
Experimenting with makeindex and Unicode, and
deriving kameindex

Antoine Bossard, Keiichi Kaneko

Abstract

When writing and editing a long document such as
a book or thesis, it is almost inevitable to include
an index. The purpose of this part of a document
is to collect several keywords that appear in the
main text, listing them together with the corre-
sponding pages numbers, in order to facilitate in-
formation search inside the document. Document
typesetting is often realised with the LATEX sys-
tem, especially for professional and academic edit-
ing. The LATEX typesetting system embeds via the
makeindex subsystem an indexing feature, which
semi-automatically generates a document’s index.
However, makeindex has not been developed to
support Unicode and thus fails in most cases at
generating indices that include multilingual entries,
and especially entries of different writing systems.
In this paper, we first review the, even scarce, mul-
tilingual capabilities of makeindex, before deriving
kameindex, a solution to these internationaliza-
tion issues. Importantly, kameindex replaces one
component of the makeindex subsystem, thus re-
taining overall compatibility with makeindex. Af-
ter illustrating the results achieved by kameindex,
comparison with related works is conducted.

Sommario

Quando scriviamo o editiamo un documento lun-
go come un libro o una tesi, è quasi inevitabile
includere un indice. Lo scopo di questa parte di
documento è elencare una serie di parole chiave che
appaiono nel testo corredandole con i corrispon-
denti numeri di pagina, così da facilitare la ricerca
dell’informazione nel documento. La composizione
di documenti avviene spesso in LATEX, specialmen-
te per pubblicazioni professionali e accademiche. Il
sistema di composizione LATEX incorpora uno stru-
mento di indicizzazione grazie a makeindex, che
genera semiautomaticamente l’inidce del documen-
to. Purtroppo makeindex non è stato sviluppato
per supportare Unicode e quindi nella maggior
parte dei casi sbaglia a generare gli indici che
includono voci multilingue, e specialmente voci
in diversi alfabeti. In questo articolo, inizialmen-
te recensiamo le pur scarse capacità multilingua
di makeindex, prima di derivare kameindex, una
soluzione a questi problemi di internazionalizza-
zione. Cosa importante, kameindex sostituisce un
componente di makeindex, mantenendo quindi la

compatibilità generale con makeindex. Dopo aver
illustrato i risultati permessi da kameindex, faremo
una comparazione con altri lavori correlati.

1 Introduction
Indexing is about gathering the keywords of a doc-
ument (e.g., thesis, book) and listing them together
with the corresponding page numbers in a special
section – the index – usually included at the end of
the document. Indices are especially useful for long
documents: without such information, it would
be very tedious to search inside the document.
Indeed, paper documents do not provide an auto-
mated search feature as with electronic ones. The
usage of the document typesetting system LATEX is
widely spread, especially throughout the academic
community. Thanks to the makeindex subsystem,
LATEX is capable of semi-automatically generat-
ing indices. This process is semi-automatic since
the writer has to manually declare index entries
throughout the document.
An important and well-known shortcoming of

makeindex is its lack of Unicode support. Effec-
tively, makeindex has been developed to process
ASCII files only, that is, makeindex works on a
byte per byte basis. Consequently, makeindex is
in most cases failing at realising multilingual in-
dices – especially when mixing writing systems.
In this paper, the first objective is to review the,
even lacking, multilingual capabilities of makein-
dex. The second objective is to derive from the
exposed makeindex issues a Unicode-capable in-
dexing solution, kameindex, that will replace one
component of the makeindex subsystem, thus im-
portantly retaining compatibility with the original
makeindex system.
This research is part of a wider project that aims

at improving the support of the Japanese writing
system by computers and information and commu-
nication technology (ICT) in general. In a previous
work, we have described an unrestricted character
encoding for Japanese (BOSSARD and KANEKO,
2018). Further advancing this subject, we consider
in this paper an application – indexing in LATEX –
where Japanese support is lacking, and propose con-
crete solutions to address this issue. The long term
objective is to support the previously proposed
character encoding with this indexing application.
A large part of this paper is addressing multilin-

gual documents. We rely on Unicode and its UTF-8

55

implementation (UNICODE TECHNICAL COMMIT-
TEE, 2011) for character representation (encod-
ing) purposes. LATEX source code mentioned here-
inafter is compiled with XƎLATEX (ROBERTSON
and HOSNY, 2017). Therefore, font loading is eas-
ily realised with the fontspec package and, for
instance, its \newfontfamily command.

2 Reviewing makeindex
capabilities

The fundamental features of makeindex are first
briefly presented. Then, workarounds for multilin-
gual (Unicode) documents are presented.

2.1 Basic features
The makeindex utility and corresponding LATEX
package (LAMPORT, 1987) are used to automat-
ically generate indices from a set of index en-
tries declared inside the source document (call the
\makeindex command to activate indexing). An
index entry is declared with the command \index.
makeindex is then in charge of compiling the index
by separating entries (per the first letter), sorting
them, merging identical ones, collecting and merg-
ing page numbers, calculating page ranges and so
on. Finally, the output of the resulting index is
requested to the compiler with the \printindex
command.
The \index command can also be used to de-

clare sub-entries: \index{entry!subentry},
with at most two levels of sub-entries.
The text of an entry can be customised:
\index{entry@\textit{entry}}, that is, the
left part of the @ symbol is the index entry itself,
used for instance for index sorting, while the
right part is the text to be actually printed for
the entry. Page numbers can also be formatted:
\index{entry|textit}. Cross-referencing is
also available: \index{entry|see {other}}
and \index{entry|seealso {other}}. Page
ranges are declared with \index{entry|(} and
\index{entry|)}.

2.2 Workarounds for internationalization
Even though makeindex does not support Unicode,
it can be tricked into rather properly handling
Unicode index entries as shown below.
First, consider languages of the Latin alphabet

but with accented letters. French is used as example
here. Because makeindex does not support Unicode,
it will consider bytes (i.e., ASCII characters) one
by one when collecting entries and for sorting. This
is problematic here since accented letters are out
of sequence with other letters: in UTF-8, the three
letters ‘d’, ‘e’, ‘f’ are each encoded with one byte,
100, 101 and 102, respectively. The accented letter
‘é’, which is sorted in the lexicographical order
just as ‘e’, is encoded with two bytes: 195 and 169.
Hence, from a makeindex point of view, the index

Index
école, 2
entropy, see also there
ersatz, see here

range, 1–2

world, 1, 2
blue, 1

water, 1
sphere, 1

鳴き (kana: なき naki), 2
匂い (kana: におい nioi), 2

3

FIGURE 1: Sample index generated by makeindex and printed
in the resulting PDF. Multilingual index entries are correctly
separated and sorted, except for non-ASCII ones.

entry “école” will be sorted after “double”, “entre”
and “froid” where it should be “double”, “école”,
“entre” and “froid”.
This problem can be solved by using the @

feature of index entries to provide supporting
text for makeindex processing (e.g., entry sort-
ing). Concretely, instead of declaring the entry
\index{école}, declare \index{ecole@école}.
In other words, accented letters are “de-accented”
for index entry declaration.
Next, consider Japanese. Most characters used

in Japanese are Chinese ones. These characters
are only partially ordered in the Unicode stan-
dard. Moreover, this is (partial) semantic ordering,
which is completely unrelated to Japanese lexico-
graphical ordering. The latter, which is formally
defined in the JIS X 4061 standard (JAPANESE IN-
DUSTRIAL STANDARDS COMMITTEE, 1996), relies
on the reading of a character. Such pronunciation
information is represented by the small Japanese
character subset kana; these characters convey no
semantic information, only reading information.
Fortunately (of course it was purposely done so),
kana characters are represented in Unicode in their
lexicographical order. For instance, the consecutive
three kana charactersな,に andぬ (na, ni and nu,
respectively) are encoded with the byte sequences
227 129 170, 227 129 171 and 227 129 172, respec-
tively. Hence, it makes no difficulty for makeindex
to sort kana index entries. Therefore, by reusing the
same trick as with accented letters, it is possible to
have Japanese index entries: \index{いす@椅子},
where the word 椅子—“chair”, read isu—is repre-
sented by the corresponding kana characters いす.
In addition, just as with accented letters, kana

characters can have variants: for instance, ば ba
and ぱ pa are two variants of は ha. In order to
correctly sort entries, such variants (here ば and
ぱ) need to be replaced by the “normal” character
(here は). Other variants include small characters:

Antoine Bossard, Keiichi Kaneko ArsTEXnica Nº 26, Ottobre 2018

56

for instance, ゅ for ゆ, both yu. More details can
be found in JAPANESE INDUSTRIAL STANDARDS
COMMITTEE (1996).
It should be noted here that the default docu-

ment font is unlikely to support Japanese. Hence,
after loading a new font with the fontspec pack-
age, say \fntjap, the index entry would be de-
clared as \index{いす@{\fntjap 椅子}} in order
to properly print the index. The index key (i.e.,
the left side of @) is only used for index entry dec-
laration (not printing) and thus does not require
the selection of an appropriate font.
The features and workarounds described in this

section are illustrated in Figure 1. It can be noted
that index entries are correctly separated into
groups according to entries’ first letters, with as a
notable exception the non-ASCII entries which are
improperly grouped: the Japanese entriesなき and
におい start with a distinct glyph and should thus
be classified into two distinct groups; they are not.

3 Advanced features: deriving
kameindex

In addition to the briefly presented features,
makeindex also enables the usage of styles for type-
setting the index (CHEN and HARRISON, 1988;
CHEN, 1991). In practice, the user declares style
directives inside a style file. Explicitly printing let-
ter groups (i.e., group headings) is probably the
most used style feature; it is activated with the
style directive headings_flag 1. Such a style file
is then set as second input of makeindex, in addi-
tion to the index file (the index generation flow is
described below).
As mentioned earlier, when using multilingual

index entries such as those of Figure 1, as makein-
dex is processing bytes (ASCII characters) rather
than (Unicode) characters, it fails at correctly clas-
sifying entries. This issue is even more problematic
when index entry groups are materialised by group
headings; see Figure 2a. Again, besides the invalid
group heading, the two Japanese entries should be
in distinct groups.
Hence, even though workarounds exist (see Sec-

tion 2), Unicode support is severely restricted with
makeindex. Nonetheless, we next show that en-
countered issues do not prohibit completely the
use of makeindex when processing Unicode docu-
ments. Index entry classification, group headings
and such Unicode-related issues are addressed by
kameindex. This program is used in place of the
makeindex program for the index file generation
process as shown in Figure 3. This figure details the
document (.pdf) generation flow, starting from a
LATEX source file (.tex). The LATEX program gener-
ates an index file (.idx) and a PDF file. (The index
generation process indeed requires two passes.) To-
gether with a style file (.ist) if any, the index file
is then streamed into the makeindex (replaced by

Index
E
école, 2
entropy, see also there
ersatz, see here

R
range, 1–2

W
world, 1, 2

blue, 1
water, 1

sphere, 1

�
鳴き (kana: なき naki), 2
匂い (kana: におい nioi), 2

3

(a)

Index
E
école, 2
entropy, see also there
ersatz, see here

R
range, 1–2

W
world, 1, 2

blue, 1
water, 1

sphere, 1

な
鳴き (kana: なき naki), 2

に
匂い (kana: におい nioi), 2

3

(b)

FIGURE 2: (a) Illustrating the makeindex issues with Unicode
index entries: entry grouping and group heading problems. (b)
These problems are solved by kameindex.

kameindex for Unicode support) program, which
generates a distinct index file (.ind) for processing,
beside the source file (.tex), by the LATEX program.
One should note that LATEX is here a generic appel-
lation which should be replaced by XƎLATEX since
dealing with Unicode.
The results obtained from makeindex and

kameindex for the same input can be compared in
Figures 2a and 2b, respectively. It can be noted
that kameindex correctly handles Unicode index
entries, while still correctly handling the other
ones. One important issue is font selection for non-
ASCII group headings, since the group heading
glyph may not be present in the default font, as
with Japanese headings. In kameindex, we have
implemented automatic font selection: the font se-
lected is the one used for the first index entry of the
group (or the default font if no font is specified).
This is a relevant choice since the entry label and
its sorting information are in the same language
(unless a peculiar sorting, one that does not reflect
label sorting, is specified by the user – a case non
addressed in this work). In addition, as headings
are often emboldened (i.e., the command \textbf
is applied to the heading), one should not forget
to declare a bold font when loading a font that
does not include a bold variation for glyphs. This
can be done for instance with the font loading
command \newfontfamily\fntyu{YuGothR.ttc}
[BoldFont=YuGothB.ttc] for the Microsoft Win-
dows Japanese font “Yu Gothic”. Manually specify-
ing a bold font is usually unnecessary when loading
a font by font name rather than by file name. Last
but not least, one should note that, as in this font
loading example, the font command name (i.e.,
\fntyu) is prefixed with \fnt; this is required by
kameindex for font command detection.

ArsTEXnica Nº 26, Ottobre 2018 makeindex and Unicode: deriving kameindex

57

TEX
file

LaTeX
IDX
file

makeindex
IND
file

PDF
file

kameindex

IST file

FIGURE 3: Index generation flow with kameindex instead of makeindex.

Additional non-trivial features of kameindex in-
clude: ranges, page numbers and ranges merging
(e.g., a same entry containing the page numbers 1,
4, 6 and the page ranges 2–3, 5–7 will be output as
the single range 1–7); subentries; cross-references;
label, page number and group heading formatting;
hyperref (RAHTZ and OBERDIEK, 2017) support
(see Figure 2: page numbers are coloured to indi-
cate links).

4 About Chinese and Korean

Chinese words are conventionally ordered alpha-
betically according to their pinyin transliteration
(romanization). Hence, the workarounds mentioned
in Section 2.2 are applicable for the indexing of Chi-
nese words with makeindex. Concretely, index en-
tries are declared in pinyin (non-accented) but with
the entry text in Chinese characters. Also, since
group headings will consist of Latin letters, they
should be typeset with the default font. Thus, the
font command for Chinese should not be prefixed
with fnt so as to avoid using the Chinese font for
group headings (kameindex detects font commands
prefixed with \fnt as explained previously). For
example, the index entry \index{hanyu@{\chn
汉语}} for the word 汉语 hànyǔ “Chinese [lan-
guage]”; the font command here is \chn.
The case of Korean is more complex. The two

main writing systems of Korean are hanja and
hangul, with the former being based on Chinese
characters. Thus, indexing of hanja entries can
be done as with Chinese: romanization is used
for entry sorting and grouping. As for hangul, it
involves a special set of characters, with a partic-
ular ordering. First, it is important to note that
hangul entries are sorted correctly by makeindex
(and kameindex) since hangul glyph Unicode code
points are ordered in the appropriate order. The
problem which thus remains for indexing is group-
ing and group heading generation.
Precisely, a hangul word always starts with a

consonant, called the “initial”. Hence, grouping and
group headings for Hangul words are necessarily
based on one of the hangul initials (e.g., ‘ㄱ’, ‘ㄴ’
and ‘ㄷ’). Therefore, it suffices to declare hangul
index entries with the first glyph’s initial as pre-

Index
D
电话 (diànhuà), 1
电力 (diànlì), 1

Y
英语 (yīngyǔ), 1

�
국문 (gugmun), 1
암클 (amkeul), 1
언문 (eonmun), 1
한글 (hangeul), 1

1

(a)

Index
D
电话 (diànhuà), 1
电力 (diànlì), 1

Y
英语 (yīngyǔ), 1

ㄱ
국문 (gugmun), 1

ㅇ
암클 (amkeul), 1
언문 (eonmun), 1

ㅎ
한글 (hangeul), 1

1

(b)

FIGURE 4: Illustrating Chinese and Korean index entries: (a)
makeindex output, (b) kameindex output.

fix. For example, \index{ㅎ한글@{\fntkor 한글}}
for the word 한글 hangeul whose first glyph’s (i.e.,
한) initial is ㅎ. It is indeed enough to prefix the
entry with the first initial, which will be used as
group heading. Effectively, the entry being initially
sorted correctly, adding as prefix the first initial
does not impact the ordering. It is like prefixing
the entries “abc”, “acd” and “bde” by duplicating
the first letter: “aabc”, “aacd” and “bbde” retain the
original entries’ order.
While makeindex would fail at generating prop-

erly an index for Korean entries, a sample kamein-
dex output in the case of Chinese and Korean is
given in Figure 4.

5 A more advanced example

We give in this section a more complete index ex-
ample, using different alphabets. In addition to the
Latin alphabet, possibly with accented letters as
previously seen, Russian index entries, that use the
Cyrillic alphabet, are included. When using Cyrillic
letters, makeindex fails at grouping entries and cre-
ating group headers since characters are multibyte
(i.e., not ASCII). Comparatively, kameindex works
perfectly. As said for French, support text may
be needed for Cyrillic “accented” letters as used
for instance in Serbo-Croatian, Belorussian, and

Antoine Bossard, Keiichi Kaneko ArsTEXnica Nº 26, Ottobre 2018

58

Macedonian (e.g., ‘З́’, ‘Ѓ’ and ‘Ћ’). Greek (mod-
ern) entries, that use the Greek alphabet, are also
included. Again, support text may be needed for
Greek accented letters (e.g., ‘ά’, ‘έ’ and ‘ή’).
One should note that even though rendered simi-

larly, some letters are distinct from a Unicode point
of view. This is the case for instance with the Latin
letter ‘A’ and the Cyrillic letter ‘А’. Thus, index
entries starting with such letters will be separated
in two groups (i.e., Latin ‘A’ and Cyrillic ‘А’). The
same remark holds for example with the Latin let-
ter ‘E’ and the Greek letter ‘Ε’ (i.e., uppercase
‘ε’).
An illustration of such a multilingual index is

given in Figure 5; considering a same input, the
makeindex and kameindex outputs are given in
Figures 5a and 5b, respectively. Once again, one
can see the shortcomings of makeindex. LATEX com-
mands for a few selected index entries are given
in Table 1; it can be noticed that these are nor-
mal indexing commands, with nothing fancy. As
mentioned previously, because Japanese characters
are unlikely to be included in the default docu-
ment font, the label (i.e., the right side of @) of
the Japanese entry specifies the font \fntyu. Also,
support text is provided to handle entries with
accented letters and Japanese entries.

TABLE 1: LATEX commands for selected index entries.

Command Translation
\index{юбиле́ йный} anniversary
\index{εψιλον@έψιλον} epsilon
\index{ecole@école} school
\index{ㄱ국문@{\fntkor 국문} national script

(\textit{gugmun})}
\index{なき@{\fntyu 凪} calm (wind)

({\fntyu なぎ} \textit{nagi})}

6 Comparison and contribution
We have already shown how kameindex compares
to, and supersedes, makeindex; see Section 3. In
this section, we conduct additional comparison
with the mainstream indexing system texindy, be-
fore summarising the contribution of this paper.

6.1 Comparison with related works
For multilingual documents, and Unicode in gen-
eral, the indexing system texindy (SCHROD, 2004)
is recommended as a replacement of makeindex.
Even though it is not our purpose with kameindex
to replace texindy, it is worth noting the following
three issues of texindy:

• texindy’s usage is comparatively complex;

• texindy is not compatible with hyperref;

• texindy requires manual language selection;

• texindy supports neither Japanese, nor Chi-
nese, nor Korean.

Index
B
biology, 1

E
école, 1
experiment, 1

W
world, 1

�
βήτα, 1
γάμμα, 1
επίγραμμα, 1
έψιλον, 1

�
жакет, 1
животные, 1
паддо́к, 1

�
юбиле́йный, 1

�
凪 (なぎ nagi), 1
鳴き (なき naki), 1
匂い (におい nioi), 1
국문 (gugmun), 1
한글 (hangeul), 1

2

(a)

Index
B
biology, 1

E
école, 1
experiment, 1

W
world, 1

Β
βήτα, 1

Γ
γάμμα, 1

Ε
επίγραμμα, 1
έψιλον, 1

Ж
жакет, 1
животные, 1

П
паддо́к, 1

Ю
юбиле́йный, 1

な
凪 (なぎ nagi), 1
鳴き (なき naki), 1

に
匂い (におい nioi), 1

ㄱ
국문 (gugmun), 1

ㅎ
한글 (hangeul), 1

2

(b)

FIGURE 5: A more advanced multilingual index example: (a)
makeindex output, (b) kameindex output.

All these issues are addressed by kameindex. First,
the usage of kameindex is identical to that of
makeindex and thus retains its usability; no addi-
tional complexity. Second, kameindex is fully com-
patible with hyperref as explained and shown
in Figure 2. Third, no language selection is re-
quired with kameindex. Fourth, we have already
illustrated the full Japanese support provided by
kameindex.

6.2 Paper contribution
The contribution of this paper is summarised below.
In addition to proposing kameindex as a Unicode-
capable replacement for the makeindex program
that generates index files (.ind), we have shown
with concrete use cases the followings:

• When used wisely (see the discussion on
workarounds in Section 2), makeindex retains
a certain degree of usability with Unicode and
multilingual documents. The remaining issues
mostly concern the grouping of index entries,

ArsTEXnica Nº 26, Ottobre 2018 makeindex and Unicode: deriving kameindex

59

including group heading generation, when en-
tries are declared with non-ASCII characters.

• By replacing only a part of the makeindex
subsystem (precisely, the makeindex program
for index file (.ind) generation is replaced
by kameindex), full Unicode support can be
attained. The original makeindex package,
providing for instance the \makeindex and
\printindex commands, remains untouched
(i.e., used as is).

• The index generation and rendering processes
remain user-friendly: the only change is the
call to kameindex in place of makeindex for
index file (.ind) generation.

7 Conclusions
Indexing in LATEX is conventionally realised with
makeindex. However, makeindex has not been de-
signed to support Unicode, which thus makes index
creation for Unicode and multilingual documents
difficult. Nevertheless, in this matter, makeindex
is much more capable than often perceived. Ef-
fectively, as presented in this paper, even though
designed without Unicode support, sensible usage
can produce satisfactory results in a large panel of
cases. The other cases are for instance the usage of
index entry classification and group headers. We
have proposed here the Unicode-capable kameindex
program that is flow-compliant with makeindex.
The usability of kameindex has been shown with
concrete examples.
Regarding future works, supporting the previ-

ously described character encoding for Japanese
(BOSSARD and KANEKO, 2018) is a meaningful
objective. In order to avoid tempering with the
XƎLATEX program, it would thus be necessary for
kameindex to realise some character conversion
when generating the index file (.ind). Also, complet-
ing the support of index style file (.ist) directives
is one possible future work.

Acknowledgements
This research project is partly supported by
The Telecommunications Advancement Founda-
tion (Tokyo, Japan).

References
BOSSARD, A. and KANEKO, K. (2018). “Pro-
posal of an unrestricted character encoding for
Japanese”. In Proceedings of the 13th Inter-
national Baltic Conference on Databases and
Information Systems. Springer, volume 838 of
Communications in Computer and Information
Science, pp. 189–201.

CHEN, P. (1991). makeindex(1): makeindex – a gen-
eral purpose, formatter-independent index proces-

sor. Unix man page. https://linux.die.net/
man/1/makeindex (last accessed August 2018).

CHEN, P. and HARRISON, M. A. (1988). “Index
preparation and processing”. Software: Practice
and Experience, 19 (9), pp. 897–915.

JAPANESE INDUSTRIAL STANDARDS COMMITTEE
(1996). JIS X 4061 “Collation of Japanese
character string” (日本語文字列照合順番, in
Japanese). Japanese Standards Association.

LAMPORT, L. (1987). MakeIndex: an index proces-
sor for LATEX. Package documentation. https:
//ctan.org/pkg/makeindex (last accessed Au-
gust 2018).

RAHTZ, S. and OBERDIEK, H. (2017). Hypertext
marks in LATEX: a manual for hyperref. Pack-
age documentation. https://ctan.org/pkg/
hyperref (last accessed August 2018).

ROBERTSON, W. and HOSNY, K. (2017). The
X ETEX reference guide. https://ctan.org/
pkg/xetexref (last accessed August 2018).

SCHROD, J. (2004). texindy(1): texindy – create
sorted and tagged index from raw LaTeX index.
Unix man page. http://xindy.sourceforge.
net/doc/texindy-man.pdf (last accessed Au-
gust 2018).

UNICODE TECHNICAL COMMITTEE (2011). The
Unicode standard (version 6.0), §3.9 Unicode
encoding forms D92, §3.10 Unicode encoding
schemes D95. The Unicode Consortium.

Appendix
The style directives for index generation that are
supported by kameindex are listed in Table 2.

TABLE 2: The index style directives supported by kameindex.

Directive Description
headings_flag Activates headings if set to 1
heading_prefix String used as heading prefix
heading_suffix String used as heading suffix
preamble String used as index prefix
postamble String used as index suffix

The default values for the preamble and
postamble directives are ”\\begin{theindex}
\n” and ”\n\n\\end{theindex}\n”, respectively,
purposefully matching those of makeindex. Be-
sides, the two strings ”{\\bfseries\\large ”
and ”}\\nopagebreak\n” are sample values for
heading_prefix and heading_suffix, respec-
tively.

Antoine Bossard, Keiichi Kaneko ArsTEXnica Nº 26, Ottobre 2018

60

https://linux.die.net/man/1/makeindex
https://linux.die.net/man/1/makeindex
https://ctan.org/pkg/makeindex
https://ctan.org/pkg/makeindex
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/xetexref
https://ctan.org/pkg/xetexref
http://xindy.sourceforge.net/doc/texindy-man.pdf
http://xindy.sourceforge.net/doc/texindy-man.pdf

. Antoine Bossard
Graduate School of Science
Kanagawa University
2946 Tsuchiya, Hiratsuka, Kanagawa
259-1293, Japan

. Keiichi Kaneko
Graduate School of Engineering
Tokyo University of Agriculture and
Technology
2-24-16 Nakacho, Koganei, Tokyo 184-
8588, Japan

ArsTEXnica Nº 26, Ottobre 2018 makeindex and Unicode: deriving kameindex

61

	Introduction
	Reviewing makeindex capabilities
	Basic features
	Workarounds for internationalization

	Advanced features: deriving kameindex
	About Chinese and Korean
	A more advanced example
	Comparison and contribution
	Comparison with related works
	Paper contribution

	Conclusions

