
Language management
and patterns for line breaking

Claudio Beccari

Abstract
Language management is supported by different
files according to the language manager babel or
polyglossia; they are similar to a certain extent,
but differ in the way they handle the language pat-
terns. There are also small differences when using
X ELATEX compared to LuaLATEX. Obviously pat-
terns are different from language to language, but
there are also some languages with variants. There-
fore the language-supporting compiler-structure
has to manage a variety of situations.

Sommario
La gestione delle lingue è sostenuta da file differenti
a seconda che si usi il gestore babel o polyglossia;
gli specifici file di ogni lingua sono abbastanza
simili ma differiscono specialmente nel modo di
gestire i pattern per la cesura in fin di riga. Ci sono
anche delle piccole differenze se si usa X ELATEX o
LuaLATEX. I pattern, ovviamente, sono diversi da
lingua a lingua, ma ci sono anche lingue che hanno
anche delle varianti. Pertanto il meccanismo di
sostegno linguistico dei compilatori deve essere in
grado di gestire una varietà di situazioni.

1 Introduction
This paper is half way between a technical docu-
ment and a tutorial. Some parts are quite profes-
sional, and others are for any LATEX user.

Any LATEX user knows very well that an impor-
tant part of the preamble of any source .tex main
file is dedicated to the language management of
the only language used in the document, or to
the specification of the various languages that are
used in the document; very often, depending on
the language(s), it is necessary to specify the font
collections to be used in order to use different al-
phabets. The only users who do not need to specify
anything used to be the American ones, because
the default language is the American variety of
the English language; of course, if they have to
cite any stretch of text in a language different
from English, they have to do as anybody else.
The British, Australian, Canadian, New Zealander
English authors have to specify their language vari-
ety because their varieties require a little different
handling compared to the American one.

The situation is quite different when the docu-
ment is typeset with pdfLATEX, compared to what

is possible to do with X ELATEX and LuaLATEX. In
facts pdfLATEX can use only the babel package,
while when X ELATEX or LuaLATEX are used it is
possible to require either the polyglossia or the
babel package.

The babel package, (BRAAMS e BEZOS, 2018)
has its origin in the early nineties when Johannes
Braams invented its mechanism and became its
maintainer. After some twenty years the mainte-
nance was taken over by Javier Bezos who intro-
duced many extensions and functionalities.

The polyglossia package (CHARETTE e
REUTENAUER, 2018) was created with the advent
of X ELATEX and was refined a little bit when
LuaLATEX was stabilised. Now polyglossia can
be considered quite stable, and any addition or
modification is mostly related to the numerous
specific language files.
babel and polyglossia handle a large number of

languages, more than eighty, although for some rare
ones there might be some differences. According
to my experience, the language handling by these
two packages offers some pros and cons, so that
it is difficult to say which is the most performant.
Personally I prefer polyglossia, but I use pdfLATEX
quite often, therefore, possibly, I use babel more
often than polyglossia. The differences are described
in detail in the following sections.

Both handlers have to resort to language specific
files in order to define (a) the infix words necessary
to typeset language dependent headings, the date,
and some other language specific structures; and
(b) they have to select the proper hyphenation pat-
terns in order to let the typesetting engine split in
the best way the input strings so as to create per-
fectly justified paragraphs, with the least number
of hyphenated line breaks and, with the support of
the microtype package (SCHLICHT, 2018), the most
homogeneous inter word spaces.

The handling of patterns is different for the three
LATEX based typesetting engines. The pdfLATEX and
X ELATEX typesetting engines require that the pat-
terns are preloaded into their format files, while
LuaLATEX resorts to a different mechanism so that
the format file knows only the list of all the avail-
able pattern files, but, except for American English,
none is preloaded, and the typesetting engine loads
at run time the patterns it needs for the only lan-
guages that are specified for the document.

In this paper we show how to create a language
description file for a generic language, and how to

5

create a pattern file for that language. Moreover we
shortly describe the service files through which the
typesetting engines are specified what to preload,
where to find it, what to replace, and so on.

Language description files are pretty easy to
create; on the opposite pattern files are pretty
difficult, and different languages require different
approaches. In the sequel I will cite some of my own
work without the purpose of showing an achieve-
ment of mine, but to make examples of what and
how to do it in order to have the necessary struc-
ture for language handling.

I have created pattern files for more than a dozen
languages, mainly romance ones, and I followed the
same method that, according to my experience and
my capabilities, was suitable for all of them. For
example I created the patterns for Latin in these
varieties: modern (as it is being used in Italy),
medieval, classical, ecclesiastical, and liturgical.
At the moment these patterns are supported by
another team composed of several people with
different linguistic backgrounds and well supported
by Latinist scholars; they are doing a marvellous
work; they started from my patterns, and they are
modifying and extending them using another very
different approach that will lead them to a much
better final result.

2 The required files
We have seen that we need three file levels for
handling any language.

1. The language description language files; there
are two kinds of such files, because there are
two different packages that are used to handle
a given language.

(a) The 〈language〉.ldf to be used with ba-
bel is generally matched with a doc-
umentation file named 〈language〉.pdf
resident in a doc/generic/babel-〈lan-
guage〉 folder. The latter file describes
the features and the functionalities asso-
ciated to the specific 〈language〉, such as
user settings, commands and/or short-
cuts to perform certain actions when a
specific text is typeset in that 〈language〉.
The user can access this documenta-
tion by means of the terminal command
texdoc babel-〈language〉 command.

(b) The file gloss-〈language〉.ldf to be
used with polyglossia; it is not matched
with a documentation file; actually a
short text concerning this 〈language〉
is included into the polyglossia docu-
mentation (CHARETTE e REUTENAUER,
2018); the user can access this docu-
mentation with the terminal command
texdoc polyglossia.

2. The pattern files have different extensions:
.tex for use with pdfLATEX and X ELATEX; .txt
for use with LuaLATEX. Their names are of the
form hyph-〈language ISO code〉〈-modifiers〉.
The 〈language ISO code〉 is a two or three
letter standard name established by the ISO
regulations, such as en for English, it for Ital-
ian, la for Latin, kmr for Kurmanji (Northern
Kurdish), and so on. The 〈modifiers〉 are short
strings that specify a specific variety of the
〈language〉: for example US English file has a
full name of hyph-en-us while British English
one has a full name of hyph-en-br; other lan-
guages may have longer modifier strings, but
the idea is the same. The pattern file may be
accompanied by other specific files; for exam-
ple all languages that use the apostrophe as
an elision marker (for example, French, Ital-
ian, Catalan,…) as well as a single or (ligated)
double closed quotation marks have another
matching file named hyph-quote-〈language
ISO code〉 containing specific patterns to han-
dle such writing elements.

3. The service macros are basically the ones that
list the files described above; these service
macros are used only when a format file has
to be (re)created. These files have names such
as languages.〈specific extension〉 where the
〈specific extension〉 is different depending on
which typesetting engine the format file is
created for. These files are maintained by the
TEX-hyphen Working Group that takes care
of every detail (including licences, since the
pattern files are used also by other free or
commercial external programs).

The user should not care about these “official”
files; s/he needs these latter files only for a local
installation that s/he uses for testing the other
files s/he created; eventually s/he sends his/her
language description and the pattern files to the
TEX-hyphen Working Group that, in turn, takes
care of their conformance with the TUG regula-
tions in this matter and possibly adds them to the
official TEX system distribution.

A partial description of such three kinds of
files appears in both the TEX Live documentation
(BERRY, 2018a) and that of the tlmgr program,
(BERRY, 2018b) that handles the whole manage-
ment of the TEX Live distribution. For MiKTEX
there might be different ways of managing these
language details, but in general the end user does
not need to access such functionalities for his/her
everyday typesetting chores.

3 Syllabification vs. hyphenation
The hyphenation patterns were invented by Frank
Liang at the very beginning of the existence of TEX
and were described in his doctoral thesis defended

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

6

a little later at Stanford University (LIANG, 1983).
At that time it was still TEX 78, a beta version of
the future TEX. But he was essentially concerned
with American English hyphenation because at
that time this was the only language the TEX
program could handle. The idea was a winning
one; it was extended to other languages handled
by the TEX system; nowadays it has been ported
to a number of widespread free and commercial
programs; just to name a couple, the Open/Libre
Office word processors and the InDesign program.

But patterns deal with hyphenation, not with syl-
labification; the difference is essential; linguists deal
with syllabification with certain criteria; phonolo-
gists deal with syllabification with other criteria.
Linguistic syllabification deals with grammar rules;
phonetic syllabification deals with the pronuncia-
tion of a specific language. Both approaches do no
directly concern typography. Typography is mostly
concerned in line breaking and with splitting words
in a way that the reader is not confused while read-
ing his/her text. Of course hyphenation should
not infringe grammatical rules, but it is subject
to stricter needs that force using as hyphenation
break points only a subset of the grammatical ones.

This difference sometimes is confusing anybody
who has to deal with line breaking. But it must
be clear that the purpose of typography is not to
take over the expertise of a linguist; typography
main purpose is the reader’s comfort in reading.

Actually even the grammar rules are not so strict;
on one side every language contains words that
are exceptions to the rules; on the other side there
are certain texts that presume a different way of
syllabification. Some of these texts are poems: the
verses must follow a certain syllabic rhythm so
that sometimes certain diphthongs are split so as
to become hiathus. Other texts are the scripts
that a speaker should read in a formal way; the
speaker certainly emphasises certain words again
by pronouncing some diphthongs as if they were
hiathus. These particular situations are not taken
into account by hyphenation.

Another point: hyphenation should not take
place when the break point is too close to the start
or the end of a word; the TEX system typesetting
engines at the moment take into consideration such
minimum distances by means of two numerical pa-
rameters \lefthyphenmin and \righthyphenmin.
For most languages such parameters are preset to
the values 2 and 3; these numbers measure the
distance from the start and the end of a word in
terms of “number of characters”; the TEX-hyphen
Working Group is studying how to exclude from
this count the self combining characters available
with OpenType fonts; actually the luatex engine
is already capable of doing this “correction”.

The TEX-hyphen Working Group is also study-
ing a way to assign different penalties to every

possible hyphen point so as to reduce the number
of short word fragments; short words just over the
minimum length established by the ...hyphenmin
parameters may have just one hyphen point to use,
but longer words have more hyphen points and
their choice may be subjected to the optimisation
algorithm (based on penalties) that the TEX sys-
tem typesetting engines use to process paragraphs.
Therefore in the future there will be more new
functionalities associated to hyphenation.

4 The patterns
The patterns are short letter sequences that rep-
resent word fragments; these fragments may be
of any length, from one letter up. The letters are
interspersed with digits from 0 to 9. The value 0
is optional, because it is assumed when no digit is
explicitly shown. Any position occupied by an even
digit is where break points are forbidden, while
on the opposite a position where an odd digit is
present implies a possible break point; when in
different patterns the same two letters are sepa-
rated by different digits the highest value prevails
in deciding if it is a legal break point or no break
is allowed.

4.1 Word strings
The above introduction to patterns is a simplified
one. It is better to specify in a better way how the
typesetting engines deal with words to hyphenate.

The typesetting engine receives from previous
steps of text processing each paragraph in the form
of a single long string of tokens; the aim of the
paragraph processing module is to divide such long
line into lines of equal length, except possibly the
last one. The string to process is made of words, in-
line math, penalties, kernings, punctuation marks,
footnotes, macros that shall be expanded when the
paragraph is shipped to the output file, and other
such objects.

Penalties are used for both line breaking or page
breaking; kerns are used to set adjacent characters
in a proper way, but they might influence line
breaking; the same is true for ligatures, such as the
“f” ones, that might be interrupted by a hyphen in
case a line break occurs at that point.

Other macros, such as \footnote, may influence
hyphenation in the sense that they interfere with
the process of finding a word end. But it is not
up to the program to “correct” these situations; it
is up to the user to provide some way of avoiding
them; the simplest one is to put a zero width glob
of glue just before the \footnote macro (or before
any similar offending macro), so that this glue lets
the program identify the word end.

In any case the program must identify each word
for possible hyphenation; the program considers
a “word” any string of consecutive characters that
have a positive value of their \lccode. In general

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

7

any alphabetic letter has already been classified as
being of category 11 while any non alphabetic char-
acter has been classified as being of category 12.

Characters of category 11 have two asso-
ciated codes: the “lowercase” and the “upper-
case” codes; respectively assigned with the na-
tive commands \lccode〈character〉=〈value〉 and
\uccode〈character〉=〈value〉. Here 〈character〉
means the internal numerical code used by the
engine to address a specific character in a given
font; 〈value〉 is another numerical value to address
a character in the same font. Such associations are
mostly useful for lower/upper case transformations.
Generally speaking users don’t set and/or reset
lower and upper case codes; they also generally do
not know the glyph addresses in a given encoding;
therefore a special grammar is used in order to
access to such addresses. As an example let us see
the situation with characters “a” and ”A”:

\lccode‘\a=‘\a \uccode‘\a=‘\A
\lccode‘\A=‘\a \uccode‘\A=‘\A

This means that when lowercasing “a” the same
glyph is used, while when uppercasing it, “A” is
used; the opposite takes place with “A”.

But for what concerns hyphenation the program
considers as valid symbols also non alphabetic
signs provided they have a positive lower case code.
Therefore for languages that use the elision apos-
trophe, such glyph must receive a positive \lccode;
the language description file should therefore set
this value but it has to reset it to zero, upon chang-
ing language. Assigning a category code to glyphs
is generally done by the LATEX kernel and/or by the
encoding packages used for input and/or output
and/or by the classes and packages that are being
used to typeset the document; this action takes
place also when a specific language is being typeset
with an alphabet different from the Latin one.

All patterns are written with lowercase letters;
this implies that in order to find the possible break
points, the typesetting engine must deal only with
the lowercase codes of the glyphs forming the words.
Since other glyphs in a string do not have lowercase
positive codes, the engine is capable of isolating
single words formed by glyphs of any category, but
with positive lowercase codes.

4.2 How patterns work

Let us explain how patterns work with a simple
English word: “electricity”. The typesetting engine
module searches in the English pattern-list all the
patterns that can be found into the given word,
at its beginning, at its end, and anywhere in the
middle. Let us show the various patterns found
in the diagram of table 1; for simplicity the first
line contains the letter string that the typesetting
engine recognises as a word. Here we neglect some
details, but the description is correct.

The hyph-en-us.tex file contains the original
Knuthian 4938 hyphenation patterns for Ameri-
can English. In table 1 line 1 contains the original
word; the dots before and after the word are just
place holders to show the word boundaries; such
dots are used also in the pattern files to mark the
pattern strings that may be found at the begin-
ning or at the end of a word. Line 2 contains the
default digit 0 between every couple of letters; if
no patterns were found in the pattern file, these
zeros would imply that there are no legal break
points in the word. The pattern file contains only
the following patterns 2c1t, 2c1it, 2ici, 4rici
that are made of substrings that can be found in
the given word; they are copied in the table lines 3,
4, 5, and 6 with their letters in column with the
letters of the original word and their digits in the
position they are in the patterns. Eventually line 7
contain the letters in their columns and the highest
digit in each numerical column. The only odd dig-
its occur between the couples ct and ci, therefore
the word may be hyphenated as such: elec-tric-ity.
The grammar might allow other break points, but
the preset ...hyphenmin parameters are set to 2
and 3, therefore the first word fragment must be
at least two characters long and the last one must
be at least three characters long.

4.3 Grammatical rules
Not all languages have grammatical rules for syllab-
ification and therefore for hyphenation; as we said,
even if grammatical rules do exist, every language
has several words that form a set of exceptions to
“the rule”.

In general a syllable contains one vowel, or one
diphthong, or one triphthong. The set of vowels is
specific of every language; we are mostly used to
the Latin script, and we assume the vowels are in
the set “aeiou”; some other languages have larger
sets, such as “aäåeioöuy” or “aàáâeèéêioôu”, and
so on. Some languages contain among their vow-
els also some characters other languages consider
consonants: for example in some Slavic grammars
the letter “r” is labelled as a vowel; matter of fact
how could anybody pronounce “Trst” (the city of
Trieste) or “smrt” (death) if the letter “r” did not
contain some “voice” in itself?

Diphthongs and triphthongs are made of two
or three vowels, respectively; for diphthongs the
couple must contain an unstressed semivowel “i”, or
“u”, or “j”, or “y”, or “w”, the last three of which are
considered semivowels only in certain languages.
Triphthongs must contain two unstressed semivow-
els either close to one another or sandwiching the
third vowel.

One consonant or a cluster of consonants may
be part of a syllable when they precede the vocalic
part; when these clusters start with specific con-
sonants the latter might remain appended to the
vocalic part of the preceding syllable; they gener-

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

8

TABLE 1: The process of analysing the patterns that are found in the word “electricity” and of finding the legal break points

. e l e c t r i c i t y .

. e 0 l 0 e 0 c 0 t 0 r 0 i 0 c 0 i 0 t 0 y .
2 c 1 t

2 i 0 c 0 i
2 c 1 i 0 t

4 r 0 i 0 c 0 i
. e 0 l 0 e 2 c 1 t 4 r 2 i 2 c 1 i 0 t 0 y .

ally are “l, r”, and “m, n”, but such consonants that
remain appended to the previous syllable are spe-
cific of every language; for example, in French the
consonant “s” remains appended to the preceding
syllable, while in Italian it remains at the start of
the current syllable. The consonants at the end of a
word remain appended the previous vocalic part, as
well as all the initial word consonants remain with
the vocalic part they precede, irrespective if they
start with the special consonants mentioned above.
In some languages reinforced (double) consonants
are split between syllables.

Compound words may violate the above rules,
in the sense that the grammar of the language
includes a further rule that a legal break point
is located also at the junction of two component
words. Some languages, on the opposite, treat com-
pound words as if they were a single word. Italian
is one of such languages but the Italian UNI regu-
lation dealing with hyphenation, (UNI 6461, 1969),
does not forbid hyphenation at a compound word
boundary; this is why a word such as “transat-
lantico” (compound with “trans” and “atlantico”)
may be divided either way: tran-sat-lan-ti-co and
trans-at-lan-ti-co. While creating patterns one of
these choices must be coherently selected in order
to treat all compound words in the same way.

In some languages the break point at a com-
pound word boundary might require also a change
of spelling: for example the German word “Bet-
tuch”1 (bed sheet) gets hyphenated in the form
“Bett-tuch”. These situations are not dealt with by
patterns and the language description files must
provide shorthands to handle them.

4.4 Syllabification dictionaries
Some languages are so complicated in their spelling
and/or syllabification rules that it is almost impos-
sible to define any reasonably sized set of rules; it
is therefore impossible to create a reliable set of
patterns so that they provide the greatest part of
the work, without recurse to large exception files
that list the words that do not follow the rules.

One such language is English, at least the Amer-
ican variety; we are aware that British English has
been subjected to a reform in syllabification but we

1. This is the “old spelling” prior to 1996; with the “new
spelling” it is Betttuch.

haven’t seen yet any pattern file that implements
the new standard.

In any case such languages must be treated with
the patgen program (LIANG e BREITENLOHNER,
1991), that is part of the TEX Live and MiKTEX
distributions, together with some of its siblings;
the original patgen was created at the very begin-
ning of the TEX system on purpose, because the
American variety was so complicated that it was
impossible to derive from the grammar rules the
hyphenation patterns.

The patgen solution consists in processing a
large list of already hyphenated words in order to
extract from them a pattern set that minimises
the probability of producing wrong break points;
may be such set might prove to be insufficient to
hyphenate correctly almost any word in the list,
and therefore in the language, but it is better than
nothing. The original Knuthian patterns generated
with patgen had an error rate of about 10%; the
list of exceptions contains some thousands of words,
so that the error rate diminishes significantly but it
is not zero. In the past years the list of exceptions
was added to the format file, so that nowadays it
is difficult but not impossible to get wrong break
points.

One detail that makes it impossible to correctly
hyphenate English words, is that certain homo-
graphs get hyphenated in a different way according
to their pronunciation; take for example “he analy-
ses” and ”the analyses”, where the first “analyses”
string gets hyphenated as a-na-lys-es while the
second one becomes “a-nal-y-ses”. Actually these
break points are those that might be obtained if
both ...hyphenmins were set to 1; actually they
are set by default to 2 and 3 respectively, so that
the actual break points are just ana-lyses and anal-
y-ses. The typesetting engines can “read” the text
but they cannot “pronounce” the words; they work
on spelling, not on sound.

It should be obvious that the quality of the
patterns depends very much on the number of
words contained in the input list to patgen; Frank
Liang started with a list of 25 000 words; eventually
the actual American English patterns are built with
a list of 100 000 words, but the problem shown
in the previous paragraph cannot be solved with
patterns or exception lists; the problem could be

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

9

solved if the typesetting engines contained also a
semantic analysis module for each language, but
this would be too heavy on the typesetting process.

Provided one has available a hyphenated word
list, or is keen to manually hyphenate several myr-
iad words (remember: one myriad contains 10 000
items) it is difficult to create language patterns for
all languages, even those that have clear grammar
rules. We are not discouraging the use of patgen;
we simple underline the difficulties implied with
its use.

4.5 Creating patterns by hand
When clear grammar rules are available, hyphen-
ation patterns may be manually created. I followed
this approach for more than a dozen languages;
I compared my patterns with those that I could
derive by using patgen and generally I found that
I was able with fewer patterns to get a better suc-
cess percentage (close to 100%) compared to that
obtainable with patgen. I would not generalise this
conclusion, but this is what I found out in my
experiments. I agree that with languages such as
English the patgen approach would be the only
affordable.

I created pattern files for a dozen languages
that had all clear and simple rules for syllabifica-
tion; I generally created the patterns so that if the
...hyphenmin parameters are both set to 1, the
hyphenated words are always correct; well, some
people might argue that this is an overstatement;
the point is that I do not consider wrong a word
division that does not contain all possible break
points. The reasoning is that the reader is uncom-
fortable if the break point takes place just after
or just before a vowel that might behave as a
semivowel. In Italian for example the word “paura”
(fear) is grammatically syllabified as pa-u-ra but
I managed that patterns divide it as pau-ra; in
this word the group “au” is a hiatus, because the
vowel “u” is tonic and therefore the vowels don’t
form a descending diphthong so that they may
be grammatically divided; but by doing so, the
reader is uncomfortable. When accents are used
such situations should not take place, but even so
the reader is uncomfortable.

How to create patterns: the simplest way is to
follow a procedure used also by the TEX-hyphen
Team; name with capital letters sets of letters
that have the same behaviour for what concerns
hyphenation; for example O denoting the open or
semi open vowels, C to denote the closed vowels
that may form diphthongs and triphthongs; K to
denote “normal” consonants; L to denote those
consonants that may be appended to the preceding
syllable; and so on.

Write down the grammatical rules in terms of
these classes, i.e. create “macro patterns” in terms
of these classes; then use some external software to
expand such macro patterns to create the patterns

with actual vowels and consonants. You get a large
number of patterns many of them might be super-
fluous, because some combinations do not exist in
a specific language; nevertheless, if a searchable
dictionary file is available for that language, try
to find specific words that contain unusual letter
combinations. Most of the time such words can be
found and one realises that most of those unusual
patterns were not useless. In any case they might
not be part of the normal words of a language
because they are derivatives forms from a foreign
root; therefore some of those unusual patterns are
not to be thrown out.

4.5.1 The Italian example

These foreign roots may give some problems to any
language; grammars of Italian state that any con-
sonant cluster belongs to the syllable that contains
the following vocalic group if and only if there is
another Italian word that starts with that con-
sonant cluster. This works fine most of the time,
but it is an imprecise rule: it should be completed
with the clause of “… Italian word, not of Greek
etymology, that starts with…”. The difficulty for
the user is to know the etymology of every word;
this is why the UNI regulation explicitly specifies
that the groups bd, gm, ps, pn, tm,…, must be
divided between two adjacent syllables. This of
course excludes such groups at the very beginning
of specific words (of Greek etymology) but inter-
feres with compound words containing such words;
“psicologia” is definitely of Greek etymology, but
what do you do with the Italian word “parapsicolo-
gia”? It is necessary to create a special pattern for
words containing the string psic; what to do with
”pneuma” and ”apnea”? It is necessary to do the
same2.

This is why the intelligence of the human be-
ing comes into play to solve these special sit-
uations that require manual intervention. The
same intervention is necessary to handle Ital-
ian words that derive from foreign names such
as “newyorkese”, “maxwelliano”, “wagneriano”,
“massmediologo”, “leishmaniosi”, “lewisite”, “wah-
habbita”, and the list might go on for a long list
of other such words.

Just to remain with Italian as an example, the
few patterns needed to correctly hyphenate all
Italian words without foreign roots (but also many
such mixed etymology words) are shown in code
listing 2.

It is worth noting what follows.

1. The dot that precedes or follows a given pat-
tern marks that it may be used only at the
beginning or, respectively, at the end of a
word.

2. Actually in “apnea” the first “a” is a prefix, therefore some
dictionaries prefer to use the compound word division.

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

10

CODE 2: The 355 patterns needed to hyphenate the Italian language

\patterns{% Pattern start
.a3p2n
.anti1 .anti3m2n
.bio1
.ca4p3s .circu2m1 contro1
.di2s3cine
.e2x1eu
.fran2k3 .free3
.li3p2sa
.narco1
.opto1 .orto3p2 .para1
.ph2l .ph2r
.poli3p2 .pre1 .p2s
.re1i2scr
.sha2re3
.tran2s3c .tran2s3d .tran2s3l .tran2s3n .tran2s3p .tran2s3r .tran2s3t
.su2b3lu .su2b3r
.wa2g3n .wel2t1
2’2
a1ia a1ie a1io a1iu a1uo a1ya
2at.
e1iu e2w
o1ia o1ie o1io o1iu
1b 2bb 2bc 2bd
2bf 2bm 2bn 2bp 2bs 2bt 2bv b2l b2r 2b. 2b’
1c 2cb 2cc 2cd 2cf 2ck 2cm 2cn 2cq 2cs 2ct 2cz
2chh c2h 2ch. 2ch’. 2ch’’. 2chb ch2r 2chn
c2l c2r 2c. 2c’ .c2

1d 2db 2dd 2dg 2dl 2dm 2dn 2dp d2r 2ds 2dt 2dv 2dw 2d. 2d’ .d2
1f 2fb 2fg 2ff 2fn f2l f2r 2fs 2ft 2f. 2f’
1g 2gb 2gd 2gf 2gg g2h g2l 2gm g2n 2gp g2r 2gs 2gt 2gv 2gw
2gz 2gh2t 2g. 2g’

.h2 1h 2hb 2hd 2hh hi3p2n h2l 2hm 2hn 2hr 2hv 2h. 2h’

.j2 1j 2j. 2j’

.k2 1k 2kg 2kf k2h 2kk k2l 2km k2r 2ks 2kt 2k. 2k’
1l 2lb 2lc 2ld 2l3f2 2lg l2h l2j 2lk 2ll 2lm 2ln 2lp 2lq
2lr 2ls 2lt 2lv 2lw 2lz 2l. 2l’. 2l’’

1m 2mb 2mc 2mf 2ml 2mm 2mn 2mp 2mq 2mr 2ms 2mt
2mv 2mw 2m.2m’

1n 2nb 2nc 2nd 2nf 2ng 2nk 2nl 2nm 2nn 2np 2nq 2nr 2ns
n2s3fer 2nt 2nv 2nz n2g3n 2nheit 2n. 2n’

1p 2pd p2h p2l 2pn 3p2ne 2pp p2r 2ps 3p2sic 2pt 2pz 2p. 2p’
1q 2qq 2q. 2q’
1r 2rb 2rc 2rd 2rf r2h 2rg 2rk 2rl 2rm 2rn 2rp 2rq 2rr 2rs
2rt r2t2s3 2rv 2rx 2rw 2rz 2r. 2r’

1s2 2shm 2sh. 2sh’ 2s3s s4s3m 2s3p2n 2stb 2stc 2std 2stf
2stg 2stm 2stn 2stp 2sts 2stt 2stv 2sz 4s. 4s’. 4s’’

.t2 1t 2tb 2tc 2td 2tf 2tg t2h 2th. t2l 2tm 2tn 2tp
t2r t2s 3t2sch 2tt t2t3s 2tv 2tw t2z 2tzk tz2s 2t. 2t’. 2t’’

1v 2vc v2l v2r 2vv 2v. 2v’. 2v’’
1w w2h wa2r 2w1y 2w. 2w’
1x 2xb 2xc 2xf 2xh 2xm 2xp 2xt 2xw 2x. 2x’
y1ou y1i 1z
2zb 2zd 2zl 2zn 2zp 2zt 2zs 2zv 2zz 2z. 2z’. 2z’’ .z2
}% Pattern end

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

11

2. The patterns that involve the letters “j, k, w,
x, y” involve only words with foreign roots,
because in strict Italian they never appear3.

3. The numerous patterns involving the “h” line
deal mostly with foreign root words, because
in Italian the “h” glyph is used more as a
diacritical mark rather than a pronunceable
sound.

4. The fist part of the pattern set concerns only
etymological hyphenation of a few prefixes;
the other prefixed words may be treated as
regular words.

5. The reader can see that, except for a few triph-
thongs, most patterns do not contain vowels;
in this way patterns containing accented vow-
els are unnecessary.

6. The reader also may notice that the above
described scheme of combining the couples of
consonants emerges from the pattern set; the
patterns containing couples that never appear
have been deleted.

7. At the same time the reader may see the dif-
ference of the liquid and nasal consonants “l,
m, n, r” that may remain appended to the
preceding syllable, opposite to the behaviour
of the other consonants.

8. Also the “s” unique property at the beginning
of a consonant cluster, shows that it remains
attached to the cluster, instead of being sepa-
rated as it happens in all other romance lan-
guages.

9. All consonants may be reinforced by doubling;
in this case the first occurrence remains at-
tached to the preceding syllable, at least in
words with Latin etymology.

4.5.2 The Latin case
Latin is an emblematic situation where there are
several variants: modern, medieval, classical, ec-
clesiastic, liturgical, with prosodic marks, and so
on. They differ in the alphabets they use and in
the hyphenation rules; infix words may also be
different or have a different spelling according to
the specific alphabet.

Let us see the main differences.

Modern Latin uses the Latin alphabet; no sur-
prise; but here with Latin alphabet the whole
26 letters alphabet is meant; without the Latin
ligatures æ and œ. No accents are used; mod-
ern Latin hyphenation rules in Italy are very
similar to the Italian ones, but in Germany
they use slightly different rules. It is mainly
used for schoolbooks, grammars and litera-
ture collections, in high schools and partially
in universities. But most important, it is the

3. Actually the letters “k” and “x” may be part of words
of Greek etymology; “j” is an old fashioned spelling for the
semivowel “i”; the five of them appear in neologisms of foreign
origin and in proper names.

official language of the Holy See. It is not the
official language of the Vatican City State, be-
cause its official language is Italian. The Pope
is the monarch of both entities, but the formal
writings signed by the Pope as the Head of
the Roman Catholic Christianity are written
with this Latin variety.

Modern Latin with prosodic marks uses the
macron and the breve diacritical marks and
is used in school grammars and dictionaries;
the length of each vowel is marked as “long”
with the macron, or “short” with the breve; it
helps students when reading the hexametres
and pentametres of the Latin poems.

Medieval Latin uses a shorter alphabet:

aæbcdefghiklmnoœpqrstuyz
AÆBCDEFGHIKLMNOŒPQRSTVYZ

where the Latin ligatures æ and œ more often
than not are contracted to their pronuncia-
tion “e”; the use of “I” and “Y” is generally
inconsistent; I have seen the spellings Italia
and Ytalia; Iesus and Yesus even in the same
text. The only sign “u” was used also for the
consonant “v”, and viceversa for the capital
variant. Actually the differentiation between
the two signs, not only in Latin, took place
by the end of the XII century. It does not
require much, except changing Novembris to
Nouembris, and adding few patterns to the
same pattern file of modern Latin; such pe-
culiar patterns involve “u” just where it plays
the role of a “v”.

Classical Latin uses “u” and “V” the same way
as medieval Latin, but it does not use the
Latin ligatures “æ” and “œ”. Hyphenation is
completely different from the modern and me-
dieval varieties; prefixes and suffixes are pro-
vided breakpoints in terms of etymology, in-
stead of grammatical rules only; “i” and “u”
never play the role of semivowels, therefore
there are no diphthongs; even “ae” and “oe” are
pronounced separately by classical latinists,
but are not divided. The guttural consonants
“c” and “g” remain guttural and never become
palatal sounds; they never form digraphs or
trigraphs as in other variants of Latin. More-
over all words with a Greek etymology are
hyphenated with the Greek rules. As one can
imagine, classical Latin requires a completely
different management, especially with hyphen-
ation, because the inflexional nature of the
language requires not only a strict relation-
ship with etymology but also the analysis of
all the inflected forms of verbs, nouns, and ad-
jectives. The French team that is working on
this problem is doing a beautiful work thanks,
also, to the support of latinist scholars.
The fact that classical Latin does not use the
medieval æ and œ ligatures renders the prob-

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

12

lem of homographs quite more complicated;
for example the inflected form aeris comes
from the nouns aer (air) and aes (bronze);
the first requires to be hyphenated as a-e-
ris, the second as ae-ris; if the second were
written with the diphthong ligature æs, æris
there would not be homographs any more. In
ecclesiastic Latin, on the opposite, the first
one would be spelled aer,…, áeris and, again
there would not be homography any more.

Ecclesiastic Latin is used in clergy texts, such
as missals and breviaries. It is mainly modern
Latin with (acute) accents; such accents are
used to mark the “rhythm” in word pronuncia-
tion. It is done in such a way that clergy of ev-
ery national mother language background and
used to a different rhythmic approach may
pray together pronouncing the same words
with the same stress. The accents are missing
from all words where the stress falls on the
penultimate syllable; nevertheless in view of
uniform pronunciation, the clergy with differ-
ent mother language backgrounds may have
difficulties to perceive the difference between
diphthongs and hiathus, so that if the penul-
timate syllable contains a group of vowels the
tonic one is marked with the accent.
There are very little differences in the infix
words, but accents introduce many complica-
tions in hyphenation, therefore it is necessary
to provide for such differences.

Liturgical Latin is someway between ecclesias-
tic and classical Latin; it is pronounced the
same as ecclesiastic, but it is hyphenated as if
it were classical Latin, with minor variations
due to the fact that the pronunciation is differ-
ent from the classical one. It is mainly used in
liturgical singing; nowadays, that the national
languages are used in all Roman Catholic ser-
vices, Latin remains in use only when singing
the Gregorian plain chant. Matter of fact it is
the GregorioTeX Team that is taking care of
the hyphenation patterns for liturgical Latin.
Meanwhile they revise also the other varieties
of Latin.

German style modern Latin is a variant of
modern Latin. The spelling is the same, but
hyphenation is somewhere between Italian
style modern latin, and classical Latin. Ev-
idently in Germany Latin is taught with a
different approach than in Italy. Possibly the
revision that the GregorioTeX Team is doing
will produce a different set of hyphenation pat-
terns even for modern Latin, so that it is not
excluded that in the future the actual Italian
style hyphenation is replaced by the German
style one.

I can report that at the moment the hyph-
la.tex file contains the patterns for (Italian style)

modern and medieval Latin; prosodic marks are
dealt with special macros defined in the language
description file latin.ldf for babel; they do not
need any particular functionality when using Open-
Type fonts with LuaTEX and X ELATEX. The num-
ber of patterns in the above pattern file amounts
to 334 items. They are valid for both the Italian
style modern Latin and the medieval one.

Just as the patterns for Italian were shown be-
fore, those for modern and medieval Latin are
shown in pattern list 3.

At the moment of writing the patterns for classi-
cal Latin are in file hyph-la-x-classic.tex and
amount to 658 items.

Similarly the patterns for liturgical Latin
are stored in file hyph-la-x-liturgic.tex and
amount to 1730 items. It is not excluded that after
the revision by the GregorioTeX Team both such
patterns files may double in size.

4.5.3 The Greek case
In Greek we have a similar situation as in Latin.
There are some main differences: modern Greek
has two spellings: monotonic and polytonic, but
in spite of their different accent system they have
the same lexicon; modern and ancient Greek are
written in a different alphabet than Latin; modern
and ancient Greek use a lot of diacritics; the lexicon
of ancient Greek is rather different from the modern
one. In facts modern Greek lexicon contains groups
of consonants that never occur in ancient Greek.
Some are special combinations to render sounds
absent from Greek but present in loan words.

The language has inflection for verbs, nouns and
adjectives and the diacritical marks quite often
change and/or do not remain on the same vowel
in the inflected forms.

Hyphenation therefore is further complicated by
the presence of diacritical marks.

But the modern versions of the language follow
simple grammar rules and do not take in consider-
ation prefixes and suffixes. At the time of writing
this document the ...hyphenmin values are both
preset to 1, but many typographers in Greece set
them to 2 and 3.

Modern monotonic Greek is the most used
version of Greek in Greece. The alphabet is the
usual 25 lowercase and 24 uppercase letters:

αβγδεζηθικλμνξοπρσςτυφχψω
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ ΤΥΦΧΨΩ

It uses just two accents, the “tonos” (in prac-
tice the acute accent), and the “dialytika” (the
diaeresis). The tonos is used on the tonic syl-
lable of polysyllabic words, and the dialytica
when it is necessary to split an apparent diph-
thong; sometimes the dialytica and the tonos
fall on the same vowel; all vowels including
iota and upsilon may get the tonos, but the

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

13

CODE 3: The 334 patterns for modern and medieval Latin

\patterns{% Pattern start
.a2b3l .anti1 .anti3m2n .circu2m1 .co2n1iun
.di2s3cine .e2x1 .o2b3
.para1i .para1u .su2b3lu .su2b3r 2s3que. 2s3dem. 3p2sic 3p2neu
æ1 œ1 a1ia a1ie a1io a1iu ae1a ae1o ae1u e1iu io1i o1ia o1ie o1io o1iu uo3u
1b 2bb 2bc 2bd b2l 2bm 2bn b2r 2bt 2bs 2b.
1c 2cc c2h2 c2l 2cm 2cn 2cq c2r 2cs 2ct 2cz 2c.
1d 2dd 2dg 2dm d2r 2ds 2dv 2d.
1f 2ff f2l 2fn f2r 2ft 2f.
1g 2gg 2gd 2gf g2l 2gm g2n g2r 2gs 2gv 2g.
1h 2hp 2ht 2h.
1j
1k 2kk k2h2
1l 2lb 2lc 2ld 2lf l3f2t 2lg 2lk 2ll 2lm 2ln 2lp 2lq 2lr

2ls 2lt 2lv 2l.
1m 2mm 2mb 2mp 2ml 2mn 2mq 2mr 2mv 2m.
1n 2nb 2nc 2nd 2nf 2ng 2nl 2nm 2nn 2np 2nq 2nr 2ns

n2s3m n2s3f 2nt 2nv 2nx 2n.
1p p2h p2l 2pn 2pp p2r 2ps 2pt 2pz 2php 2pht 2p.
1qu2
1r 2rb 2rc 2rd 2rf 2rg r2h 2rl 2rm 2rn 2rp 2rq 2rr 2rs 2rt

2rv 2rz 2r.
1s2 2s3ph 2s3s 2stb 2stc 2std 2stf 2stg 2st3l 2stm 2stn 2stp 2stq

2sts 2stt 2stv 2s. 2st.
1t 2tb 2tc 2td 2tf 2tg t2h t2l t2r 2tm 2tn 2tp 2tq 2tt

2tv 2t.
1v v2l v2r 2vv
1x 2xt 2xx 2x.
1z 2z.
% Additional patterns for medieval Latin
a1ua a1ue a1ui a1uo a1uu e1ua e1ue e1ui e1uo e1uu
i1ua i1ue i1ui i1uo i1uu o1ua o1ue o1ui o1uo o1uu
u1ua u1ue u1ui u1uo u1uu
%
a2l1ua a2l1ue a2l1ui a2l1uo a2l1uu e2l1ua e2l1ue e2l1ui e2l1uo e2l1uu
i2l1ua i2l1ue i2l1ui i2l1uo i2l1uu o2l1ua o2l1ue o2l1ui o2l1uo o2l1uu
u2l1ua u2l1ue u2l1ui u2l1uo u2l1uu
%
a2m1ua a2m1ue a2m1ui a2m1uo a2m1uu e2m1ua e2m1ue e2m1ui e2m1uo e2m1uu
i2m1ua i2m1ue i2m1ui i2m1uo i2m1uu o2m1ua o2m1ue o2m1ui o2m1uo o2m1uu
u2m1ua u2m1ue u2m1ui u2m1uo u2m1uu
%
a2n1ua a2n1ue a2n1ui a2n1uo a2n1uu e2n1ua e2n1ue e2n1ui e2n1uo e2n1uu
i2n1ua i2n1ue i2n1ui i2n1uo i2n1uu o2n1ua o2n1ue o2n1ui o2n1uo o2n1uu
u2n1ua u2n1ue u2n1ui u2n1uo u2n1uu
%
a2r1ua a2r1ue a2r1ui a2r1uo a2r1uu e2r1ua e2r1ue e2r1ui e2r1uo e2r1uu
i2r1ua i2r1ue i2r1ui i2r1uo i2r1uu o2r1ua o2r1ue o2r1ui o2r1uo o2r1uu
u2r1ua u2r1ue u2r1ui u2r1uo u2r1uu
}% Pattern end

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

14

last two ones can get the dialytica or both
diacritical marks.

Modern polytonic Greek uses the same lexi-
con of monotonic Greek but uses the full set of
accents as ancient Greek, that is acute, grave
and circumflex, plus three diacritical marks:
the smooth breath, the rough breath and the
dialytica; they may be combined in couples,
therefore there are 15 different combinations
(not available on all vowels, but some vowels
may have that full variety of diacritical marks).
It is obvious that hyphenation becomes very
complicated, but at least hyphenation follows
simple grammar rules.

Ancient Greek of course uses the ancient lex-
icon; it uses the same diacritical marks as
modern polytonic Greek, plus the iota sub-
scripted or adscripted. Hyphenation is further
complicated since break points must take into
consideration prefixes and suffixes.

The use of a different alphabet sets forth some
problems with fonts. As it is well known pdfLATEX
handles only fonts the glyphs of which are coded
with just one byte. On the opposite, LuaLATEX and
X ELATEX use OpenType fonts that may contain
glyphs for dozens of languages and require the
Unicode encoding that is a multibyte one. Two
different approaches are therefore required for such
different typesetting engines.

For pdfLATEX it is necessary to use specially
coded Greek fonts where each glyph has a one byte
address, while with OpenType fonts LuaLATEX and
X ELATEX can fetch the glyphs they need directly
from the many alphabets coded in those fonts with
their multibyte encoding; but, caution: not all fonts
contain the Greek script (in particular the Open-
Type Latin Modern default fonts), therefore it is
important to check that the desired font contains it.

With pdfLATEX a Local GReek (LGR) encoding
is defined so that with a regular Latin keyboard
it is possible to write Greek using a Latin translit-
eration; with OpenType fonts it is possible to en-
ter the Greek text directly in Greek without any
transliteration. Actually the greek.ldf language
description file (for babel) uses a LICR (LaTeX
Internal Character Representation) technique such
that also with pdfLATEX it is possible to enter Greek
text in Greek. The problem, therefore, is not the
input text, but the keyboard itself. Often modern
computers have available a virtual keyboard to be
acted upon with the mouse or by tapping a touch-
screen, so that a real keyboard is now relatively
superfluous.

In any case the LGR encoding maps the Latin
characters to the Greek ones as shown in table 4.
The various diacritical marks are prefixed to the
letters, except the iota sub- or ad-scripted, that
follows the letter; they are represented by the ASCII
chracters ‘ ’ > < ” | (respectively for grave,

TABLE 4: Mapping of the Latin alphabet to the Greek one

abcdefghijklmnopqrstuvwxyz
αβςδεφγηιθκλμνοπχρστυ ωξψζ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ΑΒ ΔΕΦΓΗΙΘΚΛΜΝΟΠΧΡΣΤΥ ΩΞΨΖ

acute, circumflex, soft breath, rough breath, di-
aeresis, iota sub- or ad-scripted); they may also be
paired; they do not need macros, but if macros are
used a better kerned text is obtained and hyphen-
ations should work better (but see below); therefore
one can enter a transliterated text as a>ut~h| or
a\>ut\~h| where the second input form is recom-
mended; but, if a Greek real or virtual keyboard
is available, it is possible to enter directly αὐτῇ.
The internal LICR character representation fetches
directly the marked letters and uses the correct
kernings.

But all this influences the hyphenation patterns;
at the moment of writing the patterns to be in-
cluded into the format file for pdftex work only
with the Latin transliteration. With X ELATEX there
are no problems when the user specifies the Greek
language and optionally selects one of its variants;
with LuaLATEX at the moment only the hyphen-
ation for modern monotonic Greek is available;
further on it will be shown a patch in order to
extend the functionality of LuaLATEX in connection
with the varieties of Greek (of course, it is not nec-
essary to patch anything if meanwhile the patch
we suggested to the maintainers has already been
applied).

With pdfLATEX and its Latin transliteration, the
Latin “v” key is not useless: it types an invisible
strut character just as high as lowercase letters in
order to have something to put diacritics on; it is
more a service trick; it is used also to hide the ac-
tual word termination in order to type an isolated
σ; in facts the ligature mechanism embedded into
the LGR encoded Greek fonts is so strong that
typing “s” at the end of a word gets transformed
into a final sigma ς, so that non Greek users do
not have to remember to insert “c” at the end of
the words when using the Latin transliteration.

All these peculiarities imply a complicated pat-
tern file; at the moment of writing this paper the
existing pattern files to be used with pdfLATEX
work correctly only with Latin transliteration, not
when the LICR codes or the direct Greek script
input are used. To be precise, they do work also
in these situations but, when accented glyphs are
encountered, some break points may be missing.

The pattern files presently available when using
pdfLATEX were prepared by Dimitri Filippou sev-
eral years ago, when only the Latin transliteration
was available. I tried to upgrade those patterns,
but without a specific testing made by actual Greek
writers, I can’t upload such new pattern files. In

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

15

the pattern list 5 I show these patterns for the
monotonic variety; those for the polytonic and an-
cient varieties are too long to be shown here. In
any case neither the patterns of table 5 (shown just
to underline the special codes that are needed to
identify the single byte 8-bit codes, from 128 to 255
in the LGR encoding) nor those for the polytonic
variety is yet publicly available. Dimitri Filippou
already provided the patterns for the three vari-
eties to be used with LuaLATEX and X ELATEX, but
nothing has been done to update the situation
with pdfLATEX; it is understandable: with the avail-
ability of X ELATEX and LuaLATEX, the importance
of pdfLATEX is strongly diminished for the Greek
users.

The modification consists in replicating the pat-
terns that involve ligatures between diacritics and
vowels by replacing the accent-vowel pair with the
upper half address of the LGR encoding; to do
this it is necessary to code such letters with their
double caret notation hexadecimal address; this
means that the two (lowercase) characters that
follow a couple of carets ^^, form the hexadecimal
address of the accented character; this is clearly
evident in the seven lines that follow the comment
vowels. The vowels iota and upsilon can receive
the tonos alone, the dialytika alone, and both the
dialytika and tonos.

Most of the patterns that are included in the pat-
tern list 5 come from the pattern file grmhyph5.tex
created by Dimitri Filippou; the upper half ad-
dresses of the LGR encoded Greek fonts have been
added, and a very small number of consonant pat-
terns has been added in order to handle a certain
number of particular words, especially loan words
from foreign languages and/or toponyms.

For modern polytonic and ancient Greek pat-
terns the one byte situation is similar but it is
much more complicated because of the multitude
of diacritical marks and in both variants the inflec-
tion may move and/or change the accents, so that
the number of patterns may be to six times larger
than for monotonic modern Greek.

When using X ELATEX and LuaLATEX Dimitri
Filippou created the hyph-grc.tex for ancient
Greek that contains about 2000 patterns in
Greek script. He also coded Greek patterns
in Greek script for monotonic and polytonic
Greek; their names are hyph-el-monoton.tex and
hyph-el-polyton.tex.

4.5.4 General considerations
From the above it may seam that preparing pattern
files requires an excellent ability in using “strange”
codes; but it is not that difficult, since anybody
with a good deal of patience and attentions can
do the coding. The difficult part is to have a good
knowledge of the language in order to extend the
initial codes set forth by some scripting language,
say Python or Java, to perform all the combina-

tions required by the “macro patterns” discussed
above. The pattern creator must be aware of the
multitude of exceptions to the general rule with-
out needing to create also the list of exceptions;
for American English the TUGboat editor, Bar-
bara Beeton, has been in charge of collecting and
maintaining the list of exceptions that cannot be
handled by the various pattern sets available for
US English. But, as it has already been emphasised,
American English has so many and “strange” rules
that it is virtually impossible to manually create
any set of patterns, so that recourse to patgen is
the only practicable way to do the job. In any case
with or without patgen homographs remain a big
problem.

It is worth noting that there are some lan-
guages, especially typeset with other scripts, that
do not use hyphenation; oriental languages that
use ideographs do not hyphenate anything; their
line breaking is on word boundaries or “anywhere”.
Arabic scripts do not use hyphenation but pro-
duce justified texts by horizontally stretching the
“kashida”, a curved line that decorates the ending
forms of most letters.

5 The language description file
Hyphenation by itself is a necessary part while
managing typesetting in different languages. Never-
theless some typesetters prefer typesetting ragged
right; others produce block justification avoiding
hyphenation of any kind; in order to avoid white
meandering lines through the text, due to wide in-
ter word spaces, they use tracking, that consists in
enlarging the space between characters. For most
book designers slight tracking is something to be
used only when typesetting in all caps and/or small
caps. With regular lowercase letters, with or with-
out serifs, they claim that those who use tracking
should be treated as those who steal sheep; this
very strong sentence is understandable if one re-
calls that in the past centuries sheep thieves used
to be condemned to death by hanging.

Instead of tracking, the best way to reduce to a
minimum the number of hyphenated line breaks
consists in using the microtype package. The TEX
system typesetting engines follow an algorithm
that minimises the badness of each paragraph;
this is not the right place to discuss the details,
but every LATEX user knows how well paragraphs
typeset by these programs are done. In any case
package microtype does a very fine work in further
improving this paragraph typesetting excellency.

The best results are obtained with pdfLATEX
and LuaLATEX by applying two techniques: pro-
trusion and character expansion. Protrusion lets
small parts of the first and the last characters in a
line to protrude in the adjacent margin. Charac-
ter expansion consists in very slight stretching or
shrinking of all the characters in a line so as to ren-

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

16

CODE 5: The extended list of monotonic Greek hyphenation patterns for use with pdfLATEX

\patterns{% Pattern start
%%%% vowels
a1 ^^881
e1 ^^e81
h1 ^^a01
i1 ^^d01 ^^f21 ^^f01
o1 ^^ec1
u1 ^^f61 ^^f41 ^^d41
w1 ^^b8
%%%%
a2i a2’i a2^^d0 a2u a2’u a2^^d4 ’a3u ^^883u
e2i e2’i e2^^d0 e2u e2’u e2^^d4 ’e3u ^^e83u
h2u h2’u h2^^d4 ’h3u ^^a03u
o2i o2’i o2^^d0 o2u o2’u o2^^d4 ’o3u ^^ec3u
u2i u2’i u2^^d0 ’u3i ^^d43i
%%%%
a2h ’a3h. ^^883h. a2”i a2^^f0 ’a3i. ^^883i. a2”u a2^^f4
e2”i e2^^f0 e2”u e2^^f4 o2ei o2h ’o3h. ^^ec3h. o2”i o2^^f0 ’o3i. ^^ec3i.
%%%%
i2a i2’a i2^^88 i2e i2’e i2^^e8 i2o i2’o
o3”i3’o o3^^f03^^ec
i2w i2’w i2^^b8 .i3 ’i3
h2a h2’a h2^^88 h2e h2’e h2^^e8 h2o h2’o h2^^ec h2w h2’w h2^^b8 .h3 .’h3 .^^a03
u2a u2’a u2^^88 u2o u2’o u2^^ec u2w u2’w u2^^b8 .u3 .’u3 .^^d43
%%%%
4b. 4g. 4gk. 4d. 4z. 4j. 4k. 4l. 4m. 4mp. 4n. 4nt. 4x. 4p. 4r.
4s. 4c. 4t. 4tz. 4ts. 4tc. 4f. 4q. 4y.
%%%%
4’’ 4b’’ 4g’’ 4gk’’ 4d’’ 4z’’ 4j’’ 4k’’ 4l’’ 4m’’ 4mp’’
4n’’ 4nt’’ 4x’’ 4p’’ 4r’’ 4s’’ 4t’’ 4tz’’ 4ts’’ 4f’’ 4q’’ 4y’’
%%%%
.b4 .g4 .d4 .z4 .j4 .k4 .l4 .m4 .n4 .x4 .p4 .r4 .s4 .t4 .f4 .q4 .y4
%%%%
4b1b 4g1g 4d1d 4z1z 4j1j 4k1k 4l1l 4m1m 4n1n 4p1p 4r1r
4s1s 4t1t 4f1f 4q1q 4y1y
%%%%
4b1z 4b1j 4b1k 4b1m 4b1n 4b1x 4b1p 4b1s 4b1t 4b1f 4b1q 4b1y
4g1b 4g1z 4g1j 4g1m 4r5g2m 4g1x 4g1p 4g1s 4g1t 4g1f 4g1q 4g1y
4d1b 4d1g 4d1z 4d1j 4d1k 4d1l 4d1x 4d1p 4d1s 4d1t 4d1f 4d1q 4d1y
4z1b 4z1g 4z1d 4z1j 4z1k 4z1l 4z1m tz2m 4z1n 4z1x 4z1p 4z1r 4z1s 4z1t 4z1f 4z1q 4z1y
4j1b 4j1g 4j1d 4j1z 4j1k 4j1m 4r5j2m sj2m 4j1x 4j1p 4j1s 4j1t 4j1f 4j1q 4j1y
4k1b 4k1g 4k1d 4k1z 4k1j 4k1m 4l5k2m 4r5k2m 4k1x 4k1p 4k1s 4k1f 4n5k2f 4k1q 4k1y
4l1b 4l1g 4l1d 4l1z 4l1j 4l1k 4l1m 4l1n 4l1x 4l1p 4l1r 4l1s 4l1t 4l1f 4l1q 4l1y
4m1b 4m1g 4m1d 4m1z 4m1j 4m1k 4m1l 4m1x 4m1r 4m1s 4m1t 4m1f 4m1q 4m1y
4n1b 4n1g 4n1d 4n1z 4n1j 4n1k 4n1l 4n1m 4n1x 4n1p 4n1r 4n1s 4n1f 4n1q 4n1y
4x1b 4x1g 4x1d 4x1z 4x1j 4x1k 4x1l 4x1m 4x1n 4x1p 4x1r 4x1s 4x1t 4g5x2t 4r5x2t 4x1f 4x1q 4x1y
4p1b 4p1g 4p1d 4p1z 4p1j 4p1k 4p1m 4p1x 4p1s 4p1f 4p1q 4p1y
4r1b 4r1g 4r1d 4r1z 4r1j 4r1k 4r1l 4r1m 4r1n 4r1p 4r1s 4r1t 4r1f 4r1q 4r1y
4s1d 4s1z 4s1n 4s1x 4s1r 4s1y
4t1b 4t1g 4t1d 4t1j 4t1k 4t1n 4t1x 4t1p 4t1f st2f 4t1q 4t1y
4f1b 4f1g 4f1d 4f1z 4f1k 4f1m 4f1n 4r5f2n 4f1x 4f1p 4f1s 4f1q 4f1y
4q1b 4q1g 4q1d 4q1z 4q1k 4q1m 4r5q2m 4q1x 4q1p 4q1s 4q1f 4q1y
4y1b 4y1g 4y1d 4y1z 4y1j 4y1k 4y1l 4y1m 4y1n 4y1x 4y1p 4y1r 4y1s 4y1t 4m5y2t 4y1f 4y1q
%%%%
4g5k2f 4g1kt 4m1pt 4n1tz 4n1ts
%%%%
4br. 4gl. 4kl. 4kt. 4gkc. 4gks. 4kc. 4ks. 4lc. 4ls.
4mpl. 4mpn. 4mpr. 4mc. 4ms. 4nc. 4ns. 4rc. 4rs.
4sk. 4st. 4tl. 4tr. 4ntc. 4nts. 4ft. 4qt.
%%%%
4gk1mp 4gk1nt 4gk1tz 4gk1ts 4mp1nt 4mp1tz
4mp1ts 4nt1mp 4ts1gk 4ts1mp 4ts1nt
}% Pattern end

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

17

der more homogeneous the inter word spaces. The
results are visible in this very document, where the
narrow columns still require some hyphenated line
breaks but the inter word spaces do not let any
meandering rivulets appear trough the paragraphs.
X ELATEX cannot use character expansion, but even
by using only protrusion it does a fine work.

The choice of using microtype may be one of
the tasks assigned to the language description files.
The interested reader can examine the babel docu-
mentation BRAAMS e BEZOS (2018) that describes
a model or a template for creating language de-
scription files; here we summarise the tasks that
are generally assigned to such files.

Any language description file should do the fol-
lowing.

1. It makes sure the file is read just once.
2. It examines the presence of options, language

modifiers and similar user choices in order to
execute the proper settings.

3. For the language it describes, or for a language
variant, it controls if suitable hyphenation pat-
tern files have been loaded in the format file
or can be loaded at run time (only LuaLATEX).
If no patterns are available a suitable set of
alternate patterns are chosen; very often the
default US English patterns are selected; some-
times those of another language; sometimes
those of the “pseudolanguage” nohyphenation
so that the almost empty, patternless file
zerohyph.tex is loaded.

4. It checks if the \captions〈language〉 macro
is defined or if the infix word macro defi-
nitions should be let equivalent to similar
macros for another variant of the language.
The above macro contains the definitions of
“name” macros that contain the infix words
such as “Chapter”, “Table of contents”, and the
like. In this way the LATEX kernel macros or
the class macros use such “name” macros with-
out the need to have different definitions for
each language; these different definitions are
necessary, but are included in each language
definition file.

5. It defines how to set the date; in particular
it redefines the macro \today to adapt its
format and month name to the specific lan-
guage. Everybody knows that even in English
the American-style date follows the format
“〈month〉 〈day number〉, 〈year〉”, while the
British style follows the format “〈day number
with ordinal suffix〉 〈month〉 〈year〉”. Other
languages may follow different formats. The
Scandinavian countries use the numerical ISO
format “〈year〉-〈month〉-〈day〉”; others may use
their ordinal suffixes and prepositions before
the month name and/or year number. In ad-
dition some languages may require other date
formats, such as the roman numbering or other

kinds of numbering. Historical eras generally
are omitted, since the current era is assumed;
but some languages accept negative year num-
bers so that special macros have to be created
for them.

6. Some languages require shortcuts in order to
perform frequent tasks; for this purpose they
generally use active characters to be defined
as it is necessary for any specific task. Active
characters are of category 13. The most com-
mon one is the tilde, “~”, that is a LATEX kernel
specific command used to insert a non break-
able space between two words; it is generally
named “tie”. Most languages define other ac-
tive characters, the most frequent of which
is the straight double quote ”; but according
to the specific needs of each language other
active characters may be necessary. In French
the “high” punctuation marks are defined as
active characters in order to automatically
insert an unbreakable space before the regu-
lar punctuation glyphs; similarly an unbreak-
able space is necessary after open guillemets4
and before closed guillemets. In Italian such
spaces indadvertedly inserted in the source
file must be eliminated. In ecclesiastic Latin
such guillemet spaces are optional, but if used
they must have a thinner unbreakable space
than in French. In German quotation marks
are different from those used in other western
languages and require special shortcuts.
The actual German shortcuts are shown in
table 6 that replicates the table contained in
the ngerman.ldf file.

7. Some languages define also characters that
are active only in math mode; in Italian, for
example, the comma is optionally defined in a
specific way so that in math mode it recognises
if it is followed by a digit, so as to behave
as a decimal separator, else it behaves as a
punctuation mark.

8. Other settings may be optionally activated
or deactivated at user command; fore exam-
ple, when typesetting Latin text, prosodic
marks can be turned on or off with the
specific user commands \ProsodicMaksOn
and \ProsodicMarksOff. In Italian even the
straight double quotes can be activated or
deactivated.

9. In any case each language definition file has
to activate its macros and general settings,
because the situation must be restored upon
changing language.

10. All language definition files for babel must be
pure ASCII texts; no accented characters are
allowed, because the file must be “encoding

4. The babel documentation uses the french word guillemet,
but the code uses commands such as \guillemotleft and
\guillemotright.

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

18

TABLE 6: Shortcuts defined for the German Language with the new orthography

”a Umlaut 〈ä〉 (shorthand for \”a). Similar shorthands are available for all other lower- and
uppercase vowels (umlauts: ”a, ”o, ”u, ”A, ”O, ”U; tremata: ”e, ”i, ”E, ”I).

”s German 〈ß〉 (shorthand for \ss {}).
”z German 〈ß〉 (shorthand for \ss {}). Differs to ”s in uppercase version.
”S \uppercase {”s}, typeset as 〈SS〉(〈ß〉 must be written as 〈SS〉 in uppercase writing).
”Z \uppercase {”z}, typeset as 〈SZ〉. In traditional spelling, 〈ß〉 could also be written as 〈SZ〉

instead of 〈SS〉 in uppercase writing. Note that, with reformed orthography, the 〈SZ〉 variant
has been deprecated in favour of 〈SS〉 only.

”| Disable ligature at this position (e. g., at morpheme boundaries, as in Auf”|lage).
”- An additional breakpoint that does still allow for hyphenation at the breakpoints preset in the

hyphenation patterns (as opposed to \-).
”= An explicit hyphen with a breakpoint, allowing for hyphenation at the other points preset

in the hyphenation patterns (as opposed to plain -); useful for long compounds such as
IT”=Dienstleisterinnen.

”~ An explicit hyphen without a breakpoint. Useful for cases where the hyphen should stick at the
following syllable, e. g., bergauf und ”~ab .

”” A breakpoint that does not output a hyphen if the line break is performed (consider parenthetical
extensions as in (pseudo”~)””wissenschaftlich).

”/ A slash that allows for a line break. As opposed to \slash {}, hyphenation at the breakpoints
preset in the hyphenation patterns is still allowed.

”‘ German left double quotes 〈„〉.
”’ German right double quotes 〈“〉.
”< French/Swiss left double quotes 〈«〉.
”> French/Swiss right double quotes 〈»〉.

neutral”. This is true even for LGR encoded
Greek fonts, where the specific LICR macros
must be used to spell the infix Greek words.
The situation is different for polyglossia be-
cause this package works only with LuaLATEX
and X ELATEX that can use OpenType fonts in
order to manage many different scripts and
certainly also non-ASCII glyphs.

We describe a language definition file prepared
for polyglossia and an unusual language: Occitan.
This choice is just to show a possible situation to
face when a user has to deal with a rare language;
there are dozens of minority languages that might
be the object of essays or linguistic research. Of
course the linguist who is doing research in this field
must know the minority langue s/he is research-
ing on, therefore s/he should not have difficulties
creating the pattern files and even less difficulty
creating the relative language description file.

5.1 The Greek case with LuaLATEX
The differences between LuaLATEX and the other
typesetting programs consist mainly in the fact
that pattern files are loaded at run time, and only
for the languages explicitly named through the calls
by the \setmainlanguage, \setotherlanguages,
and \setotherlanguage in the preamble of the
main source file. In the past it used to be impossible
to load different pattern files for the language vari-
ants, at least if was difficult and no user commands
were available. The gloss-greek.ldf language de-
scription file worked correctly with polyglossia when

the document was typeset with X ELATEX, but could
not correctly work with LuaLATEX.

Recently the package luahyphenrules (BEZOS,
2016) was added to the TEX Live distribution.
By means of this package it is possible to let
LuaLATEX behave as X ELATEX by loading at run
time the pattern files for the referenced languages
and their variants as they are listed in the ser-
vice file language.dat used by X ELATEX; there-
fore even LuaLATEX, by using this package, has
available the hyphenation pattern files for all
variants of Greek. I therefore created for myself
a patched gloss-greek.ldf that contains such
enhancement; the patch is discussed further on.
Please remember, though, that the greek lan-
guage name is used in the \setmainlanguage and
\setotherlanguage mandatory arguments, while
in the language changing specific commands the
name used in the \HyphenRules argument must
be used to refer to a specific variant; therefore in
a document body written in English, a Greek ci-
tation in ancient Greek requires the Greek text to
be enclosed in a normal greek environment, but
within its body any command that refers to the
language should use the ancientgreek argument,
as it it shown with code 7.

The patch shown starting on page 20 is relatively
simple and certainly should be improved. Notice
that the code contained between the lines that
mark the start and end of the pack are partially
additions (from lines 19 to 40) and partially mod-
ifications of some existing code in the unpatched

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

19

CODE 7: The document to test the patched gloss-greek.ldf

1 % !TEX encoding = UTF-8 Unicode
2 % !TEX TS-program = LuaLaTeX
3

4 \documentclass[12pt]{article}
5

6 \usepackage{fontspec}
7 \setmainfont{CMU Serif}
8

9 \usepackage{polyglossia}
10 \setmainlanguage{italian}
11 \setotherlanguage{english}
12 \setotherlanguage[variant=ancient]{greek}
13

14 \begin{document}
15 \begin{otherlanguage}{greek}
16 Language: \the\language\ \languagename
17 \iflanguage{ancientgreek}{\ αὐτῇ}{}
18 \end{otherlanguage}
19

20 \end{document}

gloss-greek.ldf file. The dots in line 102 repre-
sent the remaining untouched part of the original
gloss-greek.ldf file.

The name of the modified file remains the same,
because polyglossia reads that very file for that
language; in order to avoid conflicts this file may
be saved in the personal texmf tree, so that the
typesetting languages find this personal copy with
precedence to the standard one; as mentioned in
this paper, this personal copy should be renamed
or deleted if and when a new release of official one
contains a similar or better functionality.

The patch may exhibit innocuous error messages,
but I always got out the correctly typeset document.
I tested this patch with the document shown in the
code listing 7 with both LuaLATEX and X ELATEX (with
an “intelligent” shell editor capable to interpret the
autoconfiguration initial comments, this amounts to
change the prefix Lua with Xe in line 2 of the code
shown in the code listing 7), by replacing the option
ancient with poly or mono, and, correspondingly,
by replacing the language name ancientgreek with
polygreek or monogreek in line 17. If in line 15
the environment otherlanguage argument is set to
italian or english the current language number
and name is printed, but the Greek word is omitted.
The attentive reader who is going to test the given
code will notice that with both typesetting engines
the language number for english is always 0 (zero),
while for the other languages the number shown when
using X ELATEX is one unity lower than that shown
when using LuaLATEX; it is not an error, but it is
implicit in the background macros that are being
used to do the job; this is not the right place to
discuss such details.

5.2 The Occitan language description file
for polyglossia

Let us comment the code shown in appendix B.
Lines 1 and 2 contain the usual incipit that
every file should have; language definition files
for babel have the almost equivalent statement
\ProvideLanguage.

Lines from 3 to 9 contain the general settings
for the language, in particular the parameters
hyphenmins whose values represent the minimum
lengths of the first and respectively the last word
fragments when hyphenation can take place. The
boolean flag frenchspacing set to true abolishes
the different space factor to use for the full stop
and the other “high” punctuation marks (as it is
customary in English, but not in French and many
other languages). The other boolean parameter
indentfirst set to true requires that also the
first paragraph of a sectional unit is indented as
the paragraphs that follow it. Finally the boolean
flag fontsetup set to true allows polyglossia to
associate a specific font to a specific language.

Line 10 authorises to use and define those babel
commands that define shorthands (shortcuts) for
this specific language. Lines 12 to 16 load the
specific babel module to define shorthands.

From line 21 to line 31 the straight double quote
character is defined active and is given the main
definition to distinguish its role in math vs text
mode. Some service macros and the specific al-
ternatives that the active character can execute,
together with the macro to turn the active char
off, are defined in lines 32 to 62.

From line 63 to line 85 the infix names are
defined; since this code is to be used with
polyglossia, accented characters are freely used.
The Occitan date requires a special way to prefix
month names and to write day numbers; actually
the cardinal number 1 is substituted with its
ordinal numeral, while the other day numbers are
typeset with digits.

From line 76 to the end of the file there are the
“housekeeping” macros to be executed when the
language is set and when it is reset. Notice the
reference to the two byte code point ”2019 that
refers to the apostrofe; when setting Occitan the
apostrophe is given its specific address, a positive
number, as the lower case code, so that it is treated
as a legal word character; when resetting its lccode
is given the value zero (\z@ stands for 0).

5.3 The Cimbrian language definition file

Let us assume that a philologist/linguist wants to
write an essay on the Cimbrian language. This is a
(rare) germanic language spoken in northern Italy
by a small community estimated to two thousand
people; of course this number is below the critical
mass, so that UNESCO classifies it as an endan-
gered language (WIKIPEDIA, 2018). It is reasonable

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

20

that linguists would like to record its lexicon, its
pronunciation, its grammar, and so on. A sample
of Cimbrian, at least one of its varieties, taken from
WIKIPEDIA (2018), is shown in page 22 together
with its German and English translations.

But in order to use the TEX system programs
our linguist should create the necessary equipment
for typesetting anything in Cimbrian. Therefore
he has to create the Cimbrian pattern file, and the
Cimbrian language description file.

In a first step our linguist could concentrate
on the language description file. The model of-
fered from the Occitan file can be used; all occur-
rences of the string occitan should be changed
to cimbrian and the short string oc appearing in
some macros should be changed to cim; accord-
ing to the ISO 639-3 regulation, cim is the official
letter code for this language. Our linguist should
not have any problems replacing the Occitan infix
words and the date strings in order to comply with
the Cimbrian language. He should pay attention
to the apostrophe, possibly specifying the same
settings used for Occitan.

But missing a Cimbrian pattern file, our
linguist could temporarily specify among
the \PolyglossiaSetup command arguments
hyphenation = germanb; after all Cimbrian is a
far relative of German. The short Cinmbrian text
in page 22 has been typeset with the German hy-
phen patterns and apparently none of the few line
breaks appears to be wrong. In his experiments at
the beginning he will find wrong hyphen points,
but while experimenting with various texts he
collected from the local Cimbrian speaker area, he
might classify a certain number of corrections to
add to the German patterns. He therefore copies
the hyph-de-1901.txt or hyph-de-1996.txt file
to a new file hyph-cim.txt (the .txt extension
is specific for LuaLATEX); he will replace the
prologue of the file with suitable information and
licence statement. He will gradually replace or add
new patterns according to the rules specified in
previous sections and such that the hyphenation
errors in his Cimbrian text vanish.

In order to speed up this work our linguist is
recommended to use the testhyphens package (BEC-
CARI, 2015). He creates himself a working directory,
say, CimbrianTestFolder, where he saves the above
named hyph-cim.txt new file. In this directory
he creates and saves the following source .tex file,
naming it, say, TestCimbrianHyphens.tex:

% !TEX TS-program = LuaLaTeX
% !TEX encoding = UTF-8 Unicode
\documentclass[12pt]{article}
\usepackage{fontspec}
\defaultfontfeatures{Ligatures={NoCommon,
NoDiscretionary, NoHistoric, NoRequired,
NoContextual}}
\setmainfont{CMU serif}

\usepackage{luacode}
\usepackage{testhyphens}
\usepackage{multicol}

\begin{luacode}
local patfile = io.open(’./hyph-cim.txt’)
langobject = lang.new()
lang.patterns(langobject, patfile:read(’*all’))
patfile:close()
\end{luacode}

\language=%
\directlua{tex.sprint(lang.id(langobject))}

\begin{documment}

Language \the\language

\begin{multicols}{2}
\lefthyphenmin=3
\righthyphenmin=2
\lccode‘\’=\‘\’ % possibly needed

% to handle apostrophes
\begin{checkhyphens}
% Cimbrian word list
...
\end{checkhyphens}
\end{multicols}

He will change the values of the ...hyphenmin
macros to the values he thinks to be adequate to
the Cimbrian language; the numbers shown are
the most widely used among the more than eighty
languages dealt with by the TEX system. He will
delete the comment line % Cimbrian word list
and the line of dots that immediately follows, and
replace them with a list of Cimbrian words; for
example the words that form his quoted Cimbrian
texts; for his convenience he will copy his whole
text and globally put after each inter word space a
new line character so as to have one word followed
by one space per line; he will resort to a suitable
text editor that can sort the words; in the worst
case he can use a command line command to sort
the file lines. By so doing he can easily delete
duplicate words.

At this point he processes the document with
LuaLATEX. The program loads the specified pat-
tern file and the specified packages and produce
the PDF output file. The format is a two column
document containing all the input words, one per
line, fully hyphenated. In this way it is very easy
to control the result, find possible errors, correct
the hyph-cim.txt file accordingly, and restart the
process.

When there will be no more errors our linguist
finds another Cimbrian text, adds it to the word
list; sorts the words one per line, eliminates the
duplicates and restarts the process.

There is some work to do, but having available
a decent number of Cimbrian texts, the process
may last few hours in total; it requires a lot of
intelligence in order to analyse every hyphenated
word so as to decide if the hyphens are correct;

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

21

Cimbrian
Pan khriage dar forte vo Lusern
hat se gebeart gerecht. Di earstn
tage von khriage, dar komman-
dant a Tschechoslowako hebat in
forte gebelt augem un hat ausge-
zoget di bais bandiara un is von-
gant pin soldan. A trunkhantar
soldado alua is no gestant sem
in forte. Bia da soin zuakhent di
Balischan zo giana drin in for-
te, is se darbkeht dar trunkhante
soldado un hat agehevt z’schiasa.

German
Während des Krieges wehrte sich
die Festung von Lusern vortreff-
lich. Die ersten Tage wollte sie
ein tschechischer Kommandant
aufgeben, indem er die weiße
Fahne hisste und mit der Besat-
zung abzog. Nur ein betrunkener
Soldat blieb zurück in der Fes-
tung. Als die anstürmenden Ita-
liener in die Festung eindringen
wollten, um sie in Besitz zu neh-
men, erwachte der betrunkene
Soldat von seinem Rausch und
fing an, das Maschinengewehr
knattern zu lassen.

English
During the war, the fort of
Lusern resisted superbly. In the
first few days a Czech comman-
der wanted to give up, hoist-
ing the white flag and with-
drawing the garrison. Only one
drunken soldier remained in the
fort. When the Italians came
storming into the fort to occupy
it, the drunken soldier awoke
from his intoxication and began
to let the machine gun rattle.

in case they are not, intelligence comes again to
rescue to decide which patterns to correct or which
new patterns to add to the pattern file.

Once the work is done our linguist is very satis-
fied; he can write his paper in/on Cimbrian, but
as a LATEX user he feels necessary to share his
work with other TEXies. He therefore sends his
hyph-cim.txt file to the TEX-hyphen Team. On
turn the Team processes the file, transforms it to
the other formats needed by pdfLATEX, X ELATEX
and pLATEX (the version that is used in Japan to
handle Japanese fonts but also for writing texts in
western languages on any subject); the Japanese
TEXies are very active in every discipline and may
be interested even in studying minority European
languages. The Team provides also to edit the
various service macros necessary to configure the
format file initialisation; not only, but they main-
tain the whole procedure running smoothly for the
benefit of the whole community.

6 The service files
Anyone who creates pattern files and/or language
description files does not need only a structure to
test the patterns as described above. That person
probably wants to use those files for his/her docu-
ments. Therefore s/he has to install those files so
as to make them visible to the TEX system even
before the Teams working at TUG installs them
in an update for the general TEX user community.

It is therefore time to use a personal TEX di-
rectory tree. With TEX Live this tree is rooted
in the user $HOME directory, where that symbol
means different things with different operating sys-
tems: for Linux platforms it is ~/; for Mac it is
~/Library/; for recent Windows operating systems
it is C:\Users\〈username〉\. The tree base direc-
tory is named texmf and its ramification should be
a subset of the main TEX system tree one; therefore
it has a ramification such as tex/latex/ to which
another directory such as MyTeXLiveFiles may be
added. This directory shall contain the language

description files; with the TEX Live installation it
is not necessary to update the file name database.

Things are more complicated with pattern files;
they should be saved into other branches of the
personal tree, but the really important files are the
language-local.dat, language-local.def, and
language-local.dat.lua ones; such files must
contain only the personal additions or deletions to
the already existing files; by running

tlmgr generate language

with administrator or root privileges. This action
regenerates the various language.* needed to re-
build the format files.

Eventually, having created the proper files and
saved them in the proper folders, the final touch
is to run, with administrator or root privileges,
the fmtutil-sys program specifying the format
files where it is desired to install the new language
functionalities; in general they will be pdfLATEX,
LuaLATEX and X ELATEX. Personally I prefer to recre-
ate only the pdfLATEX and LuaLATEX formats.

Caution: if and when the new functionalities are
added to the TEX Live distribution, the branches
of the personal tree just discussed should be elimi-
nated from the computer. Any upgrade of the TEX
Live distribution never touches the personal tree
so that they are not upgraded any more unless the
user provides by him/herself.

7 Conclusion
What has been described in this paper describes
what there is behind the language processing done
by the various typesetting programs based on
LATEX.

The processing steps needed to extend such lan-
guage processing tasks are all pretty delicate, but
after all they are not so complicated. They require
a lot of work and we, the LATEX users, are grateful
to the various contributors of pattern and language
description files. They saved us a lot of work. But
if we have a sufficient knowledge of a language, we

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

22

too can contribute our work to save a lot of work
to the members of the TEX community.

Acknowledgements
A special grateful thank-you is due to the TEX-
hyphen Working Group; they do a marvellous work,
and without them language management would be
at the level it was in the mid-nineties.

References
BECCARI, Claudio (2015). The testhyphens
package. TUG. Readable with texdoc
testhyphens.

BERRY, Karl (2018a). The TEX Live Guide – 2018.
TUG. Readable with texdoc texlive.

— (2018b). TLMGR(1). TUG. Readable with
texdoc tlmgr.

BEZOS, Javier (2016). luahyphenrules –Loading
patterns in LuaLATEX with language.dat. TUG.
Readable with texdoc luahyphenrules.

BRAAMS, Johannes e Javier BEZOS (2018). Babel.
TUG. Readable with texdoc babel.

CHARETTE, François e Arthur REUTENAUER
(2018). Polyglossia. TUG. Readable with
texdoc polyglossia.

LIANG, Frank (1983). «Word Hy-phen-a-tion
by Com-put-er». The original thesis, de-
fended at Standford University, was scanned and
made available at www.tug.org/docs/liang/
liang-thesis-hires.pdf.

LIANG, Frank e Peter BREITENLOHNER (1991).
PATGEN(1). TUG. This is the PDF version of
the manual revision after the upgrade of 1991
to adapt the program to TEX 3. Readable with
texdoc patgen-man1.

SCHLICHT, R. (2018). The microtype pack-
age –Subliminal refinements towards typograph-
ical perfection. TUG. Readable with texdoc
microtype.

UNI 6461 (1969). Divisione delle parole in fin di
linea. Ente Italiano di Unificazione, Milano.

WIKIPEDIA (2018). «The Cimbrian Lan-
guage». https://en.wikipedia.org/wiki/
Cimbrian_language. Last checked 2018-11-10.

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

23

www.tug.org/docs/liang/liang-thesis-hires.pdf
www.tug.org/docs/liang/liang-thesis-hires.pdf
https://en.wikipedia.org/wiki/Cimbrian_language
https://en.wikipedia.org/wiki/Cimbrian_language

A Patch to modify the gloss-greek.ldf in order to have LuaLATEX load
the pattern files for the three Greek variants

1 \ProvidesFile{gloss-greek.ldf}[polyglossia: patched module for Greek]
2 \PolyglossiaSetup{greek}{
3 script=Greek,
4 scripttag=grek,
5 frenchspacing=true,
6 indentfirst=true,
7 fontsetup=true,
8 }
9

10 %%%
11 %% The code in this file was initially adapted from the antomega
12 %% module for Greek. Currently large parts of it derive from the
13 %% package xgreek.sty (c) Apostolos Syropoulos
14 %%%
15 % This file imported from xgreek fixes the \lccode and \uccode
16 % of Greek letters:
17 \input{xgreek-fixes.def}
18 % --- BEGIN PATCH
19 \ifx\directlua\undefined\else\RequirePackage{luahyphenrules}\fi
20

21 \define@key{greek}{variant}{monotonic}{%
22 \ifx\directlua\undefined\language\l@monogreek
23 \else\HyphenRules{monogreek}\fi%
24 }
25 \define@key{greek}{variant}{mono}{%
26 \ifx\directlua\undefined\language\l@monogreek
27 \else\HyphenRules{monogreek}\fi%
28 }
29 \define@key{greek}{variant}{polytonic}{%
30 \ifx\directlua\undefined\language\l@polygreek
31 \else\HyphenRules{greek}\fi%
32 }
33 \define@key{greek}{variant}{poly}{%
34 \ifx\directlua\undefined\language\l@polygreek
35 \else\HyphenRules{greek}\fi%
36 }
37 \define@key{greek}{variant}{ancient}{%
38 \ifx\directlua\undefined\language\l@ancientgreek
39 \else\HyphenRules{ancientgreek}\fi%
40 }
41

42 %TODO: set these in \define@key instead:
43 \ifx\l@greek\@undefined
44 \ifx\l@polygreek\@undefined
45 \xpg@nopatterns{Greek}%
46 \adddialect\l@greek\l@nohyphenation
47 \else
48 \let\l@greek\l@polygreek
49 \fi
50 \fi
51 \ifx\l@monogreek\@undefined
52 \xpg@warning{No hyphenation patterns were loaded for Monotonic Greek\MessageBreak
53 I will use the patterns loaded for \string\l@greek instead}
54 \adddialect\l@monogreek\l@greek
55 \fi
56 \ifx\l@ancientgreek\@undefined
57 \xpg@warning{No hyphenation patterns were loaded for Ancient Greek\MessageBreak

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

24

58 I will use the patterns loaded for \string\l@greek instead}
59 \adddialect\l@ancientgreek\l@greek
60

61 %set monotonic as default
62 \def\greek@variant{\l@monogreek}% monotonic
63 \def\captionsgreek{\monogreekcaptions}%
64 \def\dategreek{\datemonogreek}%
65 \fi
66

67 \def\tmp@mono{mono}
68 \def\tmp@monotonic{monotonic}
69 \def\tmp@poly{poly}
70 \def\tmp@polytonic{polytonic}
71 \def\tmp@ancient{ancient}
72 \def\tmp@ancientgreek{ancientgreek}
73

74 \define@key{greek}{variant}[monotonic]{%
75 \def\@tmpa{#1}%
76 \ifx\@tmpa\tmp@mono\def\@tmpa{monotonic}\fi
77 \ifx\@tmpa\tmp@poly\def\@tmpa{polytonic}\fi
78 \ifx\@tmpa\tmp@ancientgreek\def\@tmpa{ancient}\fi
79 \ifx\@tmpa\tmp@polytonic% polytonic
80 \def\greek@variant{\l@greek}%
81 \def\captionsgreek{\polygreekcaptions}%
82 \def\dategreek{\datepolygreek}%
83 \edef\greek@language{\noexpand\language=\greek@variant}
84 \xpg@info{Option: Polytonic Greek}%
85 \else
86 \ifx\@tmpa\tmp@ancient% ancient
87 \def\greek@variant{\l@ancientgreek}%
88 \def\captionsgreek{\ancientgreekcaptions}%
89 \def\dategreek{\dateancientgreek}%
90 \edef\greek@language{\noexpand\language=\greek@variant}
91 \xpg@info{Option: Ancient Greek}%
92 \else % monotonic
93 \def\greek@variant{\l@monogreek}% monotonic
94 \def\captionsgreek{\monogreekcaptions}%
95 \def\dategreek{\datemonogreek}%
96 \edef\greek@language{\noexpand\language=\greek@variant}
97 \xpg@info{Option: Monotonic Greek}%
98 \fi
99 \fi}

100

101 % -- END PATCH
102 % The original code continues hereafter
103 ...
104 \endinput

B The Occitan language definition file

1 \ProvidesFile{gloss-occitan.ldf}[2016/02/04 v0.3 polyglossia:
2 module for Occitan]
3 \PolyglossiaSetup{occitan}{
4 hyphennames={occitan},
5 hyphenmins={2,2},
6 frenchspacing=true,
7 indentfirst=true,
8 fontsetup=true,
9 }

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

25

10 \define@boolkey{occitan}[occitan@]{babelshorthands}[true]{}
11

12 \ifsystem@babelshorthands
13 \setkeys{occitan}{babelshorthands=true}
14 \else
15 \setkeys{occitan}{babelshorthands=false}
16 \fi
17 \ifcsundef{initiate@active@char}{%
18 \input{babelsh.def}%
19 \initiate@active@char{”}%
20 }{}
21 \def\occitan@shorthands{%
22 \bbl@activate{”}%
23 \def\language@group{occitan}%
24 \declare@shorthand{occitan}{”}{%
25 \relax\ifmmode
26 \def\xpgoc@next{’’}%
27 \else
28 \def\xpgoc@next{\futurelet\xpgoc@temp\xpgoc@cwm}%
29 \fi
30 \xpgoc@next}%
31 }
32 \def\xpgoc@@cwm{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}
33 \def\xpgoc@ponchinterior{%
34 \nobreak\discretionary{-}{}{\mbox{\cdot}}\nobreak\hskip\z@skip}
35 \def\xpgoc@cwm{\let\xpgoc@@next\relax
36 \ifcat\noexpand\xpgoc@temp a%
37 \def\xpgoc@@next{\xpgoc@@cwm}%
38 \else
39 \if\noexpand\xpgoc@temp \string|%
40 \def\xpgoc@@next##1{\xpgoc@@cwm}%
41 \else
42 \if\noexpand\xpgoc@temp \string<%
43 \def\xpgoc@@next##1{«\ignorespaces}%
44 \else
45 \if\noexpand\xpgoc@temp \string>%
46 \def\xpgoc@@next##1{\unskip»}%
47 \else
48 \if\noexpand\xpgoc@temp\string/%
49 \def\xpgoc@@next##1{\slash}%
50 \else
51 \if\noexpand\xpgoc@temp\string.%
52 \def\xpgoc@@next##1{\xpgoc@ponchinterior}%
53 \fi
54 \fi
55 \fi
56 \fi
57 \fi
58 \fi
59 \xpgoc@@next}
60 \def\nooccitan@shorthands{%
61 \@ifundefined{initiate@active@char}{}{\bbl@deactivate{”}}%
62 }
63 \def\captionsoccitan{%

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

26

64 \def\refname{Referéncias}%
65 \def\abstractname{Resumit}%
66 \def\bibname{Bibliografia}%
67 \def\prefacename{Prefaci}%
68 \def\chaptername{Capítol}%
69 \def\appendixname{Annèx}%
70 \def\contentsname{Ensenhador}%
71 \def\listfigurename{Taula de las figuras}%
72 \def\listtablename{Taula dels tablèus}%
73 \def\indexname{Indèx}%
74 \def\figurename{Figura}%
75 \def\tablename{Tablèu}%
76 \def\partname{Partida}%
77 \def\pagename{Pagina}%
78 \def\seename{vejatz}%
79 \def\alsoname{vejatz tanben}%
80 \def\enclname{Pèça junta}%
81 \def\ccname{còpia a}%
82 \def\headtoname{A}%
83 \def\proofname{Demostracion}%
84 \def\glossaryname{Glossari}%
85 }
86 \def\dateoccitan{%
87 \def\occitanmonth{\ifcase\month\or
88 de~genièr\or
89 de~febrièr\or
90 de~març\or
91 d’abril\or
92 de~mai\or
93 de~junh\or
94 de~julhet\or
95 d’agost\or
96 de~setembre\or
97 d’octobre\or
98 de~novembre\or
99 de~decembre\fi

100 }%
101 \def\occitanday{\ifcase\day\or
102 1èr\else% primièr
103 \number\day\fi% all other numbers
104 }%
105 \def\today{\occitanday\space \occitanmonth\space de~\number\year}%
106 }
107 \let\xpgoc@savedvalues\empty
108 \AtEndPreamble{% the user or the class might define different values
109 \edef\xpgoc@savedvalues{%
110 \clubpenalty=\the\clubpenalty\space
111 \@clubpenalty=\the\@clubpenalty\space
112 \widowpenalty=\the\widowpenalty\space
113 \finalhyphendemerits=\the\finalhyphendemerits}
114 }
115 \def\noextras@occitan{%
116 \lccode\string”2019=\z@
117 \nooccitan@shorthands

ArsTEXnica Nº 27, Aprile 2019 Language management and patterns for line breaking

27

118 \xpgoc@savedvalues
119 }
120 \def\blockextras@occitan{%
121 \lccode\string”2019=\string”2019
122 \clubpenalty=3000 \@clubpenalty=3000 \widowpenalty=3000
123 \finalhyphendemerits=50000000
124 \ifoccitan@babelshorthands\occitan@shorthands\fi
125 }
126

127 \def\inlineextras@occitan{%
128 \lccode\string”2019=\string”2019
129 \ifoccitan@babelshorthands\occitan@shorthands\fi
130 }

. Claudio Beccari
claudio dot beccari at gmail dot com

Claudio Beccari ArsTEXnica Nº 27, Aprile 2019

28

	Introduction
	The required files
	Syllabification vs. hyphenation
	The patterns
	Word strings
	How patterns work
	Grammatical rules
	Syllabification dictionaries
	Creating patterns by hand
	The Italian example
	The Latin case
	The Greek case
	General considerations

	The language description file
	The Greek case with LuaLaTeX
	The Occitan language description file for polyglossia
	The Cimbrian language definition file

	The service files
	Conclusion
	Patch to modify the gloss-greek.ldf in order to have LuaLaTeXload the pattern files for the three Greek variants
	The Occitan language definition file

