
A Template Engine with TEX and Friends

Paulo Roberto Massa Cereda

Abstract
This article presents some insights towards using
template engines with TEX and friends with the
help of a command line tool written for the sole
purpose of merging data sources and templates.

Sommario
Questo lavoro presenta alcune idee sull’uso dei tem-
plate con il sistema TEX, per mezzo di strumenti
a riga di comando con lo scopo di unire i dati ai
modelli di template.

1 Introduction
Repetition constitutes a fundamental part of one
fair day’s work for a fair day’s pay. Very often, we
end up with the very same tasks exhaustively exe-
cuted. As a means to achieving time and resource
optimizations, such repetitive patterns could be
factorized and reused whenever needed.
Reports, letters and certificates are instances

of document patterns that are repeated over and
over. Office suites such as Libre Office and Mi-
crosoft Office offer features to merge documents
containing special elements (also known as place
holders) with external data sources (a database or
a spreadsheet), resulting in new documents com-
posed of both structure and data.
Beyond academic usage, TEX and friends offer

an interesting approach for providing document
patterns. The advent of the great datatool package
brought unlimited possibilities for creating docu-
ments based on the provided data (represented as
a table in the CSV format) without worrying about
the structure and layout. For example, consider
the following code:

letter.tex
\documentclass{article}
\usepackage{datatool}
\DTLloaddb{db}{list.csv}

\begin{document}
\DTLforeach{db}{\name=name,\gift=gift}{
Dear Santa, I’ve been a good boy
this year, please bring me a \gift.

Merry Christmas from \name!
\newpage}
\end{document}

In this example, given a list of people and their
respective gifts, it will be easy to generate letters

for Santa Claus (of course, the demand for gifts
will increase greatly, but little we can do about it).
A sample list in the CSV format is presented as
follows:

list.csv
name,gift
Enrico,motorbike
David,pineapple pizza
Paulo,rubber duck

Based on both document structure and data,
three letters to Santa will be generated in a single
LATEX run, one letter per page. However, I have
a feeling that only two gifts from that list will be
effectively delivered1.

A TEX-based solution is surely desirable in most
cases. In this paper, however, I advocate for an al-
ternative approach: template engines. I must point
out that I am an avid user of datatool and the pack-
age really does wonders. The motivation for taking
a different route relies on the fact that template
engines are generic enough to be used beyond the
TEX world. Nicola Talbot provides an important
note on the datatool manual cover:

The datatool bundle is provided to help
perform repetitive commands, such as
mail merging, but since TEX is designed
as a typesetting language, don’t expect
this bundle to perform as efficiently as
custom database systems or a dedicated
mathematical or scripting language. If
the provided packages take a frustratingly
long time to compile your document, use
another language to perform your calcula-
tions or data manipulation and save the
results in a file that can be input into
your document.
— The datatool user manual

For this paper, the implementation and deploy-
ment details of a template engine from a program-
ming language perspective will not be covered.
Instead, I plan to keep the discussion solely at
the user level. In order to make things easier, the
narrative will be assisted by a command line tool,
which I forgot I wrote it a couple of years ago! I
wish you all a great reading.

1. I am sure David does not like pineapple pizza at all,
but I cannot lose this opportunity of shocking Italian readers
on his behalf.

104

2 My kingdom for a tool
Back in 2012, I was working with template engines
for a report generation. So far, I only had come up
with ad hoc solutions, but that mindset was about
to change: what if I had a tool that merges a list
of data sources into a template and generates the
corresponding output? At first, my primary goal
was a tool specifically designed for TEX and friends,
but as time went by, the concept was extended to
virtual any textual transformation.

Java was my language of choice at that time (and,
not surprisingly, it still is), so the programming
language in which the tool would be written was
settled. But one question was still open:

Which template language is suitable for
my needs? Would it cover most scenarios?

It would be desirable to be a template language
with an easy syntax and potentially small footprint.
Additionally, being Java-friendly would be a great
bonus, as integration during the development phase
had to be less traumatic as possible.

Being myself a fan of the Apache Foundation, I
suddenly found the answer to my inquiries while
browsing the list of active projects: I would use
Velocity as my template language. This particular
project aims at providing a simple yet powerful
language known as Velocity Template Language
(VTL), as a means to generate any sort of text-
based content according to a predefined structure
and corresponding data source.

2.1 The Velocity language: a primer
A brief introduction to the Velocity Template Lan-
guage is advisable. In short, VTL uses references
to embed content in a document. Let us see how
the traditional Hello world example would be:

#set($foo = "Velocity")
Hello $foo world!

Everything that starts with # is a statement.
In our example, set is a directive that sets the
value of a reference; $foo is a variable and gets
the literal string Velocity. The output will be:

Hello Velocity world!

Observe that variables are preceded by $ and are
available after being declared. A variable can be ex-
plicitly declared with the #set directive or through
a map of variables coming from the programming
side. References $foo and ${foo} denote the same
variable. The second notation is advisable when
handling complex operations.
Internally, a variable represents a Java object

and thus all corresponding methods are available.
For example, consider the following snippet:

#set($foo = "Velocity")
Hello ${foo.toUpperCase()} world!

Since $foo holds a string value, we can call the
toUpperCase() method available in the String
class from Java. The new output will be:

Hello VELOCITY world!

When rendering a reference, the value is auto-
matically converted to a string. For instance, if
$foo holds an object that represents an integer
value, Velocity will call its toString() method
and resolve the object into a string.

Variables can also be arrays, so an element can
be accessed through its index, e.g., $foo[0] and
so on. It is also important to observe that all array
references are treated as if they are fixed length
lists, meaning that all methods from the List class
are available.

The #if directive allows for text to be included
in the output on the conditional that the statement
holds true. Consider the following example:

#set($user = "Enrico")
#if($user == "Enrico")
Forza Juve!
#else
Go Palmeiras!
#end

The variable $user is evaluated to determine
whether the condition (that is, if $user holds the
string value Enrico) is true. In our example, the
condition is true, then the output will be:

Forza Juve!

The #foreach directive allows looping over the
elements of a Java Vector, Hashtable or an array.
For example, if the variable $stooges contains the
names of the Three Stooges, the following code
will iterate through them:

#set($stooges = ["Moe",
"Curly", "Harry"])

#foreach ($stooge in $stooges)
$foreach.count - $stooge
#end

Note that there is a special variable $foreach
holding several details about the particular looping
execution. In our example, $foreach.count holds
the current loop counter. The new output will be:

ArsTEXnica Nº 24, Ottobre 2017 A Template Engine with TEX and Friends

105

1 - Moe
2 - Curly
3 - Harry

There is much more about VTL, but I believe
this introduction covered all the bits we need to
proceed in our narrative. More information about
Apache Velocity can be found in the project web-
site:

https://velocity.apache.org

2.2 The merging tool
Once the template language was chosen, it was a
matter of time until I had a merging tool ready to
be used in production: duckity. The culprit for
the command line tool name is no one other than
Enrico Gregorio himself, as he gave me the sugges-
tion in the chat room of the TEX community at
StackExchange. Figure 1 shows the default output
of duckity when executed in the terminal without
any command line parameters.

Let us start with the basics: duckity can merge
any template written in VTL with any combination
of CSV or JSON data sources. In short:

Data sources

CSV JSON
+

Input

VTL
⇒

Output

Plain text

The data sources information (namely, file and
identifier) can be described inside the input file
through a specific JSON header, as seen in the
following example:

{ "datasources": [
{

"file" : "grades.csv",
"identifier" : "students"

}
] }

Observe that datasources is a list, so duckity
expects as many pairs containing the file name and
the identifier as the template requires for a proper
merging. The identifier plays an important role in
the template, as it will act as a reference to its cor-
responding file content (for example, students will
become a variable named $students that refers
to the CSV data obtained from grades.csv). It
is also important to note that the JSON format
always encode entries as strings (both keys and
values), and duckity will parse the file references
accordingly based on the file extension.
Once the JSON header is defined, there is a

special mark that divides header and template, and

duckity will always expect this mark (followed by
a line break) to set up the template before merging:

[TEMPLATE]

Once the mark is found, duckity will consider
every text after it to be written in VTL. Simi-
larly, everything before the mark is ignored in the
resulting output.

The JSON header can be omitted and replaced
by command line flags representing the same infor-
mation. The following command line flags represent
the same information of our JSON header from
the last example:

-d grades.csv -i students

There can be multiple command line flags repre-
senting multiple data sources and identifiers, and it
is required that they always come in pairs (that is,
the same number of identifiers and data sources).
Note that the special mark is not needed in this sce-
nario, as the entire file content will be considered
as a VTL template.

And that is it, the tool has a very straightforward
behavior: get the data sources information, retrieve
the corresponding contents, process the template
and write the output (that is, the merged template)
to a file. In Section 3, we will take a look at some
examples.

3 Examples
For our first example, let us consider a table of
student grades in the CSV format. The table is
presented as follows:

grades.csv
Alice,8.0,7.3
Bob,2.2,6.7
Carl,10.0,9.3
David,9.2,10.0

Now, let us focus on the table presentation. We
need to iterate through this table (a list of rows)
and we can use the #foreach statement previously
seen to achieve this goal:

#foreach($student in $students)
Notes of $student[0]:
- First exam: $student[1]
- Second exam: $student[2]
#end

Note that the indices represent the columns
(starting from zero) in our table. The template
is a plain text, but we can easily make it TEX-
aware:

Paulo Roberto Massa Cereda ArsTEXnica Nº 24, Ottobre 2017

106

[paulo@nineveh ~] $ duckity
_| _ | o _|_

(_| |_| (_ |< | |_ \/
/

duckity 1.1 - The template helper
Copyright (c) 2012, Paulo Roberto Massa Cereda
All rights reserved.

usage: duckity [file [--datasource D --identifier I]*
--output file | --help | --version]

-d,--datasource <arg> set the datasource
-h,--help print the help message
-i,--identifier <arg> set the identifier
-o,--output <arg> set the output file
-v,--version print the application version

Figure 1: The default output of duckity when executed without any command line parameters.

\begin{tabular}{lSS}
\toprule
{Student} & {Exam 1} & {Exam 2} \\
\midrule
#foreach($st in $students)
$st[0] & $st[1] & $st[2] \\
#end\bottomrule
\end{tabular}

Cool, we got our first template done (note that
the S column type comes from siunitx). Now let
us see the entire template (plus header), ready for
merging:

ex1.tex
{ "datasources": [

{
"file" : "grades.csv",
"identifier" : "students"

}
] }
[TEMPLATE]
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{siunitx}
\usepackage{booktabs}
\begin{document}
\begin{table}[h]
\begin{tabular}{lSS}
\toprule
{Student} & {Exam 1} & {Exam 2} \\
\midrule
#foreach($st in $students)
$st[0] & $st[1] & $st[2] \\
#end\bottomrule
\end{tabular}

\end{table}
\end{document}

And that is it! Now duckity can process
ex1.tex and merge grades.csv with the under-
lying template. Do not worry with the $ syntax
of VTL, as they will not mess with your mathe-
matical formulas! The execution of duckity is as
follows, it only suffices to provide the output flag:

[paulo@nineveh ~] $ duckity ex1.tex \
-o out1.tex

_| _ | o _|_
(_| |_| (_ |< | |_ \/

/
Done.

Checking out1.tex, we can observe the merging
was successful, as the grades were correctly typeset!
Highlighting just the important bits:

\begin{tabular}{lSS}
\toprule
{Student} & {Exam 1} & {Exam 2} \\
\midrule
Alice & 8.0 & 7.3 \\
Bob & 2.2 & 6.7 \\
Carl & 10.0 & 9.3 \\
David & 9.2 & 10.0 \\
\bottomrule
\end{tabular}

Now let us add a different scenario: what if we
want to display only the students that did not
fail on the first exam? The solution is simple, it
is a matter of adding a simple check inside the
#foreach statement:

ArsTEXnica Nº 24, Ottobre 2017 A Template Engine with TEX and Friends

107

#foreach($st in $students)
#if ($math.toFloat($st[1]) > 5.0)
- $st[0]
#end
#end

Observe that we had to make use of a helper
object (referenced by $math), since the CSV and
JSON parsers resolve all entries to strings. A TEX
version of the plain text excerpt is presented as
follows:

\begin{itemize}
#foreach($st in $students)
#if ($math.toFloat($st[1]) >= 5.0)
\item $st[0]
#end
#end
\end{itemize}

Now let us see a complete example based on the
previous code. It is important to note that if every
student failed on exam 1, the generated TEX file
will contain an error: an empty itemize environ-
ment! In this case, the solution would be populating
an auxiliary variable (through the #set directive)
with the students who succeeded on exam 1 and
the check the length of this variable. That will be
left as an exercise to the reader.

ex2.tex
{ "datasources": [

{
"file" : "grades.csv",
"identifier" : "students"

}
] }
[TEMPLATE]
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\begin{document}
\begin{itemize}
#foreach($st in $students)
#if ($math.toFloat($st[1]) >= 5.0)
\item $st[0]
#end
#end
\end{itemize}
\end{document}

After running duckity on ex2.tex, the list of
students that succeeded on exam 1 is correctly
generated:

\begin{itemize}
\item Alice
\item Carl

\item David
\end{itemize}

If ex2.tex did not have the JSON header (nor
the special template mark), the command line
invocation would be:

[paulo@nineveh ~] $ duckity ex2.tex \
-d grades.csv -i students -o out2.tex

_| _ | o _|_
(_| |_| (_ |< | |_ \/

/
Done.

So far, our examples contemplated data sources
in the CSV format. For the sake of completeness,
consider the following file specified in the JSON
format (note that the square brackets denote a list
of elements):

person.json
{

"name" : "Paulo",
"location" : "Brazil",
"interests" : ["ducks", "Pringles"]

}

While elements from CSV references are indexed
by positional values (that is, integers representing
the columns starting from zero), elements from
JSON references are indexed by their correspond-
ing identifiers (also known as keys). If the data
source identifier is person (thus the reference will
be $person), in order to access the name element,
it suffices to invoke $person.name in VTL. The
following example makes use of such keys in order
to build a sentence:

ex3.tex
{ "datasources": [

{
"file" : "person.json",
"identifier" : "person"

}
] }
[TEMPLATE]
My name is $person.name, I am from
$person.location and my interests
include #foreach($i in
$person.interests)$i#if(
$foreach.hasNext())#if(
$foreach.count ==
$person.interests.size() - 1)
and #else, #end#end#end.

\bye

Observe the presence of $foreach.hasNext(),
which indicates if the loop still have elements to
iterate, plus an evaluation on the list size. This

Paulo Roberto Massa Cereda ArsTEXnica Nº 24, Ottobre 2017

108

is a trick to display elements from a list, so the
last element is preceded by the word and and not
by a comma (the result looks more natural and
visually appealing). Velocity statements can be
nested in order to generate an elaborated output
(also note that, in some cases, spaces do matter!).
The generated TEX code is presented as follows:

out3.tex
My name is Paulo, I am from Brazil
and my interests include ducks
and Pringles.
\bye

We can have multiple data sources in the same
template, provided that they have different identi-
fiers. The next example covers this scenario:

ex4.tex
{ "datasources": [

{
"file" : "grades.csv",
"identifier" : "students"

},
{

"file" : "person.json",
"identifier" : "person"

}
] }
[TEMPLATE]
I am $person.name and my friend
is $students[0][0]!
\bye

The first row from the CSV file is directly
accessed through $students[0] (no need for a
#foreach statement here), and the first index gives
the student name. The output is as follows:

out4.tex
I am Paulo and my friend is Alice!
\bye

It is worth mentioning that version 4.0 of arara
has support for VTL through a velocity rule.
The corresponding directive takes the following
parameters:

• input: optional, it refers to the input file con-
taining the VTL template. If not specified,
arara will assume the current file being pro-
cessed holds the template.

• output: mandatory, it refers to the output file,
generated from the template merging.

• context: mandatory, it contains a map that
represents all references to be included in the
template. It is very similar to a JSON file, but
only the keys are expected to be strings, values
can be anything that maps to a Java object
(from primitives to complex data structures).

The next example illustrates how arara handles
templates using VTL. Observe that, contrary to
duckity, there is only one data source, that is,
the map represented by the context parameter
(similar to JSON syntax, but it is still YAML). Map
entries are directly mapped inside the template
with no prefix.

ex5.tex
% arara: velocity: {
% arara: --> output: out5.tex,
% arara: --> context: { name: "Paulo" }
% arara: --> }
Hello, my name is $name.
\bye

Now, it is just a matter of invoking arara on
ex5.tex and the merged file out5.tex (set as out-
put in the velocity directive) will be automati-
cally generated:

[paulo@nineveh ~] $ arara ex5.tex

The resulting file out5.tex is as follows. Observe
that the directives from ex5.tex were transposed
to the merged file as well, as they are also part of
the VTL template:

out5.tex
% arara: velocity: {
% arara: --> output: out5.tex,
% arara: --> context: { name: "Paulo" }
% arara: --> }
Hello, my name is Paulo.
\bye

We can exploit the use of conditionals in order
to make arara process those two files differently,
even if directives are transposed. Consider the new
example presented as follows:

ex6.tex
% arara: velocity: {
% arara: --> output: out6.tex,
% arara: --> context: { name: "Paulo" }
% arara: --> } if currentFile().
% arara: --> getName() == "ex6.tex"
% arara: pdftex if currentFile().
% arara: --> getName() == "out6.tex"
Hello, my name is $name.
\bye

The new velocity directive has a conditional
now, so arara will only execute the correspond-
ing rule if, and only if, the current file being pro-
cessed is ex6.tex. Otherwise, the tool will simply
ignore this directive and move on. We also in-
cluded a pdftex directive using the same trick,
now checking if the current file is the proper one

ArsTEXnica Nº 24, Ottobre 2017 A Template Engine with TEX and Friends

109

[paulo@nineveh ~] $ arara ex7.tex
__ _ _ __ __ _ _ __ __ _

/ _‘ | ’__/ _‘ | ’__/ _‘ |
| (_| | | | (_| | | | (_| |
__,_|_| __,_|_| __,_|

Processing ’ex7.tex’ (size: 178 bytes, last modified: 09/17/2017
13:08:39), please wait.

(Velocity) The Velocity engine SUCCESS
(PDFTeX) PDFTeX engine SUCCESS

Total: 0.37 seconds

Figure 2: Execution of arara in the command line.

(i.e, out6.tex). In this scenario, two independent
runs of arara are required, one for each file.
However, we can do better than this. Let us

forget about conditionals and use the files pa-
rameter on our pdftex directive and get our result
with a single run. Consider the following example:

ex7.tex
% arara: velocity: {
% arara: --> output: out7.tex,
% arara: --> context: { name: "Paulo" }
% arara: --> }
% arara: pdftex: {
% arara: --> files: [out7.tex]
% arara: --> }
Hello, my name is $name.
\bye

A nice improvement indeed! On a single run of
arara, we get out7.tex from our template and
compile it using the pdftex rule. The output of
this particular run is shown in Figure 2.

It is worth mentioning that arara is not exactly
the best way of handling templates regarding data
sources. For this matter, duckity is far superior, as
it offers two data source formats, namely CSV and
JSON. However, both tools are powered by VTL,
which is a fantastic template language, regardless
of which back-end is used. Your mileage may vary.
For arara, I might include support for data sources
in the future, so please let me know if this feature
would be interesting. For now, duckity is the best
option if you want to take a direct approach to
generating any sort of text-based content according
to a predefined structure and corresponding data
source. For a general approach, arara might help.

Unfortunately, arara 4.0 is not officially released
yet, as the user manual is being written at the mo-
ment. Hopefully, the tool will be available soon.
For now, you can easily build a development ver-
sion, provided that you have an instance of a Java
Development Kit (also known as JDK) and a tool

named Maven (from the Apache Foundation). The
source code is hosted at GitHub:

https://github.com/cereda/arara

Hopefully, these examples covered most of the
common scenarios when handling data sources with
templates. It is highly advisable to take a closer
look at the VTL guide in order to learn the ad-
vanced features that particular scripting language
has to offer.

4 Final remarks
This article discussed the use of template engines
as an alternative approach to TEX-based solutions
on reading data sources. Template engines are
generic enough in order to cover different domains
of application. The discussion was kept at the level
user, with the assistance of a command line tool
named duckity.
The command line tool is open source and re-

leased under the New BSD license. Java binaries,
as well as the source code, are available in the
project repository at GitHub:

https://github.com/cereda/duckity

Happy TEXing with templates!

Acknowledgments
The author wishes to thank Claudio Beccari, En-
rico Gregorio, Carla Maggi and all friends from
guIt for the opportunity of writing this humble
article for ArsTEXnica.

. Paulo Roberto Massa Cereda
Università di San Paolo, Brasile
paulo dot cereda at usp dot br

Paulo Roberto Massa Cereda ArsTEXnica Nº 24, Ottobre 2017

110

	Introduction
	My kingdom for a tool
	The Velocity language: a primer
	The merging tool

	Examples
	Final remarks

