsTEXnica Nº 28, Ottobre 2019 Uno script bash di ausilio alla redazione di manoscritti

155

Tabella 2: Contenuto dei quattro file testuali usati per provare lo script.

1.tex 2.tex

10°

’”

\

10–20

a\textit{abd}

\textbf{abc,}

\textsc{abc}\textsc{def}

\foreignlanguage{italian}{ciao}

‘20

abc ,

10-20

30—40

\textit{abc}0

\textit{, abc}

\selectlanguage{italian}

\section{}

3.tex 4.tex

50°

‘70

l’”etica

\textit{allorquando },

sono \ qui

quando -travolti -

quando – travolti –

quando—travolti—

T\textit{he fog}

\textit{Essi vivo}no

\textsc{John Carpenter,}

\textsc{, John Carpenter}

\textit{La} \textit{Cosa}

\selectlanguage{english}

\foreignlanguage{french}{aussi}

\section{}

Per qualche “oscuro” motivo, en-dash (–) e em-dash (—) vengono mostrati come dei normali dash (-)
nel carattere monospaziato. Tecnicamente è chiaro che i tre diversi caratteri sono stati disegnati allo
stesso modo e con le stesse dimensioni per rispettare la principale proprietà dei caratteri monospaziati,
cioè l’uniforme dimensione orizzontale.

come potremo distinguere i \paragraph origina-
li da promuovere a \subsubsection da quelli
appena promossi da \subparagraph?

Riferimenti bibliografici

Bertossi, Alan. A. (1990). Strutture Algorit-

mi Complessità. ECIG (Edizioni Culturali
Internazionali Genova), Genova.

Bruessow, Christian V.J. (2017). «win-bash -
bash port for windows». http://win-bash.

sourceforge.net/.

Cygnus Solution-Red Hat (2019). «Cygwin».
http://www.cygwin.com/.

Friedl, Jeffrey E.F. (2006). Mastering Regular

Expressions. O’Reilly, Sebastopol, 3ª edizione.

Goyvaerts, Jan (2019). «Regular-Expression.info
- Regex Tutorial, Examples and Reference-
Regexp Patterns». https://www.regular-

expressions.info/.

Magloire et al., Alain (2017). GNU Grep: Print

lines matching a pattern. http://www.gnu.org/
software/grep/manual/.

Oetiker, Tobias, Hubert Partl, Irene Hyna e
Elisabeth Schlegl (2018). The Not So Short In-

troduction to LATEX2ε. Accessibile da terminale
con texdoc lshort.

Polidoro, Massimo (2012). Il sesto senso.
Gruner+Jahr/Mondadori, Milano.

Powers, Shelley, Jerry Peek, Tim O’Reilly

e Mike Loukides (2002). Unix Power Tools.
Sebastopol, CA.

Ramey, Chet e Brian Fox (2010). Bash Reference

Manual. Boston, MA.

Rawlinson, Graham Ernest (1976). The Signi-

ficance of Letter Position in Word Recognition.
Tesi di Dottorato, University of Nottingham.

Simons, Daniel J. e Christopher F. Chabris

(1999). «Gorillas in our midst: Sustained inatten-
tional blindness for dynamic events». Perception,
28 (9), pp. 1059–1074. https://doi.org/10.

1068/p281059.

Simons, Daniel J. e Daniel T. Levin (1998).
«Failure to detect changes to people during
a real-world interaction». Psychonomic Bul-

letin & Review, 5 (4), pp. 644–649. https:

//doi.org/10.3758/BF03208840.

Wikipedia (2019). «Shebang (Unix)». https:

//en.wikipedia.org/wiki/Shebang_(Unix).

⊲ Gianluca Pignalberi
g dot pignalberi at gmail dot

com

Gianluca Pignalberi ArsTEXnica Nº 28, Ottobre 2019

156

A Direct Bibliography Style for ArsTEXnica

Jean-Michel Hufflen

Abstract

We describe the mlb-arstexnica program, part of
MlBibTEX’s new version, and suitable for generat-
ing bibliographies for ArsTEXnica articles. First, we
recall the notion of direct bibliography style related
to MlBibTEX and mention the advantages of such
a program. We show that our program provides ad-
ditional services suitable for ArsTEXnica, compared
to BibTEX’s bibliography style arstexnica.bst.
Keywords BibTEX, MlBibTEX, LATEX, biblatex
package, Unicode, interface with Scheme.

Sommario

Si descrive il programma mlb-arstexnica, parte della
nuova versione di MlBibTEX; esso è adatto per ge-
nerare le bibliografie per gli articoli di ArsTEXnica.
Si richiama la nozione di stile bibliografico diretto
riferito a MlBibTEX e si sottolineano i vantaggi
di questo programma. Si mostra che questo pro-
gramma fornisce ulteriori funzionalità adatte ad
ArsTEXnica in confronto a quanto si può ottenere
con lo stile bibliografico artexnica.bst da usare con
BibTEX.

Parole chiave BibTEX, MlBibTEX, LATEX, bi-
blatex, Unicode, interfaccia con Scheme.

1 Introduction

In some past guIt conferences we have already
introduced MlBibTEX1, our implementation of a
‘better’ BibTEX (Patashnik, 1988b), the bibliog-
raphy processor usually associated with LATEX. Let
us recall that a bibliography processor builds ‘Refer-
ences’ section—as source texts—from citation keys
and bibliography database files. See Mittelbach
and Goossens (2004, §§ 12.1.3 & 13.2) about
LATEX citation keys, extracted from auxiliary (.aux)
files, and BibTEX’s format of database (.bib) files.
The BibTEX program is ageing, its bibliography
styles are specified using an old-fashioned language
based on handling a stack (Patashnik, 1988a). As
mentioned in Mittelbach and Goossens (2004,
§ 13.6.3), introducing small changes within an exist-
ing style is quite easy, but designing new styles from
scratch may be tedious. In addition, it hardly meets
modern requirements such as dealing with formats
extending the basic ascii2 code, in particular, for-

1. MultiLingual BibTEX.
2. American Standard Code for Information Inter-

change.

mats related to Unicode (e.g., utf-83). Accented
letters can be processed using TEX commands, but
accent commands are ignored by BibTEX’s sort
procedure, so the lexical order provided by this
program is only meaningful in English.

Nowadays more and more users typeset bibliogra-
phies for LATEX documents with the biblatex pack-
age (Lehman, 2018), associated with the biber bib-
liography processor (Kime and Charette, 2018).
These two tools4 allow end-users to get access
to many interesting extensions: for example, the
fields YEAR, MONTH and DAY5 can be replaced by
the DATE field, also usable for date ranges, e.g.,
2019-08-31/2019-09-06. However the drawback
of such extensions appears if users revert to ‘old’
BibTEX, since its standard styles do not recog-
nise these extensions6. Sometimes, users have to
do that, for example, if they put research articles
onto some Web sites controlling the process of
publishing in conference proceedings7. As another
example, the bibliography style arstexnica.bst, used
for the articles of the homonymous journal, is un-
able to deal with the extensions introduced by the
biblatex package.

One year ago, we studied this bibliography style
in order to fix a bug and thought that reimple-
menting it as a direct style of MlBibTEX could
be useful for the ArsTEXnica board. In Section 2,
we recall some general points about MlBibTEX, in
particular the notion of direct style. Section 3 is a
short comparison between BibTEX and MlBibTEX.
The look of our proposed command is described in
Section 4. Reading this article only requires basic
knowledge of LATEX and BibTEX.

2 MlBibTEX’s Outlines

When we started MlBibTEX’s development, we
were mainly interested in multilingual aspects
(Hufflen, 2005). Then we proposed some syn-
tactical extensions in order to ease the specifica-
tion of authors’ and editors’ names (Hufflen,
2006), we went thoroughly into some points re-

3. Unicode Transformation Format.
4. There are some descriptions of these tools in Italian:

Pantieri (2009) for an introduction and Valbusa (2014)
about advanced features.

5. This last field does not belong to BibTEX standard,
even if some styles use it.

6. For example, the YEAR field is required if you use ‘old’
BibTEX and would like your bibliographies to be sorted; it
cannot be replaced by the DATE field.

7. The most famous site for Computer Science confer-
ences is indisputably http://www.easychair.org.

157

%encoding = utf8

@BOOK{cussler2010,

AUTHOR = {Clive Eric Cussler,

abbr => Cl. with

first => Jack,

last => Du Brul},

TITLE = {The Silent Sea},

PUBLISHER = {Penguin Books},

YEAR = 2010,

LANGUAGE = english}

@BOOK{deturris1991,

AUTHOR = {first => Gianfranco,

last => De Turris},

TITLE = {Il disagio della realtà},

PUBLISHER = {Edizioni Settimo Sigillo},

ADDRESS = {Roma},

YEAR = 1991,

LANGUAGE = italian}

Figure 1: Some syntactical extensions of MlBibTEX.

lated to programming, e.g., the definition of chain-
ing ambitious language-dependent order relations
(Hufflen, 2007) and enlarged expressive power
by introducing inexact information about ancient
documents (Hufflen, 2014). Since the first public
version (Hufflen, 2003), MlBibTEX—written in
Scheme—has been able to apply BibTEX bibliogra-
phy styles or styles written using an extension of
xslt8 (W3C, 1999), the language used for trans-
formations of xml9 texts10. Then some existing
styles have been wholly rewritten in Scheme, some
new ones have been wholly designed in Scheme, too.
Such styles—which are very efficient—are so-called
direct with respect to MlBibTEX’s terminology.

A new version, announced in Hufflen (2015),
deals with Unicode and allows .bib files to use vari-
ous encodings. If several .bib files are to be searched
for document citation keys, each .bib file can use
its own encoding. The program tries to guess the
encoding used within such a file, but it is recom-
mended to write this information down as we do in
Fig. 1. The default encoding for input and output
files is Latin 1, but can be changed within your
initialisation files by means of the interface with
Scheme. Fig. 1 shows some syntactical extensions
provided by MlBibTEX.

Last but not least, let us recall that when
MlBibTEX processes an .aux file, it also reads the
preamble of the corresponding source .tex docu-
ment11. What is important for our purposes is that
MlBibTEX can detect the inputenc package option
(Mittelbach and Goossens, 2004, § 7.1.2), that

8. eXtensible Stylesheet Language Transformations.
9. eXtensible Markup Language.
10. Parsing .bib files results in Scheme structures that

may be viewed as xml trees, using an open format.
11. On the contrary, ‘old’ BibTEX never reads .tex files,

it only processes .aux files.

is, the encoding to be used for the output file
containing generated references.

3 MlBibTEX vs BibTEX

If we consider some standard uses of bibliographical
entries, the main difference between MlBibTEX and
BibTEX is that the former is less permissive than
the latter. Since its first version, MlBibTEX has
performed more checks than ‘old’ BibTEX, and
designing direct styles in Scheme allowed us to
go on in this direction. For example, all the fields
associated with a date must be well-formed: the
YEAR field must be a non-zero integer12, the MONTH

field must be a mnemonic among jan, feb, . . . , dec.
Likewise, the taxonomy of the values associated
with the DATE field is checked. Some conventions
about dates may appear as too drastic, but they
insure that our chronological sort procedures work
properly. Here are the other fields subject to a
more advanced check than in BibTEX and usable
in ArsTEXnica style:

• for person names, e.g., AUTHOR and EDITOR;

• for language names: LANGUAGE;

• for urls13.

When a field name is unrecognised, a warning
message is emitted: often this convention allows
end-users to fix typing mistakes in practice. Here
are the additional conventions when fields intro-
duced by the biblatex package are used within bib-
liographical entries of .bib files but unrecognised
within ‘standard’ bibliography styles:

• if the DATE field is used:

– if it is associated with a single date, it
is expanded using the fields YEAR, MONTH

and DAY,

– if it is associated with a range, the sec-
ond date (the range’s upper bound) is
dropped out and the previous rules ap-
plies;

• to sort bibliographies, the fields SORTYEAR and
SORTTITLE—when given—are used instead of
YEAR and TITLE.

4 The mlb-arstexnica Program

There are two ways to process ArsTEXnica bibli-
ographies with MlBibTEX:

• run the mlbibtex executable program and use
the bibliography style arstexnica.bst;

• run the direct style mlb-arstexnica.

12. . . . unless the -inexact option is used, in which case
some digits may be replaced by ‘?’. See Hufflen (2014) for
more details.

13. Uniform Resource Locator.

Jean-Michel Hufflen ArsTEXnica Nº 28, Ottobre 2019

158

The first way is still based on the .bst file, which
may be viewed as more readable than a Scheme
program. The second way results in a more efficient
process and may get access to some operations un-
reachable by a .bst program: for example, using
advanced or language-dependent order relations
to sort bibliographies. The mlb-arstexnica exe-
cutable file is added to the programs announced
in Hufflen (2015, § 4). Its command line is:

mlb-arstexnica [option]* filename

filename being an .aux file; you can put the suffix
or leave it implicit. Possible options are:

-h or -help displays help messages and exits;

-inexact allows inexact information to be ac-
cepted and processed: see Footnote 12, p. 2
and Hufflen (2014);

-min-crossrefs=n has the same effect than in
BibTEX: entries accessed at least n times (n
is a natural number) by means of a CROSSREF

field are put; see Mittelbach and Goossens
(2004, § 13.2.5) for more details;

-tex-file=... allows end-users to make precise
the source LATEX file associated with the .aux
file, when it cannot be easily deduced14.

At the time of writing, MlBibTEX and its derived
programs can run on Linux and Mac OS X; they
should be able to run on Windows. We are in con-
tact with the ctan15 in order to put our files onto
this site. As most files available within a TEX distri-
bution, our source files are subject to the lppl16.

5 Conclusion

We think that our mlb-arstexnica program can
provide many additional services compared to the
present style of BibTEX. We hope that end-users
will play with it with as much pleasure as ours
developping it.

Acknowledgements

I thank Claudio Beccari for his patience, and for his
Italian translations of the abstract and keywords.

References

Hufflen, Jean-Michel (2003). «MlBibTEX’s ver-
sion 1.3». tugboat, 24 (2), pp. 249–262.

— (2005). «MlBibTEX: a survey». In Proc. guit
Meeting. Pisa, Italy, pp. 171–179.

14. Let us recall that MlBibTEX reads the source LATEX
file’s preamble (cf. § 2).

15. Comprehensive TEX Archive Network.
16. LATEX Project Public License. For more details, see

https://www.latex-project.org/lppl.txt.

— (2006). «Names in BibTEX and MlBibTEX».
tugboat, 27 (2), pp. 243–253. TUG 2006 pro-
ceedings, Marrakesh, Morocco.

— (2007). «Managing order relations in
MlBibTEX». tugboat, 29 (1), pp. 101–108. Eu-
roBachoTEX 2007 proceedings.

— (2014). «Dealing with ancient works in bibli-
ographies». ArsTEXnica, 18, pp. 81–86. In Proc.
guit meeting 2014.

— (2015). «MlBibTEX 1.4: the new version».
ArsTEXnica, 20, pp. 35–39. In Proc. guit meet-
ing 2015.

Kime, Philip and François Charette (2018).
biber. A Backend Bibliography Processor for
biblatex. Version biber 2.12 (biblatex 3.12). http:

//ctan.org/pkg/biber.

Lehman, Philipp, with Philip Kime,
Moritz Wemheuer, Audrey Boruvka and
Joseph Wright (2018). The biblatex Package.
Programmable Bibliographies and Citations. Ver-
sion 3.12. http://ctan.org/pkg/biblatex.

Mittelbach, Frank and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig e
Joachim Schrod (2004). The LATEX Com-
panion. Addison-Wesley Publishing Company,
Reading, Massachusetts, 2ª edizione.

Pantieri, Lorenzo (2009). «L’arte di gestire la bib-
liographia con biblatex». ArsTEXnica, 8, pp. 48–
60.

Patashnik, Oren (1988a). Designing BibTEX
Styles. Part of the BibTEX distribution.

— (1988b). BibTEXing. Part of the BibTEX distri-
bution.

Valbusa, Ivan (2014). «Funzionalità avanzate del
sistema biblatex/biber». ArsTEXnica, 18, pp. 70–
80.

W3C (1999). xsl Transformations (xslt). Ver-
sion 1.0. http://www.w3.org/TR/1999/REC-

xslt-19991116. w3c Recommendation. Edited
by James Clark.

⊲ Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) &
University of Bourgogne Franche-
Comté,
16, route de Gray,
25030 BESANÇON CEDEX
FRANCE
jmhuffle at femto-st dot fr

ArsTEXnica Nº 28, Ottobre 2019 A Direct Bibliography Style for ArsTEXnica

159

Smartdiagram: The Package and Its Journey

Claudio Fiandrino

Abstract

Smartdiagram born as a response to a question on
TEX.stackexchange. The challenge was to emulate
a feature that Microsoft Power Points provides: the
capability of automate with animations a diagram.
This feature allows to create diagrams from lists,
so the user interface had to be as simple as possible,
i.e., a list. In this article, I review the basic idea
that overcomes the challenge and I expose the
main features of the package along with a bit of
its history.

Sommario

Smartdiagram è nato come risposta ad una do-
manda apparsa su TEX.stackexchange. La sfida
proposta era emulare il comportamento di una
funzionalità di Microsoft Power Points, ossia la
capacità di creare in modo automatico un diagram-
ma grafico da una lista di elementi con capacità di
animazione dei singoli elementi. In questo articolo,
si spiega l’idea di fondo in grado di vincere la sfi-
da e si espongono le principali caratteristiche del
pacchetto con una nota sull’evoluzione storica.

1 Introduction

Smartdiagram has born as a response to a ques-
tion on TEX.stackexchange1. The challenge was
to emulate a feature provided by Microsoft Power
Points: the capability of creating a diagram from
a list with animations. As LATEX does not share
the What You See Is What You Get (WYSIWYG)
paradigm, it is not possible to first write the list
and then click to obtain the diagram. Nevertheless,
to emulate the intuitive usage, the smartdiagram
user interface transforming a list into the diagram
had to be as simple as possible, i.e., characterizing
intuitively the list, the type of diagram and the
options to customize the diagram.

Based on TikZ Tantau (2010), the code em-
ployed in such answer has become the core of the
smartdiagram package Fiandrino (2012). Along
the subsequent months, many additional compo-
nents have been included such as the support for
the key-management interface, new types of dia-
grams and correction of (many) bugs and typos.

The package overcomes the initial challenge.
However, despite its capability of full customization
of the diagram provided by the key-management

1. Available online at: https://tex.stackexchange.

com/q/78310/13304

interface, smartdiagram limits somehow the user.
Indeed, if one wants to move away from the prede-
fined type of diagrams or do substantial modifica-
tions that break the automatism that creates the
diagram, then the package is not suitable and it is
better to resort to plain TikZ for such a job.

The remainder of the paper is structured as
follows. Section 2 explains the steps that automa-
tize the creation of the diagram. Section 3 details
the operation of auxiliary components such as the
key-management interface and the library to in-
clude additional elements to the diagram. Section 4
presents some examples and Section 5 briefly dis-
cuss the media coverage of the package. Finally,
Sections 6 and 7 conclude the work and acknowl-
edge contributors respectively.

2 The core idea

This section overviews the core idea that allows
to automatize the creation of diagrams from lists.
First of all, one, simple macro is in charge of such
operation:

\smartdiagram [<type >]{<list of items >}

where type is the type of diagram (please refer
to Fiandrino (2012) for a complete list) and list

of items for the items that should appear in the
diagram. For example:

\smartdiagram [sequence diagram]{%

Select type of diagram ,

Count items ,

Draw diagram

}

creates Fig. 1, which shows the essential building
blocks that works both for the animated and non-
animated modes. These two modes can be enforced
with different macros, the above \smartdiagram

and \smartdiagramanimated. The latter only
works with the Beamer class. For the sake of the
diagram composition, nothing changes between the
two macros.

The first argument of \smartdiagram that de-
fines the type of diagram undergoes a switch-case
check. Then, following Fig. 1, the first operation
that is performed commonly to all the types of
diagrams is to count the number of items in the
list. This allows to define for the specific diagram
aspects like the angle of separation between the
items for circular-like diagrams or the distance be-
tween blocks in a parametric fashion. By assigning
to each item an ID, then it is possible to draw the
interconnections.

160

Select type
of diagram Count items Draw diagram

Figure 1: The building blocks of smartdiagram operation

The animated version of the diagram simply in-
cludes an overlay specification to the item that are
progressively shown. The mechanisms that merge
the capabilities of TikZ and Beamer is well de-
scribed in Fiandrino (2014).

3 Auxiliary components

3.1 The key-management interface

TikZ allows to define custom key interfaces
through its pgfkeys package. Smartdiagram resorts
to this principle with a twofold purpose. On the one
hand, to fully customize the aspect of the diagrams
in terms of colors, dimensions of the boxes, the
respective distance between the various elements
of the diagram. On the other hand, like explained
later, it allows to create separate libraries very
easily.

In the following, this subsection will expose the
main aspects of the smartdiagram key-management
interface:

• All the keys related to smartdiagram go under
the path /smart diagram/. This allows on
the one hand to avoid conflicts with other
packages, e.g., double names, and on the other
hand to make easier the development and final
usage. Consider for example the interaction
between pgfplots and TikZ: one has always to
be careful when defining specific options to the
plot (e.g., the marks or number formatting)
because messing up with the key paths may
lead to compilation errors.

• The different types of diagrams can share keys
when appropriate or not. Besides some keys
that are very generic such as those pertaining
to the color definition, some diagrams such as
flow charts and circular diagram share the cus-
tomization of the so called module, i.e., the sin-
gle building block of the diagram. Conversely,
diagrams like the bubble or the sequence di-
agram have unique keys for customization.
Such a mix is a precise design choice: defin-
ing specific keys for each diagram would have
been cleaner, but verbose and less intuitive
for the final user.

• For the sake easy the code development, smart-
diagram resorts to libraries similarly to TikZ.
Specifically, the code is organized into defini-
tions (containing the keys), styles (containing
the styles that customize the aspect of the
diagram having as input the keys) and the
commands (containing the macro for building

the diagram). While these libraries (code snip-
pet below) are loaded by default, there is one
that the user can use when needed, and it is
explained in the next subsection.

\usesmartdiagramlibrary {%

core. definitions }

\usesmartdiagramlibrary {core. styles }

\usesmartdiagramlibrary {core. commands }

3.2 The additions library

The main purpose of the library is to allow the
user to create annotations over a smart diagram,
such as include additional arrows, modules or text.
Indeed, the main limitation of the approach de-
scribed in Section 2 is that a diagram built auto-
matically from a list has little flexibility in terms
of customization. Quite often, a user finds itself in
the need of include further elements to the graphic.
However, the modification of the simple mechanism
of

\smartdiagram [<type >]{<list of items >}

is very difficult. How to add text or an addi-
tional graphical elements outside the diagram and
in correspondence of specific blocks? The library
additions takes precisely care of this problem.

The library provides two macros, one called
\smartdiagramadd and a second one called
\smartdiagramconnect. The first one replaces the
basic \smartdiagram because it introduces an ad-
ditional argument that defines the position of the
new items with respect to the original diagram.
Then, the second one, is employed to customize
the connections between the additional elements
and those of the basic diagram.

4 Some examples

This section overviews some examples of the oper-
ation of smartdiagram.

4.1 Traditional mode

First, this subsection overviews non-animated
mode examples. This exposes how much it is simple
to create such diagrams.

The first example is a basic usage:

% A new list of colors

\smartdiagramset {set color list={

blue!50!cyan ,

green!60!lime ,

orange !50!red},

bubble center node color= yellow !80!red

}

ArsTEXnica Nº 28, Ottobre 2019 Smartdiagram: The Package and Its Journey

161

\begin { center }

\smartdiagram [bubble diagram]{

Cloud Computing , SaaS , PaaS , IaaS

}

\end{ center }

that generates the output of Fig. 2.
The next example shows how to integrate addi-

tional elements. Specifically, these components are
used to exemplify with a description the meaning
of the titles used in the basic diagram. Notably,
one of the strength of the library is that additional
elements can be of an arbitrary number and this
number does not have to match exactly with the
number of items in the original diagram.

\usesmartdiagramlibrary { additions }%

% in the preamble

\smartdiagramset {set color list={

blue!50!cyan ,

green!60!lime ,

orange !50!red}

}% A new list of colors

% An horizontal diagram :

% - first remove the arrow from

% the last block towards the first one

% - customize the aspect of the

% additional blocks

\smartdiagramset {

back arrow disabled =true ,

additions ={

additional item bottom color=%

orange !60!red!30,

additional item border color=gray ,

additional item shadow =drop shadow ,

additional item offset =0.65cm ,

additional connections disabled =false ,

additional arrow line width =2pt ,

additional arrow tip=to ,

additional arrow color=%

orange !60!red!50,

additional arrow style={]-latex},

}

}

\begin { center }

\smartdiagramadd [%

flow diagram : horizontal]{

IaaS , PaaS , SaaS

}{

above of module 1/

{ Virtual machines , servers , storage ,

load balancers , network },

above of module 2/

{ Execution runtime , database ,

web server , development tools},

above of module 3/

{CRM , Email , virtual desktop ,

communication , games}

}

\end{ center }

which leads to the result depicted in Fig. 3.

An example of smart diagram

Cloud Computing

SaaS

PaaS

IaaS

Figure 2: A example of bubble diagram

An example of smart diagram with additions

IaaS PaaS SaaS

Virtual
machines,
servers,
storage,

load
balancers,
network

Execution
runtime,
database,

web
server, de-
velopment

tools

CRM,
Email,
virtual

desktop,
commu-
nication,
games

Figure 3: Including additional elements in the diagram

4.2 Animated mode

Another way to include descriptions is with the
native descriptive diagram. This solution works
well when the objective is to exemplify the meaning
of each item in the original diagram.

\smartdiagramset {set color list={

blue!50!cyan ,

green!60!lime ,

orange !50!red}

}% A new list of colors

% A descriptive diagram

\smartdiagramanimated [%

descriptive diagram]{

{SaaS ,{CRM , Email , virtual desktop ,

communication , games}},

{PaaS , { Execution runtime , database ,

web server , development tools}},

{IaaS , { Virtual machines , servers ,

storage , load balancers , network }},

}

The code produces the result depicted in Fig. 4
where each subfigure corresponds to the animation
steps of each frame.

5 When it got out of control

I honestly admit to be extremely proud of the evo-
lution of the package over the years. Smartdiagram
has survived pretty well the test of time and it is
quite used within the community. Specifically, it

Claudio Fiandrino ArsTEXnica Nº 28, Ottobre 2019

162

An example of smart diagram animated

SaaS

(a) 1st frame

An example of smart diagram animated

SaaS
CRM, Email, virtual desk-

top, communication, games

(b) 2nd frame

An example of smart diagram animated

SaaS
CRM, Email, virtual desk-

top, communication, games

PaaS

(c) 3rd frame

An example of smart diagram animated

SaaS
CRM, Email, virtual desk-

top, communication, games

PaaS
Execution runtime, database,
web server, development tools

(d) 4th frame

An example of smart diagram animated

SaaS
CRM, Email, virtual desk-

top, communication, games

PaaS
Execution runtime, database,
web server, development tools

IaaS

(e) 5th frame

An example of smart diagram animated

SaaS
CRM, Email, virtual desk-

top, communication, games

PaaS
Execution runtime, database,
web server, development tools

IaaS
Virtual machines, servers,

storage, load balancers, network

(f) 6th frame

Figure 4: An example with animation

exists a tag for smartdiagram-related questions on
TEX.stackexchange that contributed to its visibil-
ity, bug fixes and extensions.

Notably, use cases are listed in TEXample2 and
the LATEXCookbook3. It also exists a plugin for
RMarkdown4.

Smartdiagram was also employed in scientific
publications in prestigious journals like IEEE Com-
munication Surveys and Tutorials (mine - see Cap-
poni et al. (2019), - and not - see Shit et al.
(2019)).

Also one video tutorial on YouTube talks about
the package and illustrates its operation5.

6 Conclusion

This paper has presented the smartdiagram pack-
age and has exposed the motivation for its creation,
the key idea behind its operation, the rationale be-
hind the design choices and the journey of the pack-
age along the years. The paper has also highlighted
some examples of diagrams that the package can
build.

7 Acknowledgements

So many people to thank for this fantastic jour-
ney. Of course, first it goes the original poster on
TEX.stackexchange: good works do not come for
free, but in response of specific needs. Many thanks

2. Available online at: http://www.texample.net/tikz/

examples/feature/smartdiagram/

3. Available online at: http://latex-cookbook.net/

articles/smart-diagrams/

4. Available online at: https://edpflager.com/?p=4236

5. Available online at: https://www.youtube.com/

watch?v=1kY-1ssTk7o

to the numerous contributors spotting bugs (sadly,
I often run late in fixing them).

References

Capponi, A., C. Fiandrino, B. Kantarci,
L. Foschini, D. Kliazovich and P. Bouvry
(2019). «A survey on mobile crowdsensing
systems: Challenges, solutions, and opportuni-
ties». IEEE Communications Surveys Tutorials,
21 (3), pp. 2419–2465.

Fiandrino, Claudio (2012). Smartdiagram. http:

//www.ctan.org/pkg/smartdiagram.

— (2014). «Realizzare semplici animazioni in fig-
ure: come usare TikZ in beamer». ArsTEXnica,
(17), pp. 18–23. http://www.guit.sssup.it/

arstexnica/.

Shit, R. C., S. Sharma, D. Puthal, P. James,
B. Pradhan, A. van Moorsel, A. Y. Zomaya
and R. Ranjan (2019). «Ubiquitous localization
(ubiloc): A survey and taxonomy on device free
localization for smart world». IEEE Communi-
cations Surveys Tutorials, pp. 1–33.

Tantau, Till (2010). The TikZ and PGF Packages.
http://www.ctan.org/pkg/pgf.

⊲ Claudio Fiandrino
IMDEA Networks Institute
claudio dot fiandrino at imdea

dot org

ArsTEXnica Nº 28, Ottobre 2019 Smartdiagram: The Package and Its Journey

163

Metamorfosi dei tipi sublacensi

Claudio Vincoletto

Sommario

L’accurato recupero di un classico, nella sua prima
versione digitale: un carattere tipografico fondato
sulla calligrafia tardomedievale e impiegato nei
primi incunaboli italiani, quindi riproposto agli
inizi del xx secolo dall’ultima delle grandi private
presses inglesi.

Abstract

The first and accurate digital revival of a classic
typeface, based on the medieval calligraphy and
used for the first time in italian incunables. A
copy of this original was employed by the last
representative of private press movement.

Fin da bambino provo un gusto innato per le cose
strane e bizzarre, per la frequentazione delle zone
liminari, varcandone poi spesso i confini allo scopo
di inoltrarmi in quelle che gli antichi chiamavano
terrae monstruum. Ricordo che, sfogliando i predi-
letti libri di storia naturale, rimanevo affascinato
dal concetto di “anello di congiunzione”, che ani-
mava i dibattiti fra i postulati della paleontologia e
le teorie legate all’evoluzione. Come spiegare nello
svolgersi del tempo alcuni ritrovamenti fossili che
si presentavano dal nulla, come innovatori incontra-
stati di ciò che sarebbe venuto, tanto da mettere
in crisi l’idea stessa di genealogia?

Tutto questo mi ha spinto ad affrontare uno
dei caratteri più celebrati e, al tempo stesso, più
problematici della storia della tipografia. Risale
al 1465 il primo esemplare attestato di un libro
stampato in Italia, a Subiaco, nei pressi di Roma.
Giunti appena un anno prima, due monaci tede-
schi — Conrad Sweynheym e Arnold Pannartz —
per la prima volta sperimentarono quanto appreso
nelle officine di Fust e Schöffer (allievi e soci di
Gutenberg), adattando la forma delle lettere a tipi
di scrittura più diffusi nella penisola e ispirati ai
calligrafi umanisti, creando una sorta di ibrido oggi
denominato Gotico-Antiqua (Boardley, 2019).

Diedero alle stampe solo quattro volumi con quel
carattere, di cui solo tre sono pervenuti fino a noi
(il De oratore di Cicerone, le Opere di Lattanzio, il
De civitate Dei di Agostino). Trasferitisi a Roma
nel 1467, e riallestendo totalmente la loro officina,
ne forgiarono uno nuovo, comunemente ritenuto
meno pregiato. Uno degli spunti primari del mio
progetto venne fornito proprio da una copia del De
oratore stampata a Subiaco, che è disponibile oggi

in una pregevole edizione anastatica accompagnata
da un’esauriente introduzione e una dettagliata
scheda bibliografica (Cicero, 2015).

Per comprendere l’originalità di Sweynheym e
Pannartz, va tenuto presente che quello finora di-
scusso è un periodo che vede non solo lo sviluppo
tecnologico delle modalità di scrittura (da quella
manoscritta a quella stampata), ma che coincide
anche con un’innovazione essenzialmente stilistica
(il passaggio dalla forma gotica delle lettere a quella
tonda) di cui il carattere forgiato a Subiaco rappre-
senta la transizione. Alcuni studi individuano, in
diversi manoscritti presenti nei monasteri di Santa
Scolastica e del Sacro Speco, le fonti che ispiraro-
no i due prototipografi (ICCU, 2019). Si ritiene
specificamente che per le lettere minuscole, più cal-
ligrafiche, il riferimento sia il ms. xxxiv, mentre le
maiuscole sono riconducibili in modo più generico
alle epigrafi in caratteri capitali e ai capilettera mi-
niati presenti in alcuni manoscritti della biblioteca,
come per esempio il ms. clx (De Gregori, 1942).

Nel considerare la trasposizione dal modello cal-
ligrafico ai tipi in metallo, propongo sia lecito ri-
tenere che il disegno dei glifi vero e proprio sia
stato progettato in termini geometrici. In questa
direzione, con l’ausilio di METAFONT, ho tentato
di immaginare quali schemi potessero aver segui-
to i due monaci, convinto che la rappresentazione
dello spazio bidimensionale della scrittura, così nel
carattere tipografico come nella font digitale, non
si potesse discostare di molto dalla trattatistica
coeva dedicata alle forme dei caratteri, fortemen-
te impregnata di modelli matematici. Tra i primi
esempi risalta il lavoro di Felice Feliciano (Alpha-
betum Romanum), che precede di qualche anno
le stampe di Subiaco. Tuttavia questi studi, così
come quelli di Pacioli e Tory, si concentrano sulle
lettere capitali romane, mentre personalmente ho
trovato più utile un’opera di poco più tarda in
cui vengono affrontati con questi criteri anche i
caratteri minuscoli.

Il trattato di Sigismondo Fanti è infatti dedicato
in buona parte alla conversione dei tratti calligra-
fici in coordinate geometriche (Fanti, 2013). Su
questo modello, con pochissimi aggiustamenti, ho
riscontrato delle ricorrenze nel carattere Subiaco
che mi hanno convinto a fissare dei precisi rapporti
a partire dalle dimensioni del corpo del carattere
(in 6 mm), suddiviso in 21 unità (hair). Ho pro-
grammato dunque METAFONT in modo che venga-
no calcolate tutte le misure verticali di riferimento.
Il medesimo principio viene poi adoperato anche

164

Figura 1: Confronto con i glifi originali (TW, 2019).

per la componente orizzontale, glifo per glifo:

mode_setup;

%size#:=6mm#;

size#:=17pt#;

font_size size#;

font_identifier:="Subiaco";

font_coding_scheme:="TeX text";

% Proportions

hair# = 1/21 size#;

body_height# + body_depth# = size#;

body_height# = 14/21 size#;

x_height# = 8/21 size#;

asc_height# = 13.5/21 size#;

cap_height# = 13/21 size#;

bar_height# = 6.5/21 size#;

desc_depth# = 6/21 size#;

Non mi è possibile dimostrare che Sweynheym
e Pannartz abbiano impiegato deliberatamente la
successione di Fibonacci nelle proporzioni del dise-
gno. Tuttavia, la suggestione è molto forte e può
essere ricondotta alla diffusa mentalità condivisa
dai sapienti dell’epoca. I recenti studi di Frank
Blokland vanno in questa direzione, come ho avuto
modo di accennare diversi anni fa, sebbene la sua
ricerca non fosse conclusa (Vincoletto, 2013).
Egli ipotizza che agli inizi della stampa vi sia stata
l’esigenza di una normalizzazione dei tipi gotici,
poi convertita anche nella fabbricazione dei tipi
romani. Questo sarebbe evidente nelle relazioni
morfologiche che sottostanno alla struttura di ta-
li alfabeti. Pertanto, le convenzioni tipografiche
si sarebbero sviluppate a partire da schemi ricor-
renti, costruiti su modelli armonico-ritmici, com-
pletamente estranei a preferenze ottiche. A suo
avviso, sarebbe in questo modo possibile ottene-
re maggiori informazioni sul processo creativo dei
caratteri antichi, se non addirittura individuare mo-

delli parametrici per la progettazione di caratteri
digitali (Blokland, 2016).

L’utilizzo di METAFONT si rivela molto efficace
nel costruire i glifi seguendo queste indicazioni,
proprio in virtù del suo carattere essenzialmente
parametrico. Tuttavia, per rendere alcuni aspet-
ti della componente calligrafica del Subiaco ho
dovuto modificare alcuni comportamenti del pro-
gramma, forzandolo in due direzioni. Una delle mie
priorità consisteva nell’elaborare il disegno usando
esclusivamente dei contorni; l’altra, nel recuperare
in modo obliquo l’idea delle penne virtuali pro-
posta da Knuth. Il metodo adoperato si basa sul
concetto di “interpolazione”, per cui una volta fis-
sata una serie di punti estremi, che sintetizzano
l’andamento di un tratto tracciato da una penna,
questi vengono collegati fra loro in una linea ciclica
mediante delle curve di Beziér. Per rendere eviden-
te l’applicazione di questi passaggi, viene riportato
per intero il codice che una volta compilato genera
la lettera “b”, illustrata nella figura 2.

"Subiaco letter b";

beginsubiacochar("b",9,asc_height#,0);

penpos1(curve,pa); penpos2(curve,pa);

penpos3(curve,pa); penpos4(.9curve,pa);

penpos41(curve,pa); penpos12(curve,pa);

penpos23(curve,pa); penpos34(curve,pa);

penpos5(stem,pa); penpos6(stem,pa);

x1=x3=.5[x4,x2]; x2=w-1.25hair;

x4=x5=2hair; x6=1.9hair;

y1m=x_height+o; y3l=y6l=0-o;

y2=y4=.5[y3,y1]; y5=h;

p1=z1{right}..z2{down}..z3{left}..z4{up}..cycle;

z41= directionpoint dir pa of p1;

z12= directionpoint dir (pa-90) of p1;

z23= directionpoint dir (pa-180) of p1;

z34= directionpoint dir (pa-270) of p1;

curvestroke12(1,12,2,blob);

curvestroke23(2,23,3,1.5blob);

curvestroke34(3,34,4,blob);

z4’=whatever[z5,z6]; y4’=.6875x_height;

ArsTEXnica Nº 28, Ottobre 2019 Metamorfosi dei tipi sublacensi

165

numeric theta;

theta:=angle((x1,y1+.125x_height)-z4’);

penpos4’(thin,theta-90);

penstroke56(5,6,.25,.48,.75,flx);

dish_serif(6,5,a,.7slab,jut,1.6jut);

p2=(dserif5 rotatedaround(z5,pa_f));

p3=z4’l{dir theta}..tension 3 and 1..{right}z1m;

p4=z1l{left}..tension 1 and 3..{-dir theta}z4’r;

p5=stroke56.r...z6r;

numeric i,j,g,f,r,s,t,u;

(t,u) = p3 intersectiontimes p5;

(s,r) = p4 intersectiontimes p5;

(i,j) = arc34.r intersectiontimes p5;

fill stroke56l...p2...subpath(0,u-.3blob) of p5..

subpath(t+.3blob,length p3) of p3 & arc12.r &

arc23.r & subpath(0,1.5) of arc34.r...cycle;

unfill arc34.l & arc23.l & arc12.l &

subpath(0,s-.5blob) of p4..cycle;

penlabels(range 1 thru 44,4’);

endchar;

Si è detto quanto il Subiaco porti in sé la commi-
stione di elementi tipografici (regolarità e uniformi-
tà del tratto) ed elementi calligrafici (inclinazioni,
ductus della penna). Pertanto, in una prima fase
il lavoro si è concentrato sull’individuazione, me-
diante sintesi, dei componenti costitutivi di ogni
tratto, da cui attingere per assemblare lettera per
lettera. Nella costruzione del glifo in figura, infatti,
si possono identificare almeno due tratti essenziali:
uno verticale, l’asta a sinistra, e l’altro curvo, che
costituisce l’arco, altrimenti detto “pancia”, della
lettera. In genere, per simulare un tratto calligra-
fico con METAFONT, si usa l’istruzione draw, ma
in questo caso sono stati ridefiniti alcuni automa-
tismi di base del programma, creando apposite
definizioni (macro). Sia d’esempio la definizione
penstroke, per determinare i contorni delle linee
diritte, di cui si darà una breve descrizione:

vardef penstroke@#(suffix $,$$)

(expr start_point,mid_point,end_point,curve) =

z@#h.r=point start_point of (z$r--z$$r);

z@#m.r=point mid_point of (z$r--z$$r);

z@#l.r=point end_point of (z$r--z$$r);

z@#h.n=point start_point of (z$n--z$$n);

z@#m.n=point mid_point of (z$n--z$$n);

z@#l.n=point end_point of (z$n--z$$n);

if y$=y$$:

if y$l>y$r:

y@#m.r:=y@#m.r+curve;

y@#m.n:=y@#m.n-curve;

else:

y@#m.r:=y@#m.r-curve;

y@#m.n:=y@#m.n+curve;

fi

else:

if x$l<x$r:

x@#m.r:=x@#m.r-curve;

x@#m.n:=x@#m.n+curve;

else:

x@#m.r:=x@#m.r+curve;

x@#m.n:=x@#m.n-curve;

fi

fi

stroke[@#].r:=z@#h.r..z@#m.r{z$$r-z$r}..z@#l.r;

stroke[@#].l:=z@#l.n..z@#m.n{z$n-z$$n}..z@#h.n;

labels(@#h,@#m,@#l,@#m.r,@#m.n,@#h.r,

@#h.n,@#l.r,@#l.n);

enddef;

path stroke[].l, stroke[].r;

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

�

�

56m.r

56m.n

56h.r

56h.n

56l.r

56l.n

a1

a2 a3

a4

1l

2l

3l

4l

5l

6l

12l

23l34l

41l
4’l

1

2

3

4

5

6

12

23
34

41

1r

2r

3r

4r

5r

12r

23r
34r

41r

4’r

1m

2m

3m
6m

12m

23m
34m

41m

2n

3n

4n

6n

12n

34n

41n

mmmmnnnnoooopppqqqrrrrssstttuuuuvvvvwwwwxzwvhf

suvvvwwwwwwwwwwwwwwwwwwwwwwwwwwzzzzzzzzzlaNF?��������

���?xzzzzzzzzzzzzzzaF���

azzzzzzzzzzzzza��

xyzzzzzzzzzzzz�

�xzzzzzzzzzzzz

zzzzzzzzzzzz�

�xyzzzzzzzzzzz

yzzzzzzzzzzzF

yzzzzzzzzzzz

yzzzzzzzzzzz

xzzzzzzzzzzz

zzzzzzzzzzz�

zzzzzzzzzzz mmmmnnnnnoooooooooooooooonnnnnnmmmm

zzzzzzzzzzz mnnoppqqrrssttuuuvvwwwyzzzzzzzzzzwwwvvuuuttssrqqpponnm

zzzzzzzzzzz mnoopqrrsttuvwwxzzzzzzzzzzzzzzzzzzzzzzwvuttsrqponm

zzzzzzzzzzz mnoopqrstuvvwyzzzzzzzzzzzzzzzzzzzzzzzzzzzzzwvusrqpnm

xzzzzzzzzzzzwwwwwxyzzzzzlllaaaWWWWNNNNNNNNNNNNNNNWWWWWWaaaaalllxzzzzzzzzzzzzzzzzzzzzvusrpn

zzzzzzzzzzzzzlaWWNFF??��������� �����������??FNNWallxzzzzzzzzzzzzzzzzwusqn

xzzzzzzzzzzzlN?��� �����?FWalzzzzzzzzzzzzzzzuspm

qzzzzzzzzzzz� ���?Naxzzzzzzzzzzzzzzuq

xzzzzzzzzzzz ��?Naxzzzzzzzzzzzzzwp

xzzzzzzzzzzzr ��Faxyzzzzzzzzzzzz

yzzzzzzzzzzzm �?lxyzzzzzzzzzzz?

qxyzzzzzzzzzzzsn FxyzzzzzzzzzzlF�

yzzzzzzzzzzzzvspm zzzzzzzzzzW?�

axzzzzzzzzzzzzzwtrpn syzzzzzzzzlWF��

�Wxzzzzzzzzzzzzzzwusrpom oswxzzzzzzzlWF���

�?Nazzzzzzzzzzzzzzzwvtsrqponm noqsvyzzzzzzaWF?���

��?Nalzzzzzzzzzzzzzzzzwwvuttsrrqqpoonnnmm mnnopqrstuwxyzzzzzaWNF����

����FNalyzzzzzzzzzzzzzzzzzzzwwwvvvuuuutttttttssssssssssssssssttttuuuvvwwxzzzzzzlaWNF?����

���?FNWaxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzlaWNNF?�����

�����?FNWaalxyzzzzzzzzzzzzzzzzzzzzzzzllaWWNFF?�������

�������??FFNNWWaalllxyzzzzzzzzzzzzlllaaWWNNFF??���������

���

Figura 2: Particolare della lettera b.

Per valutare l’inserimento dei parametri nella
definizione penstroke, si vedano le prime due li-
nee del codice riportato. Ogni tratto rettilineo va
distinto per essere riconosciuto dal sistema ed è
pertanto numerato con (@#). Seguono i punti estre-
mi della linea, quello iniziale ($) e quello finale
($$). Quindi l’indicazione, in decimale rispetto alla
lunghezza della linea, dell’effettivo punto di parten-
za del contorno (start_point), quello intermedio
(mid_point) e quello di arrivo (end_point). Le
ragioni che portano a individuare un punto inter-
medio sono dovute alle caratteristiche del tratto
calligrafico, per cui questo risulta tendenzialmente
più spesso alle estremità. Donald Knuth ne illu-
stra un caso generico a p. 28 nel suo The META-

FONTbook (Knuth, 1986). Tale punto di flessione
risulta anche congeniale in fase di stampa, in quan-
to rende l’asta meno bombata e maggiormente
uniforme. Il divario dello spessore del punto inter-
medio rispetto alle estremità è indicato dal valore
espresso da curve.

Nel caso riportato, in merito alla lettera b,
le istruzioni impartite sono le seguenti (flx

corrisponde a 2/1000 di size):

penstroke56(5,6,.25,.48,.75,flx);

Un approccio differente si può incontrare nella
definizione curvestroke, in cui il contorno del
tratto curvo è ricostruito per quadranti. Oltre ai
punti ortogonali, viene automaticamente assegnato
un punto intermedio sull’arco definito, in funzione
dell’angolatura della penna. Anche in questo caso
propongo l’analisi del codice impiegato:

Claudio Vincoletto ArsTEXnica Nº 28, Ottobre 2019

166

vardef curvestroke@#(suffix $,$$,$$$)(expr blob) =

numeric sect[].t, sect[].u;

if y$>y$$$:

if x$<x$$$:

% quadr 1

arc[@#].r:=subpath(0,1-blob) of (z$.m{right}..

z$$.m)..subpath(blob,1) of (z$$.r..

z$$$.r{down});

(sect@#.t,sect@#.u) = (z$$$.n{up}..z$$.n)

intersectiontimes (z$$.l..z$.l{left});

arc[@#].l:=subpath(0,sect@#.t-blob) of

(z$$$.n{up}..z$$.n)...

subpath(sect@#.u+blob,1) of (z$$.l..

z$.l{left});

else:

% quadr 4

arc[@#].r:=subpath(0,1-blob) of (z$.r{down}..

z$$.r)...subpath(blob,1) of (z$$.l..

z$$$.l{left});

(sect@#.t,sect@#.u) = (z$$$.m{right}..z$$.m)

intersectiontimes (z$$.n..z$.n{up});

arc[@#].l:=subpath(0,sect@#.t-blob) of

(z$$$.m{right}..z$$.m)...

subpath(sect@#.u+blob,1) of (z$$.n..z$.n{up});

fi

else:

if x$>x$$$:

% quadr 3

arc[@#].r:=subpath(0,1-blob) of (z$.l{left}..

z$$.l)...subpath(blob,1) of (z$$.n..

z$$$.n{up});

(sect@#.t,sect@#.u) = (z$$$.r{down}..z$$.r)

intersectiontimes (z$$.m..z$.m{right});

arc[@#].l:=subpath(0,sect@#.t-blob) of

(z$$$.r{down}..z$$.r)...

subpath(sect@#.u+blob,1) of (z$$.m..

z$.m{right});

else:

% quadr 2

arc[@#].r:=subpath(0,1-blob) of (z$.n{up}..

z$$.n)...subpath(blob,1) of (z$$.m..

z$$$.m{right});

(sect@#.t,sect@#.u) = (z$$$.l{left}..z$$.l)

intersectiontimes (z$$.r..z$.r{down});

arc[@#].l:=subpath(0,sect@#.t-blob) of

(z$$$.l{left}..

z$$.l)...subpath(sect@#.u+blob,1) of

(z$$.r..z$.r{down});

fi

fi

enddef;

path arc[].l, arc[].r;

Si può notare come, oltre all’identificatore (@#),
vengano indicati il punto di partenza ($), quello
mediano ($$) e quello terminale ($$$). Si aggiunge
inoltre un valore al parametro blob, che esprime la
distanza sottratta rispettivamente ai due percorsi
secanti, a partire dal loro punto di intersezione,
per rendere una curva più morbida e senza spigo-
li. In tal modo, la soluzione assegnata al primo
quadrante della lettera “b” è il seguente:

curvestroke12(1,12,2,blob);

Potrebbero essere fornite ancora diverse indi-
cazioni relative al codice della lettera “b”, ma è
necessaria una digressione storica per discutere le
ragioni di alcuni accorgimenti adottati.

Il recupero di caratteri del passato non è una
concezione moderna. Nel periodo umanistico, e

successivamente con l’introduzione dei tipi romani,
i riferimenti erano la scrittura carolina per il minu-
scolo e la capitale quadrata per il maiuscolo. Come
già affermato, la grafia impiegata nei manoscritti
venne studiata secondo una prospettiva geometrica,
e questo in qualche modo contribuì a semplificare
la conversione della scrittura in funzione dell’inno-
vazione tecnologica portata dall’invenzione della
stampa a caratteri mobili.

Alla fine del xix secolo, il movimento Arts and
Crafts, promosso da William Morris, segna una
nuova fase di questo processo, con un pionieristico
approccio al disegno dei caratteri mediante la foto-
grafia. Stimolato dal gusto critico di John Ruskin,
egli condivise il proposito di ricorrere al Medioevo
come fonte di ispirazione, non tanto per uno spirito
reazionario da contrapporre alla modernità porta-
ta dall’industrializzazione, quanto per arginare un
diffuso decadimento dei valori estetici con il recu-
pero e la riattualizzazione storica di un patrimonio
perduto. Tra le arti applicate, la tipografia assunse
un ruolo peculiare, e la Kelmscott Press fondata da
Morris divenne un modello di perfezione formale,
che venne imitato dalle piccole stamperie private
inglesi nate a cavallo fra i due secoli. Oltre all’ele-
vata qualità delle carte, degli inchiostri e dei torchi,
Morris attinse dagli incunaboli la progettualità gra-
fica, l’impostazione della pagina, le decorazioni e il
disegno di alcuni tipi che fece riprodurre per le sue
edizioni. Inizialmente fu sua l’idea di recuperare
nel 1892 il carattere forgiato a Subiaco e ripropor-
lo per la propria casa editrice, ma il progetto non
vide mai la luce (Cockerell, 1898).

Solamente nel 1902 venne realizzata una vera e
propria riproduzione in metallo del carattere Subia-
co. L’opera fu commissionata da Charles St John
Hornby per la sua Ashendene Press, e messa a
punto da un gruppo di persone che avevano stret-
tamente lavorato con Morris: Emery Walker fornì
degli ingrandimenti fotografici tratti dalle opere di
Sweynheym e Pannartz, mentre Sidney Cockerell
ne abbozzò il disegno. L’incisione venne portata a
termine da Edward Prince, che già aveva intagliato
tutti i caratteri utilizzati prima dalla Kelmscott
Press e poi dalla Doves Press. Per le iniziali calli-
grafiche delle sue pubblicazioni, la Ashendene si
avvalse dei più celebri artisti dell’epoca: Graily
Hewitt, Edward Johnston ed Eric Gill. Questo per
rimarcare la linea di continuità che legò i progetti
editoriali di Kelmscott, Doves e Ashendene Press.

Il disegno del Subiaco di St John Hornby si pre-
senta molto fedele se affiancato a quello del 1465,
e questo dipende probabilmente dai principi usati
per adattarlo (McNeil, 2017). In questo senso, è
interessante prendere in considerazione alcuni sag-
gi di Hermann Zapf, in cui viene affrontato il tema
del revival, proprio discutendo le metodiche foto-
grafiche adottate in quel periodo. In Caratteri da
stampa e libri (1962) e nelle Trasformazioni nel di-

ArsTEXnica Nº 28, Ottobre 2019 Metamorfosi dei tipi sublacensi

167

Figura 3: Simulazione di una pagina del De Oratore, Subiaco 1465 (BVMC, 2019).

Claudio Vincoletto ArsTEXnica Nº 28, Ottobre 2019

168

segno dei caratteri in seguito all’evoluzione tecnica
(1967), Zapf ripercorre la storia del libro stampato,
da Gutenberg all’inizio del xx secolo, equiparando
tre diversi caratteri, tutti ispirati alla medesima
fonte, ossia i tipi di Nicolas Jenson (Zapf, 1991).
Il Golden Type della Kelmscott, risalente al 1890,
rappresenta una pietra miliare della storia della ti-
pografia, per i motivi spiegati innanzi, ma secondo
Zapf è pure un fallimento. Gli ingrandimenti foto-
grafici erano difettosi, forse per una carta bagnata
eccessivamente, per cui il ricalco del contorno dei
glifi risulta molto diverso dall’originale quattro-
centesco. Morris ne era consapevole, tuttavia era
interessato più all’effetto unitario dato dal colore
scuro, quasi gotico, delle sue stampe, piuttosto che
a un vero recupero filologico. Il Doves Type fu
sviluppato tra il 1899 e il 1901 da Emery Walker
e il suo assistente Percy Tiffin, su commissione di
Thomas Cobden-Sanderson. Nuove e più accurate
impressioni fotografiche consentirono di disegnare
un carattere più leggero e maggiormente vicino a
quello di Jenson, anche se con un profilo netta-
mente più moderno. Infine il Centaur, dapprima
inciso privatamente dalla American Type Founders
e quindi commercializzato dalla Monotype, risale
a qualche anno dopo. Anche in questo caso Bruce
Rogers fece ricorso alle fotografie, ma tracciandovi
sulla superficie dei tratti con penna piatta diede
al suo carattere un’impronta molto più calligrafi-
ca. Le diverse tecniche analizzate da Zapf fanno
intendere la problematicità delle scelte progettua-
li messe in campo all’epoca, così come del resto
accade ancora oggi.

Per il lavoro al Subiaco digitale, oltre a docu-
menti disponibili in rete, mi sono avvalso delle
fotografie di alta qualità fornitemi gentilmente da
Riccardo Olocco, che ritraggono frammenti delle
Opere di Lattanzio del 1465, conservate presso la
Biblioteca Civica di Verona. Sebbene le tecniche
digitali abbiano cambiato molto il modo di lavora-
re su supporti fotografici, l’adattamento necessario
alla creazione di un carattere richiede approcci non
dissimili da quelli del passato. Riprodurre esatta-
mente quanto fatto secoli or sono è un’impresa
disperata, sempre che quello sia il vero obiettivo.
Un revival digitale non solo deve tener conto di
aspetti estetici, ma anche essere rapportato alle
tecnologie di uso corrente, per un impiego che sia
al tempo stesso efficace e pertinente. Questi ar-
gomenti vengono affrontati da Paul Shaw nella
discussione circa il trasporto in digitale di caratte-
ri del passato (Shaw, 2017). Nel percorso storico
che viene tracciato, sono presentati sia il Golden
Type, digitalizzato dalla ITC, che il Doves Type,
un faticoso recupero promosso da Robert Green e
ultimato nel 2015. Un approfondimento sulle ope-
razioni messe in campo per la riproduzione del
Golden Type vengono discusse da Helga Jörgensen
e Sigrid Engelmann, e alcune soluzioni intraprese

sono tenute presenti nelle operazioni di costruzio-
ne del Subiaco (Karow, 1994). Ad esempio, la
modalità in cui vengono gestite le intersezioni fra
le diverse linee del contorno (path). Ritornando al
codice della lettera “b”, queste vengono risolte in-
dividuando il momento di incontro fra due percorsi
piuttosto che le relative coordinate. Con META-
FONT è possibile specificare tale punto, tenendo
presente questo principio:

numeric t,u;

(t,u) = path_a intersectiontimes path_b;

Successivamente, sarà quindi possibile sottrarre
ai rispettivi percorsi una piccola frazione di ognuno,
con il parametro blob, e collegare così le porzioni
rimanenti con una curva, eliminando di fatto lo
spigolo dell’intersezione. In questo modo si può
ottenere una transizione morbida da un tracciato
all’altro, simulando da un lato le macchie d’inchio-
stro nel processo di stampa a torchio (ink spread)
e favorendo dall’altro la conversione dell’immagine
da vettoriale a bitmap per la stampa digitale:

subpath(0,t-blob) of path_a ...

subpath(u+blob,infinity) of path_b;

Riprendendo il discorso sul Subiaco della Ashen-
dene Press, bisogna considerare che il carattere
fu adattato per comporre testi in lingue moderne.
Mi è sembrato adeguato perciò estendere l’alfabe-
to del Subiaco digitale, seguendo gli stessi criteri,
anzi ampliandone le possibilità con diacritici e pun-
teggiature diffuse nelle varie lingue europee. Per
semplificare l’operazione, anche in questo caso so-
no ricorso a definizioni in grado di riprodurre la
stessa figura in diversi glifi. Per esempio, nel caso
dell’accento acuto, distribuito sulle vocali minu-
scole e maiuscole, si pone l’esigenza di collocare
il diacritico in una posizione precisa, in base a
un punto di riferimento riconducibile alla lettera
stessa. Ne riporto il codice esplicativo:

vardef acute_acc(suffix $)(expr xacc,yacc) =

x$=xacc; x$’=x$+2.75hair;

y$=yacc-.125x_height; y$’=yacc+.125x_height;

numeric delta; delta:=angle(z$-z$’);

penpos$(1.7thin,delta-90);

penpos$’(3.7thin,delta-90);

acute$:=z$’l---z$n..tension 2..z$m---z$’r

..tension 2..cycle;

penlabels($,$’);

enddef;

path acute[];

Con il suffisso $ viene creato un nuovo punto
nello spazio, di cui a seguire vengono indicate le
coordinate, xacc e yacc, in relazione ai parametri
riferiti al glifo su cui poggia. Quindi viene gene-
rato un percorso ciclico tra due punti a esso cor-
relati. L’istruzione per generare un accento acuto
sommato a una vocale è pertanto la seguente:

acute_acc(15,2.25hair,acc_height);

fill acute15;

ArsTEXnica Nº 28, Ottobre 2019 Metamorfosi dei tipi sublacensi

169

Figura 4: Una pagina della Commedia di Dante, nello stile della Ashendene Press (Knight, 2012).

Claudio Vincoletto ArsTEXnica Nº 28, Ottobre 2019

170

Per generare un file OpenType dai sorgenti ME

TAFONT sono ricorso a mf2outline di Linus Ro-
mer, uno script Python in grado di invocare dappri-
ma METAPOST come sostituto di METAFONT per
la sintesi dei contorni, quindi FontForge di George
Williams per la compilazione del file .otf. Suc-
cessivamente, sempre con FontForge, ho aggiunto
un feature file, che rende possibile effettuare auto-
maticamente la sostituzione dei glifi (ad esempio
le legature) oltre a sporadiche correzioni di spa-
ziatura fra caratteri. La struttura rigorosa della
componente orizzontale dei glifi, come specificato
in precedenza, basata sulla ripetizione ritmica di
unità (cadence units, nel lessico di Blokland) è in
grado di riprodurre con fedeltà la successione dei
caratteri sia del Subiaco originale che della traspo-
sizione della Ashendene. Le correzioni di crenatura,
ridotte a poche coppie di glifi, sono riconducibili
ai medesimi parametri.

Il risultato finale è una font digitale che, mal-
grado le numerose varianti, non dispone di tutti i
glifi di un alfabeto moderno. Non è corredata di
corsivo, grassetto, maiuscoletto e via dicendo. Con-
sente, però, di compilare dei testi in stile austero
e comunque sufficientemente leggibili da risulta-
re gradevoli. Come ho illustrato in questo scritto,
il Subiaco è un tipo che già all’origine manifesta
componenti ibride, che vengono mantenute in tutte
le sue trasformazioni. Gli stessi approcci, nonché
gli strumenti da me messi in opera per realizzarlo,
sono eterogenei e multiformi, in una sinergia che
può svelare il suo valore solo nei risultati ottenuti.
Il fatto stesso che riviva oggi in questa trasposi-
zione digitale ci fa capire quanto il Subiaco sia un
classico, e come il modello archetipico travalichi il
tempo e le situazioni.

Riferimenti bibliografici

Blokland, F.E. (2016). On the origin of patter-
ning in movable Latin type: Renaissance standar-
disation, systematisation, and unitisation of tex-
tura and roman type. Tesi di Dottorato, Leiden
University. https://openaccess.leidenuniv.

nl/handle/1887/43556.

Boardley, J. (2019). Typographic Firsts.
Adventures in Early Printing. Bodleian Library.

BVMC (2019). «Cicero, De Oratore, p.159. Bi-
blioteca Virtual Miguel de Cervantes». http:

//www.cervantesvirtual.com/obra-visor/

de-oratore--0/html/01bdc2d6-82b2-11df-

acc7-002185ce6064_166.html.

Cicero, M.T. (2015). De Oratore. Subiaco 1465.
Ristampa anastatica. Iter Edizioni.

Cockerell, S.C. (1898). A note by
William Morris on his aims in foun-
ding the Kelmscott Press. Kelmscott
Press. https : / / archive . or g /details /

ANoteByWilliamMorrisOnHisAimsInFounding

TheKelmscottPressTogether.

De Gregori, L. (1942). «I tipi sublacensi».
Studi e ricerche sulla storia della stampa del
Quattrocento, pp. 47–61.

Fanti, S. (2013). Trattato di scrittura. Theori-
ca et pratica de modo scribendi (Venezia 1514).
Salerno Editrice.

ICCU (2019). «ManusOnLine. Istituto Centra-
le per il Catalogo Unico.» https://manus.

iccu.sbn.it/opac_ElencoSchedeDiUnFondo.

php?ID=145.

Karow, P. (1994). Font Technology. Descriptions
and Tools. Springer-Verlag.

Knight, S. (2012). Historical Types. From
Gutenberg to Ashendene. Oak Knoll Press.

Knuth, D.E. (1986). The METAFONTbook.
Computers & typesetting. Addison-Wesley.

McNeil, P. (2017). The Visual History of Type.
Laurence King Publishing.

Shaw, P. (2017). Revival Type. Digital typefaces
inspired by the past. Yale University Press.

TW (2019). «Type 1:120R. Typenrepertorium
der Wiegendrucke. Staatsbibliothek zu Berlin».
https://tw.staatsbibliothek-berlin.de/

ma10000.

Vincoletto, C. (2013). «Gli alfabeti romani di
Francesco Griffo». ArsTEXnica, (16), pp. 52–57.
http://www.guitex.org/home/numero-16.

Zapf, H. (1991). Dalla calligrafia alla
fotocomposizione. Edizioni Valdonega.

⊲ Claudio Vincoletto
Torino
claudio dot vincoletto at

gmail dot com

ArsTEXnica Nº 28, Ottobre 2019 Metamorfosi dei tipi sublacensi

171

Questa rivista è stata prodotta
dal Gruppo Utilizzatori Italiani di TEX
usando esclusivamente software libero.

Versione elettronica per la diffusione via web.

ArsTEXnica – Call for Paper

La rivista è aperta al contributo di tutti coloro che vogliano partecipare con un proprio articolo. Questo dovrà essere
inviato alla redazione di ArsTEXnica, per essere sottoposto alla valutazione di recensori entro e non oltre il 14 Febbraio
2020. È necessario che gli autori utilizzino la classe di documento ufficiale della rivista; l’autore troverà raccomandazioni
e istruzioni più dettagliate all’interno del file d’esempio (.tex).
Gli articoli potranno trattare di qualsiasi argomento inerente al mondo di LATEX e non dovranno necessariamente essere
indirizzati ad un pubblico esperto. In particolare tutorial, rassegne e analisi comparate di pacchetti di uso comune, studi
di applicazioni reali, saranno bene accetti, così come articoli riguardanti l’interazione con altre tecnologie correlate.
Di volta in volta verrà fissato, e reso pubblico sulla pagina web http://www.guitex.org/arstexnica/, un termine di
scadenza per la presentazione degli articoli da pubblicare nel numero in preparazione della rivista. Tuttavia gli articoli
potranno essere inviati in qualsiasi momento e troveranno collocazione, eventualmente, nei numeri seguenti.
Chiunque, poi, volesse collaborare con la rivista a qualsiasi titolo (recensore, revisore di bozze, grafico, etc.) può contattare
la redazione all’indirizzo arstexnica@guitex.org.

ArsTEXnica
Rivista italiana di TEX e LATEX

Numero 28, Ottobre 2019

5 Editoriale
Claudio Beccari

8 Introduction to LATEX and to some of its tools
Gianluca Pignalberi, Massimiliano Dominici

47 TEX, LATEX and math
Enrico Gregorio

58 Bibliographies, LATEX and friends
Guido Milanese

65 Graphics for LATEX users
Agostino De Marco

102 Presentations with Beamer
Grazia Messineo, Salvatore Vassallo

110 The Toptesi package — Typesetting a PhD thesis with LATEX
Claudio Beccari

135 Creating accessible pdfs with LATEX
Ulrike Fischer

138 Axessibility 2.0: creating tagged PDF documents with accessible formulae
D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco,
B. Doubrov, A. Kozlovskiy, N. Murru

146 Uno script bash di ausilio alla redazione di manoscritti
Gianluca Pignalberi

157 A Direct Bibliography Style for ArsTEXnica
Jean-Michel Hufflen

160 Smartdiagram: The Package and Its Journey
Claudio Fiandrino

164 Metamorfosi dei tipi sublacensi
Claudio Vincoletto

9 771828 236001

90028

	Sommario
	Claudio Beccari Editoriale
	Gianluca Pignalberi, Massimiliano Dominici Introduction to LaTeX and to some of its tools
	Typesetting Systems vs Word Processors
	Interactive and Non-Interactive Typesetting Systems
	TeX As a Non-Interactive Typesetting System and a Programming Language
	LaTeX, a Macro Package Built on Top of TeX
	WhyTextIsBetterThanBinary?
	LaTeX File Format: the Healing Text
	The Structure of a LaTeX Document (part I)
	Preamble analysis: document classes
	Preamble Analysis: What Is a Package?
	Preamble Analysis: Completing the Basic Information

	The Structure of a LaTeX Document (part II)
	Main Body Analysis: Commands for Text
	Spaces
	Special Commands for Diacritic Marks and Special Character
	Altering the Text Look
	Altering the Text Font
	Changing the Text Shape in the Page
	Changing the page format
	Lists
	Quoted Text, Poetry and Source Code
	Footnotes
	Custom Commands and Environments
	Tables of Contents, Cross References and Indices
	Arbitrary Hyphenation
	An Example of Multilingual Document in X0.5ex0.5exEto11to–10.5exLaTeX
	Floating bodies: figures and tables
	Colors
	Again on Special Characters

	Main Body Analysis: Document Structure
	Splitting Big Documents
	Help, I Need a Symbol

	(Not Necessarily) Dedicated Editors
	LYX, the WYSIWYG (?) Editor that LaTeXs Your Documents
	Summary of textcomp commands

	Enrico Gregorio TeX, LaTeX and math
	Introduction
	A very short lead-in to math in TeX
	Fine points of mathematics typing
	Upright or italic?
	Sets, bras and kets
	Numbers and units
	Further reading

	Guido Milanese Bibliographies, LaTeX and friends
	BibTeX and other formats
	The BibTeX format
	Bibliographic data and output formats
	BibTeX, bibtex, biber and biblatex
	How to survive BibTeX
	Using BibTeX to build a scholarly archive
	The philosophy package
	The zblbuild package
	Other utilities
	Using BibTeX without LaTeX
	The future of BibTeX

	Agostino De Marco Graphics for LaTeX users
	Introduction
	Illustrations: general guidelines
	Guidelines for illustration design
	Interplay between graphics and text

	Drawing and annotating with native LaTeX extensions
	The standard LaTeX picture environment
	Using pstricks
	Using pgf/tikz
	Command ` tikz and environment tikzpicture
	Grids
	Paths
	Coordinate labels
	Types of path extensions
	The move-to operation
	The line-to operation
	The curve-to operation
	The cycle operation
	Connecting points with horizontal/vertical lines
	The rectangle operation
	The circle operation
	The ellipse operation
	The arc operation

	Actions on paths
	Colour
	Line width
	Dash patterns
	Predefined styles
	Line caps and joins
	Arrows
	Nodes and node labels
	Predefined node shapes
	Node placement
	Connecting nodes
	Coordinate systems
	Relative and incremental coordinates
	Complex coordinate calculations

	What else?
	Advanced examples

	LaTeX-aware graphic software
	Using Inkscape

	Presenting data with plots
	The axis environment
	The macro ` addplot
	The macro ` addplot3
	What else?

	Conclusion

	Grazia Messineo, Salvatore Vassallo Presentations with Beamer
	Introduction
	Tips for a good presentation
	Presentations in Beamer
	The preamble
	The title page
	The table of contents
	The document body
	Overlays
	Lists
	Highlighting of text
	Boxes
	Verbatim mode
	Figures
	Time settings
	Sounds and animations

	Fonts
	Navigation bar
	Multi-column layout
	Advanced personalization: new commands and environments

	Other classes to write presentations

	Claudio Beccari The Toptesi package Typesetting a PhD thesis with LaTeX
	Introduction
	The class structure
	The option values
	General information for various thesis types
	Bachelor final work or bachelor thesis
	Master thesis
	The doctoral dissertation or PhD thesis
	The thesis bibliography

	Lists and tables
	Images of any kind
	Mathematics
	Nomenclature and glossaries
	Indices
	Archivable format
	Comments
	TOPtesi and its tipotesi=scudo option
	Facility for using either pdfLaTeXor LuaLaTeX
	Splitting the source .tex file
	The ScuDo title page and the legal page

	Structuring the thesis
	The main matter
	Formulas in display
	Figures
	Tables

	Bibliography
	The bibliographic database

	Nomenclature
	Index
	Configuring makeindex
	Entering data to an index

	Archivable format
	Conclusion

	Ulrike Fischer Creating accessible pdfs with LaTeX
	Accessibility of pdf
	Creating a tagged pdf
	Changing LaTeX
	First Steps towards tagging
	LaTeX-dev
	Pdf resource management
	Adapting the engines
	Adding hooks
	Mathematics
	Contacts
	Summary

	D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy, N. Murru Axessibility 2.0: creating tagged PDF documents with accessible formulae
	Introduction
	Related Work
	The axessibility LaTeX package
	Usage
	Technical Overview

	Supporting Software
	Preprocessing Scripts
	Screen reader dictionaries

	Acknowledgements

	Gianluca Pignalberi Uno script bash di ausilio alla redazione di manoscritti
	Introduzione
	Impostazione dello script
	Caso 1: glifi errati
	Analisi del caso
	Codice di analisi
	Altri glifi errati

	Caso 2: scorretta applicazione delle proprietà al testo
	Caso 3: mancanza di stile
	Caso 4: documenti fintamente plurilingue
	Il test finale
	Conclusioni

	Jean-Michel Hufflen A Direct Bibliography Style for -.48ex-20ArsTeX-.357exnica
	Introduction
	MlBibTeX's Outlines
	MlBibTeX vs BibTeX
	The mlb-arstexnica Program
	Conclusion

	Claudio Fiandrino Smartdiagram: The Package and Its Journey
	Introduction
	The core idea
	Auxiliary components
	The key-management interface
	The additions library

	Some examples
	Traditional mode
	Animated mode

	When it got out of control
	Conclusion
	Acknowledgements

	Claudio Vincoletto Metamorfosi dei tipi sublacensi

