
Connecting LuaTEX to MongoDB

Roberto Giacomelli

Abstract
This paper describes in details a way to connect
LuaTEX to a MongoDB database server. As a con-
sequence, the Lua-powered typesetting engine be-
comes a candidate, along with other tools, to gen-
erate beautiful reports.

From local-wide project to large web ap-
plications, MongoDB—the popular NoSQL
database—creates a new point of view on datasets
also adopted by LuaTEX. This could extend the
development perspectives.

Sommario
Questo articolo descrive in dettaglio un modo per
connettere LuaTEX a un database server Mon-
goDB, dimostrando come il motore di composi-
zione dotato dell’interprete Lua possa candidarsi,
insieme ad altri strumenti, a generare bellissimi
report.

Dal piccolo progetto alle grandi applicazioni web,
MongoDB — il noto database di tipo NoSQL —
crea un nuovo punto di vista sui dati che si ritro-
va anche in LuaTEX. Ciò potrebbe incrementare
ulteriormente le possibilità di sviluppo.

1 Reasons
I’m currently working on a project based on Lua-
jitLATEX, and SQLite31 as a set of databases han-
dler, to typeset a lot of high quality reports. I
exposed about that in my article (GIACOMELLI,
2017).

LuajitTEX includes the LuaJIT FFI Foreign Func-
tion Interface, a powerful technology to bind C
executable modules such as the dynamic linking
SQLite3 library. Not only LuajitTEX becomes capa-
ble of collecting data by running SQL queries, but
it also makes life easier in configuring the system.

Why did I discard simpler data management soft-
ware such as spreadsheets or plain text files, and
why didn’t I ensure a full separation between TEX
and data layer, for example through an agnostic
file format?

First of all, the main goal of this architecture
is to ensure data safety: that is why I chose a
RDBMS system2. Every record saved in the archive
is checked by the database engine itself that con-
trols the integrity of the relational model, in con-
sideration of a handful of concepts such as the

1. https://www.sqlite.org.
2. The acronym RDBMS stands for Relational Database

Management System.

primary and foreign key constraint, the not null

clause and so on.
Secondly, the valuable advantage is that avoiding

intermediate layer between data and TEX means
speeding up modifications.

I have frequently adapted project entity-
relationship diagrams whenever improvements
were (e.g., the addition of a complex set of eco-
nomic information). So, I learned a lot about how
to translate real world entities into conceptual SQL
models, trying to keep minimalism in mind as much
as possible.

Changes were easy to apply but, after six years
of development, things are no longer so easy to
keep up-to-date despite the success of the project.
After all, the world is constantly changing. And
I consider more important finding out database
systems to allow a better data representation than
incrementing data bandwidth as fast as hardware
potentially could do. In other words, I’m looking
for more natural criteria to model a reality in rapid
and unpredictable evolution.

When I talk about project I mean a production
business where data are shared over the IT network
infrastructure and automatically processed to get
reports. Just think of a freelance engineer or a little
design team, dealing with invoices of technical
documents as part of their customer service, or
a company delivering financial statements to the
clients.

1.1 What I’ll talk about
This paper is covering a brief description of the
NoSQL unconventional way of thinking in the
section 2, where I also introduce the MongoDB
database system presenting fundamental concepts
like the document.

Section 3 and the following two are dedicated to
a step-by-step detailed tutorial valid for Ubuntu
and Windows operating systems—section 4 and
section 5 respectively. They provide instructions to
set up a MongoDB local server for experimenting
and a suitable MongoDB connector for LuaTEX.

Finally, from section 7 on I will discuss two demo
projects simple and meaningful, useful to practice
the projects development.

1.2 Verbatim conventions
When a shell command doesn’t fit in the column
width, an ending backslash \ is added to split text
up into more lines.

While experimenting, you can improve readabil-
ity too, splitting the lines up in your command

62

https://www.sqlite.org

window according to your operating system syn-
tax. For instance, Windows PowerShell supports
Shift+Enter keys combination for multiline editing
or even a backtick3 ‘ at the end of breaking lines.
Beware: PowerShell inserts a space for each newline
you enter, so you won’t be able to even split up a
file path, while Linux or Mac OSX user can safely
use backslash \ to break up to command names.

1.3 Requirements

You need a desktop computer running a 64 bit Op-
erating System in order to execute demo projects
programs illustrated from section 7 on: running
locally database operations and typesetting docu-
ments for reports. A basic Lua understanding is
also recommended to knowingly run such source
files with LuaTEX.

2 NoSQL, Not only SQL
NoSQL philosophy denies the SQL model: no fixed
schemas and no relational constraints are imposed
on data. Leaving out that essential checks, web
applications can take advantage of NoSQL in two
main areas: a great capability to scale out—that is
partitioning data across several servers, optimizing
costs and performances—and a flexible design of
data models. Shortly, a powerful and easy to use
storage engine.

The heart of the SQL system is the table: a
tabular dataset organized in rows and columns that
describes and represents entities. Improvements
require to reformulate all the dataset archived in
the table. This is what we call a fixed-schema: it’s
just not possible to write data that don’t suit the
current schema.

Quite the opposite for the NoSQL databases:
the information models can be eventually changed,
whatever and wherever.

Google, Amazon and other Internet big compa-
nies are developing their own NoSQL data stor-
age system. In this article, I’m going to consider
the open source project MongoDB located at
www.mongodb.com.

2.1 The MongoDB document

A MongoDB document is a key/value ordered list.
As a matter of fact, not only the database can
archive data in binary format, but can also under-
stand the structure of the key/value data type for
querying.

A document looks like this:

{”name”:”Missouri River”, ”length km”:3768}

In absence of a fixed and predefined SQL-like
schema, MongoDB developers use to visualize
how information is structured, simply printing

3. Backtick is issued typing ALT+0096 on Windows ma-
chines.

documents. Thus documents literally represent
themselves.

In the document above—delimited by
braces—there are two fields separated by a
comma. Each field has a key and a value separated
by a colon. Keys are strings while values are,
respectively, a string and an integer. Values
are not limited to atomic types like those just
considered: they can also represent compound
types such as arrays—a list of comma separated
values, enclosed in square brackets—or even other
documents. For example, we can add geospatial
information as an array of coordinates localizing
the river source:
{

”name” : ”Missouri River”,

”length km” : 3768,

”source coords” : [45.9275, -111.508056]

}

That notation—pretty much the same of the ta-
ble constructor in Lua—corresponds exactly to the
JavaScript object type and it highlights the strong
inclination of MongoDB for web development.

2.2 Collection and database
A MongoDB collection is a set of documents and,
in turn, a database is a set of collections.

Collections are referenced by name as a single
UTF-8 string or as a sequence of strings concate-
nated with the dot character. It’s the recommended
way to organize document groups with namespaces.

For instance, the previous document regarding
essential data about rivers could be part of the
info.basic collection. Please pay attention to the
fact that in this case there is no collection belonging
to another one but it’s only an optional naming
rule to identify a single collection.

There are no constraints defined on the doc-
ument structure except on the field _id. If the
document does not have an _id field, MongoDB
will attach one to it with a default value of type
ObjectId, otherwise it will check if the _id value
of any type is unique within the collection.

2.3 The JSON and BSON formats
JSON (JavaScript Object Notation) is a text-based
data-interchange open standard format. It is built
upon a key/value structure called object and a list
called array. Values types belong to a list of seven of
them like string or number, but even object and array.

The JSON specification takes only a single
web page, see https://www.json.org/, to be com-
pletely defined. As the website says, JSON is easy
for humans to read and write, and it is also easy
for machines to parse and generate.

JSON is not alone in the arena of structured
text formats; competitors are TOML4, YAML5,

4. Tom’s Obvious, Minimal Language https://github.com/

toml-lang/toml.
5. YAML Ain’t Markup Language http://yaml.org/.

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

63

www.mongodb.com
https://www.json.org/
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
http://yaml.org/

XML6, RON7 and many others, but JSON is very
popular on the modern web.

The data transfer over the network is based on
the serialization/deserialization process where text
is encoded into an efficient binary format. BSON
(Binary JSON) is the network transfer format used
by MongoDB.

2.4 Working with mongo

Once MongoDB is installed, a JavaScript-based
CLI client called mongo is available alongside the
other executables.

mongo is a way for accomplishing administrative
tasks on databases and it is a useful tool for get-
ting started with CRUD operations and querying.
The acronym CRUD stands for the four basic op-
erations on databases: Create, Read, Update and
Delete.

2.5 MongoDB learning resource
For more information on MongoDB visit the https:
//docs.mongodb.com website. It’s a clear, complete
and well organized documentation site. A good
printed reference is the book (CHODOROW, 2013).

Furthermore, online courses can be attended at
https://university.mongodb.com/ website: ba-
sic, intermediate and advanced levels can suit ev-
erybody’s needs.

3 Setting up a stand-alone system
The objective is to get started with a locally-
running MongoDB instance. With few adjust-
ments you should be able to run the database
server within a Local Area Network. Of course, a
production-ready installation of a MongoDB server
requires special treatments for security issues, an ef-
fort that goes beyond the objectives of the present
work.

Anyway, a 64 bit operating system is required
to run recent versions of MongoDB. No such lim-
itation involves the client running from within a
LuaTEX process.

A Lua-MongoDB connector can be build in dif-
ferent ways:

• a low level binding to the MongoDB C driver
http://mongoc.org/;

• a pure Lua connector that understands the
MongoDB server binary protocol over TCP
network protocol;

• an intermediate node connected to LuaTEX
via TCP using the library luasocket, that is
statically linked in the Lua-powered typeset-
ting engine. This proxy server is connected
to MongoDB by means of every suitable pro-
gramming languages;

6. Extensible Markup Language https://www.w3.org/XML/.
7. Rusty Object Notation https://github.com/ron-rs/

ron.

• an independent execution of CLI tools like
mongo shell itself, using files as communication
channel with LuaTEX (see section 10).

Depending on the state of the art of open source
projects, I chose the low level bindings. Building
them requires two steps regardless of the target OS:
compiling the MongoDB C driver and binding Lua
to it via the LuaRocks package manager. LuaRocks
must use the same Lua version of the LuaTEX
interpreter, currently 5.2 for a standard TEX Live
2018 distribution.

To determine your Lua version you can read
the LuaTEX manual shipped with TEX Live8 or
compile the following file with LuaTEX and check
the resulting PDF:

% !TeX program = LuaTeX

\directlua{tex.print(lua.version)}

\bye

3.1 Installing a MongoDB driver for
LuaTEX

The first step is to compile the MongoDB C
driver and its companion. The project home is
at http://mongoc.org/, where we can find both
source code and documentation for the library
libmongoc and the companion libbson. The lat-
est library deals with the BSON format, that is
the binary format used by MongoDB to store doc-
uments in the database and to perform network
communication, as mentioned in the section 2.3.

The second step is to compile a Lua binding
to MongoDB C driver. The project I take into
account is lua-mongo hosted on GitHub at https:
//github.com/neoxic/lua-mongo.

In this paper I will only give detailed installation
instructions for Ubuntu Linux and Windows.

4 Installing on Ubuntu
First of all it’s important to notice that the Mon-
goDB binary for Ubuntu has been compiled with
SSL enabled and dynamically linked. This requires
the SSL libraries to be seperately installed on your
system with the following shell command:

$ sudo apt-get install libcurl4 openssl

Adding to the repository list the official Mon-
goDB software archive, you can also install the
binary via the standard apt package manager. Do-
ing so the package will be updated automatically.
However, the manual procedure allows you to keep
things under a complete control.

4.1 Installing MongoDB
MongoDB installation is very simple because you
only have to download and unzip a file: select

8. To access your TEX-related documentation just type
texdoc 〈package〉 in a terminal session. For instance, texdoc
luatex.

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

64

https://docs.mongodb.com
https://docs.mongodb.com
https://university.mongodb.com/
http://mongoc.org/
https://www.w3.org/XML/
https://github.com/ron-rs/ron
https://github.com/ron-rs/ron
http://mongoc.org/
https://github.com/neoxic/lua-mongo
https://github.com/neoxic/lua-mongo

TABLE 1: Direct links to the downloadable files of the MongoDB Community Server package available at the time of writing for
the main 64 bit desktop OS.

OS identifier/Direct download link
Ubuntu 18.04 LTS 64 bit
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1804-4.0.1.tgz

Windows 64 bit installer
https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-4.0.1-signed.msi

OSX 64 bit
https://fastdl.mongodb.org/osx/mongodb-osx-ssl-x86_64-4.0.1.tgz

the Community Server tab from the official Mon-
goDB download web page https://www.mongodb.

com/download-center and pick your choice select-
ing your preferred Operating System. You can also
grab your installation package from the direct link
shown in table 1.

Placing executables in a system directory is safer
due to the superuser rights protection, but for
testing operations I prefer to temporarily keep the
binary as well as the database files in my home
directory:

$ tar -zxvf \

mongodb-linux-x86_64-ubuntu1804-4.0.1.tgz

$ cp -r \

./mongodb-linux-x86_64-ubuntu1804-4.0.1 \

~/mongodb

$ mkdir ~/mongodb/data

The following commands make the server start
on the localhost network address with no user
authentication—in production environments a safe
access to the server must be configured:

$ cd ~/mongodb/bin

$./mongod --smallfiles --dbpath ~/mongodb/data

Carefully look at the output produced by mongod:
you can check if the system is up and correctly
running. To safely stop the server press CTRL+C.

It’s also recommended to install a copy of the
Compass Community Edition GUI client, looking
for related tab form in the download MongoDB web
site. In figure 1 is shown a screenshot of Compass.

4.2 Compiling MongoDB C Driver
As a preliminary step, we need to install some
packages from the Ubuntu repository. These shell
commands do the job:

$ sudo apt-get install build-essential cmake

$ sudo apt-get install liblua5.2-dev

$ sudo apt-get install libssl-dev libsasl2-dev

As reported in the installation guide of the Mon-
goDB C driver, download, unzip and prepare the
project with:

$ wget \

https://github.com/mongodb/mongo-c-driver\

/releases/download/1.12.0\

/mongo-c-driver-1.12.0.tar.gz

$ tar xzf mongo-c-driver-1.12.0.tar.gz

$ cd mongo-c-driver-1.12.0

$ mkdir cmake-build

$ cd cmake-build

$ cmake \

-DENABLE_AUTOMATIC_INIT_AND_CLEANUP=OFF ..

If everything is OK, you may go on and install
the driver—make sure that the working current
directory is cmake-build—:

$ make

$ sudo make install

4.3 Installing LuaRocks
LuaRocks instruction from its website https://

luarocks.org/ are quite clear:

$ wget https://luarocks.org/releases\

/luarocks-3.0.0.tar.gz

$ tar zxpf luarocks-3.0.0.tar.gz

$ cd luarocks-3.0.0

$./configure; sudo make bootstrap

4.4 Installing lua-mongo bindings
The very last shell command is:

$ sudo luarocks install lua-mongo

4.5 Post-install adjustment
To provide visibility to the Lua MongoDB bind-
ing from within LuaTEX, the library file could
be copied in the bin directory of the main
TeX Live tree, accordingly to the system variable
$CLUAINPUTS. In fact, it contains paths where the
typesetting engines looks for the C module.

Indeed the LuaTEX manual reports the variable
value as the following pattern:

CLUAINPUTS= .:\

$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

The first directory in the pattern is simply the
folder containing the .tex source file itself, identi-
fied by the dot char ‘.’, but what about the next
$SELFAUTOLOC variable? To find out the answer we
can address LuaTEX itself, compiling the source
file below:9

9. We obtain the same answer if we invoke the command
kpsewhich -var-value= $SELFAUTOLOC from the terminal.

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

65

https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1804-4.0.1.tgz
https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-4.0.1-signed.msi
https://fastdl.mongodb.org/osx/mongodb-osx-ssl-x86_64-4.0.1.tgz
https://www.mongodb.com/download-center
https://www.mongodb.com/download-center
https://luarocks.org/
https://luarocks.org/

FIGURE 1: A screenshot of Compass Community Edition GUI client running on Ubuntu 18.04 while connected to the local
MongoDB server. It shows a document of the prize collection belonging to the nobelprize database, part of the project defined
in section 9.

% !TeX program = LuaTeX

\directlua{

print(kpse.expand_var [[$SELFAUTOLOC]])

}

\bye

that prints on the standard output the variable
expansion as:

/usr/local/texlive/2018/bin/x86_64-linux

Essentially, C modules home can be only a
platform-specific directory in the main TDS tree10,
and this in far from the ideal solution because
the main tree is something that users should leave
untouched, giving out local or personal tree of dis-
tribution to settle what is not officially part of
TEX Live.

A workaround may be directly using the loader
internally called by the Lua function require(),
that is the standard way to load a module.
require() has a default list of search paths in-
cluded those derived from the pattern in the
$CLUAINPUTS variable.

While we will discuss this in the section 6, let’s
now complete the installation: we only have to
copy the C module in the local tree of TEX Live
with the command:

10. For more information on TDS tree structure run the
shell command texdoc tds.

$ cd /usr/local/texlive/texmf-local

$ sudo mkdir -p ./scripts/mongo

$ sudo cp /usr/local/lib/lua/5.2/mongo.so \

./scripts/mongo/

5 Installing on Windows
Since this task is slightly long, you may find com-
fortable to help yourself some coffee or tea, cookies
and so on, and relax. Let’s start installing Visual
Studio Community latest release, currently 2017,
from Microsoft website https://visualstudio.

microsoft.com/en/downloads/. If necessary, regis-
ter your Visual Studio copy submitting an account
from the dedicated command you find in the Help
menu.

Later, it will be useful Microsoft Build Tools
2015 too, so install it from Microsoft Download
Center but only after installing Visual Studio.

You also need to install cmake from https://

cmake.org/download/. You should have a 64 bit
OS so choose win64-x64 architecture and not win32-
x86 one.

5.1 Installing MongoDB
The Windows installer—the .msi file reported in
the table 1—gives you two different kinds of config-
uration: running MongoDB as a service or not. The
second option is recommended for testing and local

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

66

https://visualstudio.microsoft.com/en/downloads/
https://visualstudio.microsoft.com/en/downloads/
https://cmake.org/download/
https://cmake.org/download/

project according to our experimental purpose. In
any case, you may wish to install the Compass
utility too, a GUI client for MongoDB databases.
If so, check on the related flag in the Setup Wizard
and press the Next button to enrich the final step.

To locally start the server, run in a console win-
dow the following commands:
> mkdir C:\mongodb-data

> cd ’C:\Program Files\MongoDB\Server\4.0\bin\’

> .\mongod --smallfiles --dbpath C:\mongodb-data

Check the output to assess if all is OK, then stop
the server pressing CTRL+C to send a shutdown
signal to the process.

5.2 Compiling MongoDB C Driver
Download the source code of the latest version of
the C driver from http://mongoc.org/#download,
current release is 1.12.0, unzip the file mongo-c-

driver-1.12.0.tar.gz, then open a console on
the uncompressed folder.

According to the documentation, the commands
to create a Visual Studio 2017 project are the
following (the double dot in the last line is impor-
tant):
> cd mongo-c-driver-1.12.0

> mkdir cmake-build

> cd cmake-build

> cmake -G ”Visual Studio 15 2017” \

”-DCMAKE_INSTALL_PREFIX=C:\mongo-c-driver” \

”-DCMAKE_PREFIX_PATH=C:\mongo-c-driver” \

..

If you don’t know how to split the last command
into several lines inside the shell, simply type it in
a single line.

Since the luatex executable is a 32 bit x86 bi-
nary, make sure Visual Studio is set for Win32

platforms before compiling. To inspect which ar-
chitecture luatex is compiled for, digit the shell
command:
> luatex --version

If the answer is (or looks like)
This is LuaTeX, Version 1.07.0 \

(TeX Live 2018/W32TeX)

it’s evident that we have a Win32 compliant pro-
gram.

Back to the source folder, open the generated file
mongo-c-driver.sln in Visual Studio, select into
the explorer the solution named ALL_BUILD, right
click on it and run the command Compile. When
the process ends, repeat the same steps with the
solution named INSTALL. At this point you should
see in C:\mongo-c-driver directory the files you
were waiting for.

Add to the system PATH variable the folder
C:\mongo-c-driver\bin. This allows Windows to
find the binary. In order to easily open the dia-
log, type in the search bar “system environment
variable” and select the proper icon.

5.3 Installing Lua Libraries
Pursuing a Lua driver installation for MongoDB,
make sure you have Lua itself installed with the
same version of LuaTEX, as explained before. If
not, it is very simple, thanks to the project Lua
Binaries, getting that files.

Browse the web page http://luabinaries.

sourceforge.net/ and pick up Lua 5.2.4 release
pages hosted on SourceForge. Click in sequence on
the folder Windows, hence Dynamic, and download
the file lua-5.2.4_Win32_dll15_lib.zip. The file
name tells whether the platform we have chosen
is correct: Win32 shows that library is for 32 bit
binary and dll15 is about the latest Visual Studio
version.

Please make sure you have clicked on the
Dynamic and not on the Static link or you will
suffer soon or later the error Multiple Lua VM’s de-
tected. As a comparison, in the file name you must
read the string dll, standing for dynamic linking
library in the Microsoft ecosystem terminology.

Unpack the files and copy all of them in the
folder, say C:\Lua, as a name easy to trace and re-
member. That folder will be the home of LuaRocks
too, the next main character of our “play”.

From the same repository, download a
Lua interpreter clicking on the link folder
Tools Executables. The file should be lua-

5.2.4_Win32_bin.zip. Unzip it in the same di-
rectory where you are going to place the libraries
file.

Add to the system PATH variable the folder
C:\Lua, then run the interpreter.

5.4 Installing LuaRocks
The starting point for the Lua most famous
package manager is the official website https:

//luarocks.org/. The latest release is 3.0.1 but at
the moment it is unable to complete the installation
process due to a dynamic linking failure. Fall back
on 2.4.4 version downloading the file luarocks-

2.4.4-win32.zip from http://luarocks.github.

io/luarocks/releases/.
Unzip it and run this command:

> .\install.bat /P ’C:\Lua\Luarocks244’ \

/CONFIG ’C:\Lua\Luarocks244’

The option /P gives the location where LuaRocks
will be installed, while /CONFIG gives the location
of the configuration file.

As it should be clear now, add to the user vari-
able the entries LUA_PATH and LUA_CPATH as follow
(type the first, that has two paths, in one line):

LUA_PATH = C:\Lua\systree\share\lua\5.2\?.lua;

C:\Lua\systree\share\lua\5.2\?\init.lua

LUA_CPATH = C:\Lua\systree\lib\lua\5.2\?.dll

We have to append the path of the MongoDB
C driver binaries

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

67

http://mongoc.org/#download
http://luabinaries.sourceforge.net/
http://luabinaries.sourceforge.net/
https://luarocks.org/
https://luarocks.org/
http://luarocks.github.io/luarocks/releases/
http://luarocks.github.io/luarocks/releases/

external_deps_dirs = {

”c:/mongo-c-driver”,

}

in the LuaRocks configuration file config-

5.2.lua.

5.5 Installing the lua-mongo binding
Navigate to the folder C:\Program Files (x86)

Microsoft Visual C++ Build Tools. Right click
on “Visual C++ 2015 x86 Native Build Tools Com-
mand Prompt”, and select “Run as administrator”,
then in the opened console window, run the follow-
ing command:

”C:\Program Files (x86)\LuaRocks\luarocks.bat” \

install lua-mongo

In order to allow LuaTEX to load the driver
using the strategy explained in section 4.5, as the
very last commands run the following sequence:

> cd C:\texlive/texmf-local

> mkdir scripts

> cd scripts

> mkdir mongo

> cd mongo

> copy ”C:\Lua\systree\lib\lua\5.2\mongo.dll”

6 Testing
In the end, the connector binary file is in the lo-
cal tree, more specifically, in the sub-directory
$TEXMFLOCAL/scripts/mongo. It can’t be loaded
by the usual Lua function due to the restricted list
of search path set for require(), as explained in
the section 4.5.

The Lua function package.loadlib fits our case.
It returns the initialization function of a C module
written according to the Lua C API, that returns
the actual library. The expected arguments are the
path to the file and the name of the initialization
function beginning with luaopen_.

Instead of hard-coding the library path, a more
general option is to call the LuaTEX specific func-
tion expand_var() from the kpathsea utility mod-
ule; in this way we get the value of the $TEXMFLOCAL
variable and take into account the file extension
depending on the Operating System—.dll for
Windows, .so for other OS—calling the function
os.type().

The code that implements such solution is the
following:

% !TeX program = LuaTeX

\directlua{

local path = kpse.expand_var [[$TEXMFLOCAL]]

assert(path)

if os.type == [[windows]] then

path = path..[[/scripts/mongo/mongo.dll]]

else

path = path..[[/scripts/mongo/mongo.so]]

end

local _mongo = package.loadlib(

path,

”luaopen_mongo”

)

assert(_mongo)

local mongo = assert(_mongo())

% print the available functions

local par = string.char(92)..[[par]]

for k, v in pairs(mongo) do

if type(v) == [[function]] then

tex.print(k..[[()]]..par)

end

end

}

\bye

As a general test, that .tex file prints also in the
PDF file the list of the functions available in the
connector lua-mongo. If the compilation process
ends correctly, the minimal test can be considered
passed and the functions list appearing regardless
of the order should be the following:

Double()

Int64()

Decimal128()

Regex()

BSON()

Timestamp()

Binary()

DateTime()

ObjectID()

Int32()

ReadPrefs()

type()

Client()

Javascript()

That list can be compared with the API
documentation of the project at the URL
https://github.com/neoxic/lua-mongo/blob/

master/doc/main.md.

7 LuaTEX application

In the next two sections I present example projects
involving operations on a MongoDB database and
queries execution from within LuaTEX in order to
typeset reports.

Be sure you have a mongod server instance locally
up and running while you compile with LuaTEX.
So, along with a modern TEX distribution, you have
installed several components in order to compile
the source code examples. In case you didn’t do
that yet, please head to section 3 for details.

All of the project files are downloadable from
ArsTEXnica home page at https://www.guitex.

org/home/it/arstexnica. Browse issues online
page to find out the link pointing to the related
compressed archive named mongodb-project.zip.

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

68

https://github.com/neoxic/lua-mongo/blob/master/doc/main.md
https://github.com/neoxic/lua-mongo/blob/master/doc/main.md
https://www.guitex.org/home/it/arstexnica
https://www.guitex.org/home/it/arstexnica

8 Rivers
The first example models a very simple dataset
regarding the longest rivers in the United States11,
including a one-to-many relationship: alongside
basic information like river name and length, there
is the list of the crossed states too.

The dataset would be represented in a SQL
schema with three different tables:

• table river with the basic information;

• table regions defining states names;

• a pure relational table crossing connecting
rivers with states through a pair of foreign key
identifiers.

On the contrary, thanks to the recursive nature
and compound data types of MongoDB documents,
we can represent rivers and crossed regions by them
with only one document, within a single collection.

A document may contain the list of the rivers
regions as an array assigned to the field regions

as the following:

{

”name” : ”Missouri River”,

”length_km” : 3768,

”regions” : [

”Montana”,

”North Dakota”,

”South Dakota”,

”Nebraska”,

”Iowa”,

”Kansas”,

”Missouri”

]

}

We can even enrich the previous model because
the regions may be represented as an array of em-
bedded documents as showed in the listing below:

{ // embedded document version

”name” : ”Missouri River”,

”length_km” : 3768,

”regions” : [

{

”state”:”Montana”,

”code”:”MT”,

”shortname”:”Mont.”

},

{

”state”:”North Dakota”,

”code” :”ND”,

”shortname”:”N. Dak.”

},

{

”state”:”South Dakota”,

”code” :”SD”,

”shortname”:”S. Dak.”

},

11. Data source https://en.wikipedia.org/wiki/List_of_
longest_rivers_of_the_United_States_(by_main_stem).

{

”state”:”Nebraska”,

”code” :”NE”,

”shortname”:”Nebr.”

},

{

”state”:”Iowa”,

”code” :”IA”,

”shortname”:”Iowa”

},

{

”state”:”Kansas”,

”code” :”KS”,

”shortname”:”Kans.”

},

{

”state”:”Missouri,

”code” :”MO”,

”shortname”:”Mo.”

}

]

}

In MongoDB we may decide to embed or to refer-
ence data. While the first technique is represented
by the latest river model, the second consists in
just including the reference to the region docu-
ments instead of the documents themselves. Those
references have the form of _id values of the corre-
sponding documents in a different and unspecified
collection.

Deciding which is the best solution depends on
the performance of the application context and not
on the normalization criteria that leads the design
of SQL schemas.

8.1 Making the database
In order to create the database, the simplest
method is to write a JavaScript file river.js to
be executed in the mongo shell with the command:

$ mongo --host localhost river.js

The code must define names, collection, and
rivers documents, structured as formerly seen in
the first model for the longest river in the USA,
where regions are a simple list of strings. The script
river.js can be illustrated by the listing below
where a three dots sequence shortens lines but not
the essence:

// get/define database object

db = db.getSiblingDB(”river”);

// data insertion

db.generalinfo.insertMany([

{...}, {...}, {...}, ...

])

The pre-instantiated db variable refers to the cur-
rent database. The method getSiblingDB() of the
db type returns a pointer the requested database
which will be created if it does not exist. The next
expression is a chain where in the first stage the

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

69

https://en.wikipedia.org/wiki/List_of_longest_rivers_of_the_United_States_(by_main_stem)
https://en.wikipedia.org/wiki/List_of_longest_rivers_of_the_United_States_(by_main_stem)

collection generalinfo of the database pointed
by db is returned—once again, if the collection
doesn’t exist it will be created—then its method
insertMany() will write an array of documents.

Too many words to explain such a few lines of
smart and practical code. mongo shell is inspired by
SQL CLI clients like psql in PostgreSQL, but its
JavaScript library is designed with the following
motto in mind: learn and try then configure.

8.2 Querying with mongo shell
It is a very common way in MongoDB that meth-
ods performing operations on a database take as
an argument a document object. For instance, in
mongo shell you can retrieve rivers that are exactly
2000 km long by the following query:

> use river

switched to db river

> db.generalinfo.find({”length_km”: 2000})

Querying that on our dataset we obtain the follow-
ing document:

{

”_id” : ObjectId(”5b7af5a589923a94e7ce4cb0”),

”name” : ”Columbia River”,

”length_km” : 2000,

”regions” : [

”British Columbia”,

”Washington”,

”Oregon”

]

}

As expected, MongoDB has automatically added
the mandatory _id field to each document inserted
by the river.js script.

8.3 This looks like a job for LuaLATEX
Our goal is to typeset the tabular shown in table 2.
This is what we have to do:

1. create a client that has established a connec-
tion with the MongoDB server;

2. get the collection object generalinfo of the
river database;

3. perform the query to retrieve all the rivers
information;

4. typeset the table with a tabular environment.

All these steps are straightforward. To keep the
.tex source code simple and a little bit more ab-
stract, I’m going to write an auxiliary Lua library
in the external file libmongo.lua to be located in
the same directory of the main source file.

The constructor Connect() takes as an argu-
ment the database name, then establishes a client
connection to the MongoDB server on localhost.

The real job is demanded to the Lua binding of
MongoDB C Driver, compiled as described in sec-
tions 4 (for Ubuntu)–5 (for Windows). The loading

mechanism of the binding library is explained in
section 6.

No further functions but the method FindIn()

are required. In the previous task list, it performs
the 2nd and 3rd tasks and the Lua array with all
the documents selected by the query is returned.

The libmongo.lua code is the following:

local lib = {}

lib.__index = lib

-- constructor

function lib:Connect(dbname)

assert(type(dbname)==”string”)

local path = kpse.expand_var [[$TEXMFLOCAL]]

assert(path)

if os.type == [[windows]] then

path = path..[[/scripts/mongo/mongo.dll]]

else

path = path..[[/scripts/mongo/mongo.so]]

end

local _mongo = package.loadlib(

path,”luaopen_mongo”

)

assert(_mongo)

local mongo = assert(_mongo())

local client = assert(

mongo.Client(”mongodb://127.0.0.1”)

)

local o = {

_mongo = mongo,

_client = client,

_dbname = dbname,

}

setmetatable(o, self)

return o

end

-- query method

function lib:FindIn(

collection, query, option, prefs

)

assert(type(collection) == ”string”)

local client = self._client

local coll = client:getCollection(

self._dbname, collection

)

local data = {}

query = query or {}

for doc in coll:find(query, option, prefs)

:iterator() do

data[#data + 1] = doc

end

return data

end

return lib

According to the object oriented paradigm in
Lua, we have to use the colon notation and not
the dot operator to call methods. If these sen-
tence sounds weird to you, please refer to the book
(IERUSALIMSCHY, 2016) and read the chapter ded-
icated to metamethods and metatables and the
chapter dedicated to Object Oriented Program-
ming.

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

70

TABLE 2: The longest United States of America’s rivers as reported by Wikipedia. The table is typeset by LuaTEX directly
connecting to a MongoDB database as explained step by step in the text.

River name Length (km) Regions
Missouri River 3768 Montana, North Dakota, South Dakota, Nebraska, Iowa, Kansas, Missouri
Mississippi River 3544 Minnesota, Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas,

Mississippi, Louisiana
Yukon River 3185 British Columbia, Yukon Territory, Alaska
Rio Grande 2830 Colorado, New Mexico, Texas, Chihuahua, Coahuila, Nuevo León, Tamaulipas
Colorado River 2330 Colorado, Utah, Arizona, Nevada, California, Sonora, Baja California
Arkansas River 2322 Colorado, Kansas, Oklahoma, Arkansas
Columbia River 2000 British Columbia, Washington, Oregon
Red River 1811 Oklahoma, Texas, Arkansas, Louisiana
Snake River 1674 Wyoming, Idaho, Oregon, Washington
Ohio River 1575 Pennsylvania, Ohio, West Virginia, Indiana, Illinois, Kentucky

The last task—number 4 in the list—is reserved
to the LuaLATEX source file itself:

% !TeX program = LuaLaTeX

\documentclass{standalone}

\usepackage{fontspec}

\defaultfontfeatures{Ligatures=TeX}

\setmainfont{CMU Serif}

\usepackage{booktabs}

\directlua{

local libmongo = require ”libmongo”

local db = libmongo:Connect(”river”)

river = db:FindIn(”generalinfo”)

}

\begin{document}

\begin{tabular}{lcp{120mm}}

\toprule

River name & Length (km) & Regions\\

\midrule

\directlua{

local stop = string.char(92)

stop = stop..stop

for _, r in ipairs(river) do

tex.print(r.name)

tex.print(”&”)

tex.print(r.length_km)

tex.print(”&”)

tex.print(table.concat(r.regions, ”, ”))

tex.print(stop)

end

}

\bottomrule

\end{tabular}

\end{document}

Reading this code, two elements worth a com-
ment: first of all, the field regions are an array of
strings as in the documents, so the Lua binding
uses the Lua table type as the direct incarnation
of the MongoDB document: in fact, the variable
r in every cycle has the keys name and length_km

as well as the key regions that refers to a further
Lua table in the array form. The Lua standard
function table.concat() provides the string corre-
sponding to the comma separated values of States
and provinces crossed by river.

As the second interesting point, the query re-
turns documents in the same order of the original
insertion, which is the order of the Wikipedia table
at the time I wrote the river.js script.

An optional parameter allows us to explicitly set
the order, sorting documents by value. Try to edit
the previous code as in:

\directlua{

local libmongo = require ”libmongo”

local db = libmongo:Connect(”river”)

river = db:FindIn(

”generalinfo”,

{},

{sort = {length_km = 1}}

)

}

The integer 1 specifies ascending order while -1
specifies descending order, in our case applied to
the rivers length.

Furthermore, special query document fields
named operators act as conditional parameters
being part of the MongoDB query language. They
have a dollar sign as their first character, like in
$gte—that stands for greater or equal or ≥. For
instance, in the previous code we can select only
those rivers that have a length greater or equal to
2000 km, adding a specific query document as the
second argument of the FindIn() method:

river = db:FindIn(”generalinfo”,

{ length_km = { [”$gte”] = 2000 }}

)

or even by a length range like in:

river = db:FindIn(”generalinfo”,

length_km = {[”$gte”] = 2000, [”$lte”]=3000}}

)

We can execute the same query in the mongo

shell as in the following session:

> use river

switched to db river

> db.generalinfo.find({”length_km”:

... {”$gte”:2000, ”$lte”:3000}

... })

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

71

1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400 3,600 3,800

Missouri River

Mississippi River

Yukon River

Rio Grande

Colorado River

Arkansas River

Columbia River

Red River

Snake River

Ohio River

3,768

3,544

3,185

2,830

2,330

2,322

2,000

1,811

1,674

1,575

km

Length of the longest rivers in the USA

FIGURE 2: The longest United States of America’s rivers as reported by Wikipedia. The histogram plot is typeset by LuaTEX
performing a direct connection to a MongoDB database as explained step by step in the text.

8.4 Histogram

Once data is retrieved from MongoDB and stored
in Lua tables, LuaTEX can typesets information in
whatever form the user requires, e.g., a histogram
plot. The figure 2 is the PDF output of the follow-
ing source file where pgfplots package plots rivers
length:

% !TeX program = LuaLaTeX

\documentclass[margin=2pt]{standalone}

\usepackage{fontspec}

\defaultfontfeatures{Ligatures=TeX}

\setmainfont{CMU Serif}

\usepackage{pgfplots}

\pgfplotsset{compat=1.16}

\directlua{

local libmongo = require ”libmongo”

local db = libmongo:Connect(”river”)

river = db:FindIn(”generalinfo”, {},

{sort={length_km = 1}}

)

}

\newcommand\coords{\directlua{

for _, riv in ipairs(river) do

tex.print(

”(”..riv.length_km..”,”..riv.name..”)”

)

end

}}

\newcommand\riverlist{\directlua{

local t = {}

for i, riv in ipairs(river) do

t[i] = riv.name

end

tex.print(table.concat(t, ”,”))

}}

\begin{document}

\begin{tikzpicture}

\begin{axis}[

xbar,

bar width=13pt,

width=16cm,

height=9.5cm,

enlarge y limits=0.060,

xmajorgrids,

title={%

Length of the longest rivers in the USA},

xlabel={km},

symbolic y coords/.expanded={\riverlist},

ytick=data,

nodes near coords,

]

\addplot[draw=black,fill=blue!35!yellow]

coordinates {\coords};

\end{axis}

\end{tikzpicture}

\end{document}

9 Nobel Prize
Appending to the URL http://api.nobelprize.

org/v1/ one of the strings laureate.json,
prize.json or country.json, everyone can down-
load data regarding Nobel Prizes in JSON format.

For more information about Nobel Prize API
please visit the website https://www.nobelprize.

org/about/developer-zone-2/.
This dataset, freely available from the Nobel

Foundation, contains many-to-many relationships,

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

72

http://api.nobelprize.org/v1/
http://api.nobelprize.org/v1/
https://www.nobelprize.org/about/developer-zone-2/
https://www.nobelprize.org/about/developer-zone-2/

such as people who won more than one Nobel
Prize and single Nobel Prizes won by more than
one person.

That problem is complex enough to deserve an
interesting project to be developped in MongoDB:
how should we define data models for such an
admirable dataset?

9.1 Modelling documents
Instead of embedding data in a single structured
document, we will consider a pair of distinct models
representing laureate and prize.

A listing is worth a thousand words, so let start
with a possible laureate document:

{ // basic model for laureate

”_id”: 1,

”firstname”: ”Wilhelm Conrad”,

”surname”: ”Röntgen”,

”born”: new Date(”1845-03-27”),

”died”: new Date(”1923-02-10”),

”bornCountry”: ”Prussia (now Germany)”,

”bornCountryCode”: ”DE”,

”bornCity”: ”Lennep (now Remscheid)”,

”diedCountry”: ”Germany”,

”diedCountryCode”: ”DE”,

”diedCity”: ”Munich”,

”gender”: ”male”

}

The fields born and died have type Date—they
are instantiated objects—and the remaining fields,
but the document identifier _id which is an integer,
have type string.

A very simple model after all, and also flexible:
for instance, if the laureate is alive, the field died

does not exist as well as diedCountry. Furthermore,
laureate can be an organization without any first
name.

A more structured model could represent the
prize:

{ // basic model for prize

”year”: 1901,

”category”: ”physics”,

”laureates”: [

{

”id_laureate”: 1,

”motivation”: ”in recognition of ...”,

”share”: 1,

”affiliation”: [

{

”name”: ”Munich University”,

”city”: ”Munich”,

”country”: ”Germany”

}

]

}

]

}

The field laureates is an array of documents,
each one representing a winner referenced through
the field id_laureate. The field affiliation—one

more time—is an array because scientists can have
more than one affiliation, for instance when they
are part of world-wide research program in addition
to their Academic Institution.

But why affiliations fields aren’t in the laureate
model? After all Nobel Prize is unrelated to the
institution where laureates carry out their studies.

This is right but what about the case of a laure-
ate who won more than one prize, each one being
afferent to different institutes or organizations? It
is a very uncommon event, but we can’t forget the
case of Marie Curie.

In fact, affiliation is something that may change
during life, so we have to trace such a piece of
information while the Nobel Prize is awarded.

The introduced basic model fulfills that require-
mentin a practical way in spite of coherence. A dif-
ferent possible way is to reference a third referenced
document affiliation that references laureate

such as:
{ // alternative prize model

”year”: 1901,

”category”: ”physics”,

”laureates”: [

{

”id_affiliation”: 100, // reference

”motivation”: ”in recognition of ...”,

”share”: 1,

}

]

}

and
{ // alternative affiliation model

”_id”: 100,

”id_laureate”: 1,

”affiliation”: [

{

”name”: ”Munich University”,

”city”: ”Munich”,

”country”: ”Germany”

}

]

}

while the laureate document remains the same.
These alternative models require at least three

queries to know who won a specific prize: the first
one to retrieve the affiliation identifier, another
one to query the affiliation document to get the
laureate identifier, and finally to query the laureate
document. Vice versa the same task with the basic
model takes only one query for the prize document
and one for laureate document.

Talking about the alternative three-parted
model, it is rather interesting the document refer-
ence scheme for people who won the prize twice:
there will be two prizes referencing two different
affiliations, each one referencing the same laureate:
a link figure similar to an upper case V.

From now on I will adopt the basic model count-
ing the collections laureate and prize within the

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

73

nobelprize database. It is out of the scope of this
work an in-deep exploration of design pattern for
MongoDB applications. Nevertheless, it is impor-
tant to show an example of document referencing
as counterpart of document embedding. Further
information on design pattern application in Mon-
goDB can be found in the book (COPELAND, 2013)
from O’Reilly Media.

MongoDB doesn’t offer fast join functions be-
tween tables as in SQL. From the server point of
view referencing documents means a larger number
of queries when data are required, while embed-
ding document means a larger number of updating
when data are changed. Pros and cons assessment
is focused on server workload rather than data
coherence, as in the case of high volume website
or big data archive.

9.2 Data validation

What I didn’t know about the Nobel Prize was the
meaning of the field share in the prize document.
If the Nobel Prize is won by more than one laureate,
they share the prize in proportion and not always
in equal parts. As an example, if three laureates
share the prize respectively with 2, 4, 4 quote, the
first one deserves one half of the prize while the
others deserve a quarter each.

I’m not digressing. It should be true that the
sum of the inverse of each prize share values is
exactly equal to 1. Prior MongoDB 3.2 version,
client-side validation was the only option to find
out errors that MongoDB wouldn’t have discovered
in absence of any server-side constraints usually
active in a SQL schema.

Recent versions of MongoDB are able to vali-
date documents before update or insert operations
concerning a single collection. For instance, we
can validate every values types, the existence of a
mandatory field and the binding of a value to an
enumeration.

As an example on such server-side validation, we
can explicitly create the laureate collection adding
a validator as an object with the $jsonSchema

operator. The following JavaScript code shows an
example:

db.createCollection(”laureate”, {

validator: {

$jsonSchema: {

bsonType: ”object”,

required: [”surname”, ”gender”],

properties: {

firstname: {

bsonType: ”string”,

description: ”must be a string”

},

surname: {

bsonType: ”string”,

description: ”must be a string”

},

gender: {

enum: [”female”, ”male”, ”org”],

description: ”enum values only”

},

}

}

}

})

Validator may be also a query filter expression,
generally less expressive than a $jsonSchema oper-
ator.

Server-side validation is only a condition, that
can be true or false, about acceptability of docu-
ments whereas client can even edit a non-compliant
document according to specific rules, instead of
rejecting such objects.

In my opinion, in most cases it is desirable to add
a server-side validator to every collection. Anyway
in the next section there will be an example of
client-side validation, mainly to provide a very
helpful method on how to execute JavaScript code.

9.3 A Method for client-side data
validation

The basic model defined in the previous section re-
quires to apply several adjustments to the original
JSON file spread by Nobel Prize Foundation. With
a mix of regular expressions and JavaScript code, I
have translated the original files into the structure
required by the basic model. The final result con-
sists of two JavaScript scripts called laureates.js

and prizes.js.
Each script contains only one assignment: a vari-

able takes a literal array of objects. I’m going to
show how to load these files very soon. In a com-
pact syntax the laureates script may be written
as:

// laureates.js

var laureate = [{...}, {...}, ...];

Now suppose such variables—laureate and
prize—are available in a JavaScript environment:
we could check everything about dataset integrity
and coherence by means of the full featured
JavaScript programming language. For instance,
to ensure that gender fields values are only limited
to the strings male, female or org, we can iterate
over laureate array and check if every gender value
is in a hash map as in the code below:

var gender = Object.create({

”male” : true, // boolean values are unused

”female”: true,

”org” : true

});

for (l of laureate) {

if (!(l.gender in gender)) {

print(”’”+l.gender+”’ not allowed”)

}

}

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

74

While it will be MongoDB to check uniqueness of
the field _id within the laureate collection, we are
allowed to check dataset references: prize document
must have valid laureates identifier:

// checking laureate reference

var idx = Object.create({});

for (l of laureate) {

idx[l._id.toString()] = true;

}

for (p of prize) {

for (l of p.laureates) {

var id = l.id_laureate.toString();

if (!(id in idx)) {

print(”wrong laureate id”)

}

}

}

and it is also not hard to check the sharing quotes
of prizes:

function okShare(share) {

var num = 0; // numerator

var den = 1; // denominator

var i;

for (i = 0; i < share.length; i++) {

den *= share[i];

var k;

var part = 1;

for (k = 0; k < share.length; k++) {

if (i != k) {

part *= share[k];

}

}

num += part;

}

return num == den

}

// checking share fields

for (p of prize) {

var vshare = [];

for (l of p.laureates) {

vshare.push(l.share)

}

if (!okShare(vshare)) {

print(”wrong share group”)

}

}

9.4 Populating the database
Functions similar to those presented in the previous
section helps to keep documents reliable. Assum-
ing that all of that checking code is saved in the
file check.js, mongo shell is able to execute such
JavaScript files with the following command:

$ mongo --nodb laureates.js prizes.js check.js

MongoDB shell version v4.0.1

loading file: laureates.js

loading file: prizes.js

loading file: check.js

’laureate’ document to control: 916

’prize’ document to control: 585

Passed ’laureate’ gender fields: 916/916

Passed ’prize’ laureate reference: 585/585

Passed ’prize’ share fields: 585/585

and finally load the dataset into database with the
command:

$ mongo laureates.js prizes.js populate.js

MongoDB shell version v4.0.1

connecting to: mongodb://127.0.0.1:27017

MongoDB server version: 4.0.1

loading file: laureates.js

loading file: prizes.js

loading file: populate.js

where the code of the populate.js JavaScript file
is the following:

// run as

// mongo laureates.js prizes.js populate.js

// get database object

db = db.getSiblingDB(”nobelprize”);

// insert laureates

db.laureate.insertMany(laureate)

// insert Nobel Prize

db.prize.insertMany(prize)

9.5 Asking LuaTEX about laureates
In our libmongo.lua auxiliary library introduced
in section 8 we can add a new function named
FindOne() especially for treating the case of a
query returning only one document:

function

lib:FindOne(collection, query, option, prefs)

assert(type(collection) == ”string”)

local client = self._client

local coll = client:getCollection(

self._dbname, collection

)

query = query or {}

return coll:findOne(query, option, prefs)

:value()

end

As a proof of concept, we can try LuaLATEX to
typeset basic information about laureates such as
the birth date and place. The Lua table that cor-
responds to the query-generated document defines
criteria with both firstname and surname fields:

local query = {

firstname = ”Enrico”,

surname = ”Fermi”

}

The complete listing below is pretty straightfor-
ward: once defined the Lua table fermi as a global
variable, we can index it with the field key without
any restriction in order to print the corresponding
value everywhere in the report:

% !TeX program = LuaLaTeX

\documentclass{article}

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

75

\usepackage{fontspec}

\defaultfontfeatures{Ligatures=TeX}

\setmainfont{CMU Serif}

\directlua{

local libmongo = require ”libmongo”

local db = libmongo:Connect(”nobelprize”)

local query = {

firstname = ”Enrico”,

surname = ”Fermi”

}

fermi = db:FindOne(”laureate”, query)

}

\newcommand\print[1]{\directlua{

local expr = tostring(#1);

if expr then

tex.print(expr)

end

}}

\newcommand\printdate[1]{\directlua{

local d0 = #1;

local d1 = d0:unpack()/1000

local d2 = os.date([[*t]], d1)

local m = {

”January”,

”February”,

”March”,

”April”,

”May”,

”June”,

”July”,

”August”,

”September”,

”October”,

”November”,

”December ”,

}

tex.print(

tostring(d2.day), m[d2.month], d2.year

)

}}

\begin{document}

\print{fermi.firstname} \print{fermi.surname}

was born in \print{fermi.bornCity} on

\printdate{fermi.born}.

\end{document}

The result is:

Enrico Fermi was born in Rome, Italy,
on 29 September 1901.

Dates are saved as objects and not as strings. It
was our initial choice. After all objects are more
clever than strings because they have specific meth-
ods. When dealing with dates, we can print only
the year or even the days between two dates.

In spite of that, why the source code of our
working minimal example compiles under Linux
but not under Windows?

It’s because dates are not yet a Date object. In
fact, the lua-mongo driver returns dates in BSON

format. Subsequently, in the macro \printdate

defined in the code, we call the method unpack() to
get the date as the number of milliseconds since the
Epoch12, the moment in time fixed to the midnight
of 1 January 1970.

The Lua function of the standard library
os.date() is able to determine date values starting
from the number of seconds since the Epoch, and
this is the reason why in the code a factor 1/1000
multiply the unpacked value of the BSON date
object.

Unfortunately, the Windows system library that
deals with dates returns a null pointer if the value
in time units is negative, and this is what happens
in the case of Enrico Fermi, who was born be-
fore 1 January 1970. As a consequence, os.date()
returns nil.

The best solution is to transform BSON date
object in Lua date object. In recent time I have
aimed at the LuaDate project located at http:

//tieske.github.io/date/, but I’m aware, time
counting is not so easy, and this project could miss
the goal depending on your need.

9.6 Asking LuaTEX about Nobel Prizes

The table 3 represents the next target. It shows the
list of Nobel Prizes awarded in 2017, with Category,
Laureates and Motivation of the single Prize.

Our basic model is divided into two collections:
prize and laureate. In the first collection a prize
document defines, along with other pieces of in-
formation, the category and, for each laureate, an
identifier that refers to the corresponding docu-
ment in the second collection, a share value and a
motivation.

To summarise, the query process consists in three
different steps:

• query prizes awarded in 2017;

• for each selected prize, query each laureate for
their complete names and share values;

• then determine the main motivation as the
motivation of the laureate that has the most
relevant share value or, two or more laureates
have the same share, that comes first in the
ordered array.

MongoDB has a powerful query language with
aggregate operations, projections and so on. It’s
probably capable to return the desired result with
only one query actually composed by a chain of
operations. However, I will implement the job in
Lua: this paper focus isn’t on learning advanced
MongoDB. It is also important to notice that the
ideal query takes advantage of what the server-side
has to offer.

12. For more information please visit the webpage https:

//en.wikipedia.org/wiki/Unix_time.

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

76

http://tieske.github.io/date/
http://tieske.github.io/date/
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

TABLE 3: The Nobel Prizes awarded in 2017. The table is typeset by LuaTEX performing a direct connection to a MongoDB
database as explained in the paper.

2017
Category Laureates (share)/Main motivation
physics Rainer Weiss (2), Barry C. Barish (4), Kip S. Thorne (4)

for decisive contributions to the LIGO detector and the observation of gravitational waves

chemistry Jacques Dubochet (3), Joachim Frank (3), Richard Henderson (3)
for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules
in solution

medicine Jeffrey C. Hall (3), Michael Rosbash (3), Michael W. Young (3)
for their discoveries of molecular mechanisms controlling the circadian rhythm

literature Kazuo Ishiguro (1)
who, in novels of great emotional force, has uncovered the abyss beneath our illusory sense of connection
with the world

peace International Campaign to Abolish Nuclear Weapons (ICAN) (1)
for its work to draw attention to the catastrophic humanitarian consequences of any use of nuclear
weapons and for its ground-breaking efforts to achieve a treaty-based prohibition of such weapons

economics Richard H. Thaler (1)
for his contributions to behavioural economics

Finally, the complete code generating the table 3
is showed in the listing below. Improvements are
left to the reader, such as to eliminate the redun-
dant \midrule in the last row, to capitalize the cat-
egory name, or to eliminate the share value when
unnecessary, that is when there is no sharing at all:

% !TeX program = LuaLaTeX

\documentclass{standalone}

\usepackage{fontspec}

\defaultfontfeatures{Ligatures=TeX}

\setmainfont{CMU Serif}

\usepackage{booktabs}

\newcommand\YEAR{2017}

\directlua{

local libmongo = require ”libmongo”

local db = libmongo:Connect(”nobelprize”)

local query = {year = \YEAR}

prize = db:FindIn(”prize”, query)

for _, p in ipairs(prize) do

local tl = {}

local share, motivation

for i, l in ipairs(p.laureates) do

if share then

if share < l.share then

share = l.share

motivation = l.motivation

end

else

share = l.share

motivation = l.motivation

end

local ql = {_id = l.id_laureate}

linfo = db:FindOne(”laureate”, ql)

tl[i] = linfo.firstname .. ” ” ..

(linfo.surname or ””) ..

” (”..share..”)”

end

p.laureatelist = table.concat(tl, ”, ”)

p.mainmotivation = motivation or ””

end

}

\newcommand\print[1]{\directlua{

local expr = tostring(#1);

if expr then

tex.print(expr)

end

}}

\begin{document}

\begin{tabular}{lp{140mm}}

\toprule

\textbf{\YEAR}\\

\midrule

Category & Laureates (share)/Main motivation\\

\midrule

\directlua{

local bs = string.char(92)

stop = bs..bs

for _, p in ipairs(prize) do

tex.print(p.category)

tex.print(”&”)

tex.print(p.laureatelist)

tex.print(stop)

tex.print(”&”)

tex.print(bs..”small ”)

tex.print(p.mainmotivation)

tex.print(stop)

tex.print(bs..”midrule”)

end

}

\bottomrule

\end{tabular}

\end{document}

ArsTEXnica Nº 26, Ottobre 2018 Connecting LuaTEX to MongoDB

77

10 Alternative ways
Some alternative ways are suitable for experiment-
ing or for self-contained project, and can be part
of a step-by-step development strategy toward an
HTTP or TCP MongoDB proxy server.

Different ways to query MongoDB databases
from LuaTEX are alternative in the sense that
they don’t use neither a Lua low-level binding
nor an intermediate network service. They rely
on independent tools and an elementary form of
communication between LuaTEX and data, that is
essentially a file.

I’m referring to a file as a communication layer
in two different ways:
static: the file is saved in the file system and

contains data that are a query result, encoded
in a declared format like JSON;

dynamic: textual result of a query is printed to
the standard output and caught by Lua via
the standard function io.popen().

If the channel is static, then data files are file
system objects, and the unique limitation is the
precise knowledge of the exchange data format. If
the channel is dynamic, it is even required that
tools generating data are a CLI program.

For instance, the external tool can be the mongo

shell or Node.js. Both execute a JavaScript file or
even a Rust program taking advantage of drivers
like the open source project mongo-rust-driver-

prototype written in pure Rust and providing a
native interface to MongoDB.

11 Conclusion
The first part of this paper (sections 3–5) has
shown how to set up a project infrastructure relying
on MongoDB as database storage and LuaTEX
as reporting tool. The guide is detailed both for
Ubuntu and Windows, and leads you to a step-
by-step source code compilation in order to build
a database connector suitable for the typesetting
engine.

Low-level Lua binding to the C module isn’t the
only communication way with MongoDB. Interme-
diate network services via TCP connection proto-
col can be implemented for LuaTEX in order to
simplify the components and to ensure reliability.

The second part of this paper (sections 8–9) has
shown two demo projects from the very first step
in designing data models and creating database
via JavaScript to the working example in LuaTEX
for generating reports.

MongoDB documents are expressive, flexible and
make it easy to improve data models. Thanks to the
similarity to the Lua tables, high-quality reports
can be typeset by LuaTEX with less code than
that required when the storage engine is a SQL
relational database.

Further work is required to fully use MongoDB
query language capabilities, especially for building
project in real context, and to make a final decision
about how to safely connect LuaTEX to MongoDB.

12 Acknowledgments
I would like to thank all of the ArsTEXnica team
members who have supported this work with great
effort. My gratitude goes also to my family.

References
CHODOROW, K. (2013). MongoDB: The Defini-
tive Guide: Powerful and Scalable Data Storage.
O’Reilly Media, 2ª edizione. URL http://shop.

oreilly.com/product/0636920028031.do.

COPELAND, R. (2013). MongoDB Applied
Design Patterns. O’Reilly Media, 1ª edizione.
URL http://shop.oreilly.com/product/

0636920027041.do.

GIACOMELLI, R. (2017). «A database experi-
ment with LuajitLATEX». ArsTEXnica, (23),
pp. 12–34. URL http://www.guitex.org/home/

numero-23.

IERUSALIMSCHY, R. (2016). Programming in Lua.
Lua.org, 4ª edizione.

THE LUATEX DEVELOPMENT TEAM (2018).
LuaTEX Reference Manual. Version 1.0.7.

. Roberto Giacomelli
Carrara
giaconet dot mailbox at gmail

dot com

Roberto Giacomelli ArsTEXnica Nº 26, Ottobre 2018

78

http://shop.oreilly.com/product/0636920028031.do
http://shop.oreilly.com/product/0636920028031.do
http://shop.oreilly.com/product/0636920027041.do
http://shop.oreilly.com/product/0636920027041.do
http://www.guitex.org/home/numero-23
http://www.guitex.org/home/numero-23

	Reasons
	What I'll talk about
	Verbatim conventions
	Requirements

	NoSQL, Not only SQL
	The MongoDB document
	Collection and database
	The JSON and BSON formats
	Working with mongo
	MongoDB learning resource

	Setting up a stand-alone system
	Installing a MongoDB driver for LuaTeX

	Installing on Ubuntu
	Installing MongoDB
	Compiling MongoDB C Driver
	Installing LuaRocks
	Installing lua-mongo bindings
	Post-install adjustment

	Installing on Windows
	Installing MongoDB
	Compiling MongoDB C Driver
	Installing Lua Libraries
	Installing LuaRocks
	Installing the lua-mongo binding

	Testing
	LuaTeX application
	Rivers
	Making the database
	Querying with mongo shell
	This looks like a job for LuaLaTeX
	Histogram

	Nobel Prize
	Modelling documents
	Data validation
	A Method for client-side data validation
	Populating the database
	Asking LuaTeX about laureates
	Asking LuaTeX about Nobel Prizes

	Alternative ways
	Conclusion
	Acknowledgments

