
Extending ConTEXt MkIV with PARI/GP

Luigi Scarso

Abstract
This paper shows how to build a binding to PAR-
I/GP, a well known computer algebra system, for
ConTEXt MkIV, showing also some examples on
how to solve some common basic algebraic prob-
lems.

Sommario
Questo articolo mostra come costruire un binding
a PARI/GP, un noto sistema di computer algebra,
per ConTEXt MkIV; mostra inoltre alcuni esempi
di come risolvere alcuni problemi algebrici basilari.

1 Introduction
PARI/GPPARI is a relatively small computer al-
gebra system that comes as C library (libpari)
and an interpreter (gp) for its own language (GP)
built on upon the same library. Although it has
respectable capabilities on symbolic manipulations,
it has also an extensive algebraic number theory
module, hence it can perform, due to the highly
optimised C library, complex numeric calculations
very quickly and accurately. PARI stands for “Pas-
cal ARIthmétique” (the very first choice was the
Pascal language, dropped soon for C), while GP
originally was GPC for “Great Programmable Cal-
culator, but also the C was dropped for unknown
reasons. The current stable version is 2.3.4.
ConTEXt MkIV is today the most advanced

macro format that uses LuaTEX. It’s still under
active development: a milestone release is planned
for spring 2012, when LuaTEX will reach the 1.0
version (currently is 0.70). ConTEXt MkIV has
an integrated support for Lua and MetaPost and
offers a superb (as of today) management of Open-
Type fonts. Its philosophy is different from LATEX:
ConTEXt MkIV is monolithic, while LATEX is more
modular.
In this paper we will show a way to “extend”

ConTEXt MkIV with PARI/GP and some examples
on how to use this powerful library — hopefully
it should be simple to adapt them for luaLATEX.
We will see how to evaluate summations like
30∑

k=0

4(−1)k

2k + 1 , calculating the exact value or an ap-

proximation; but also we will able to evaluate series

like
∞∑

k=0

4(−1)k

2k + 1 or symbolic sums as
3∑

k=0

1
x2 + k

.

PARI/GP is also able to solve equations like
x5 + arctan (x)x3 + 2x2 +x+ 1 = 0 and we will see
how to use it together MetaPost to plot the roots
of P [X,Y] = X3−X−Y 2. Finally, the last section
is dedicated to show how to solve a simple prob-
lem of algebraic geometry using a few PARI/GP
functions: the reader is encouraged to implement
by himself the code.

2 Build the Lua binding
2.1 What is a binding ?
It’s well known that ConTEXt MkIV uses LuaTEX
as a typesetting engine, but maybe it’s little known
to the TEX-user that Lua by itself is a complete
high level programming language. It’s a scripting
language, with a syntax quite similar to Pascal, and
it’s used either as embedded language to enhance
an application (e.g. to build plug-ins) or as glue
language to “connect” together several object li-
braries — exactly the same as in SageSAGE, where
the glue language is Python. In the latter case Lua
is extended with the new libraries that become Lua
modules: they can be built in into the lua inter-
preter at compile time (as in the GSL ShellGShell
program) or loaded at runtime — which is the case
of the extension shown in this paper.

Nowadays it’s quite common that a scripting or
dynamic language can load at runtime an object
library, written in C or C++ and then compiled.
Usually it’s necessary to write some C code that
act as an interface between the library and the
language: this process is called “build the binding
for the library”. Here, the developer decides which
symbols of the library (i.e. functions, classes, vari-
ables and constants) export and how they are seen
from the language (under which name, for exam-
ple). This is a delicate phase, because one must
know the conventions of the language, its interface
code (the “Application Program Interface” or API
of the language), the API of the target library and
write the appropriate C code for each symbol to
export: for libraries written in C these APIs are
usually organised in the header files (with suffix
".h") that contain the declarations of each func-
tion, variable or constant defined in the library —
but not always all of them can be exported: the
developer must also know the set of useful symbols
to export the set of admissible.
It’s clear that each language has its own pecu-

liarities, but many high level languages are imple-
mented in C of C++ and hence shared a common

65

Luigi Scarso ArsTEXnica Nº 11, Aprile 2011

substrate; also, an object library must rigorously
follows the conventions of the host Operating Sys-
tem, hence its structure cannot depend to the high
level language.

Here is where SWIG enters to play. SWIG (Simpli-
fied Wrapper and Interface Generator , seeSWIG)
is a program that helps the developer to build bind-
ings and, for some libraries, practically can build
automatically a binding only by reading all the
headers files. SWIG reads a driver file, the so-called
interface file ".i", executes its instructions and
ends with the binding: most of the time it’s C code
that must be compiled into an object module. The
power of SWIG is that the user can select the tar-
get high level language so that the same interface
file can be used for different languages (i.e. Lua,
Python, Ruby and so on); on the other side, the
code of the binding is more complicated than an
binding manually built by a developer.

2.2 Build the Lua binding for PARI/GP
The Lua API are completely listed in the Lua
bookPIL and they describe a simple and robust
mechanism: basically every C function that wants
to interact with the Lua interpreter uses a stack
to exchange data. The stack is modified by a rela-
tively small set of functions that act on the Lua
state, a global data structure that also keeps track
of unused objects and calls the garbage collector
when necessary. Hence every C function of the
binding must only take care of calling the function
of the target library with the right arguments and
use the stack to exchange the in (input to the
target function) and/or out (output to the Lua
interpreter) values.
The interface file pari.i for the binding of

libpari, the object library of PARI/GP, is shown
below and its instructions are quite simples: they
basically say “read all the headers and produce
the binding”. This is for example the role of the
%include "pari/paritype.h"; instruction, that
just says “read the header paritype.h which is
in the pari folder and write the binding code”;
but we can also map some libpari functions into
something else, as in

GEN uti_mael2(GEN m,long x1,long x2)
{return mael2(m,x1,x2);}
where the liblua macro mael2 is wrapped into
the C function uti_meal2 for sake of simplicity.

The binding is then built with

swig -lua pari.i

This is the complete interface file pari.i used
under Linux 32 bit: the header files are in the sub-
folder pari of the folder that contains the build
script.

%module pari
%{
#include "pari.h"
ulong overflow;

%}

%ignore gp_variable(char *s);
%ignore setseriesprecision(long n);
%ignore killfile(pariFILE *f);

%include "pari/paritype.h";
%include "pari/parisys.h";
%include "pari/parigen.h";
%include "pari/paricast.h";
%include "pari/paristio.h";
%include "pari/paricom.h";
%include "pari/parierr.h";
%include "pari/paridecl.h";
%include "pari/paritune.h";
%include "pari/pariinl.h";

%inline %{
GEN uti_mael2(GEN m,long x1,long x2)
{return mael2(m,x1,x2);}
GEN uti_mael3(GEN m,long x1,long x2,long x3)
{return mael3(m,x1,x2,x3);}
GEN uti_mael4(GEN m,long x1,long x2,long x3,
long x4)
{return mael4(m,x1,x2,x3,x4);}
GEN uti_mael5(GEN m,long x1,long x2,long x3,
long x4,long x5)
{return mael5(m,x1,x2,x3,x4,x5);}
GEN uti_mael(GEN m,long x1,long x2)
{return mael2(m,x1,x2);}
GEN uti_gmael1(GEN m,long x1)
{return gmael1(m,x1);}
GEN uti_gmael2(GEN m,long x1,long x2)
{return gmael2(m,x1,x2);}
GEN uti_gmael3(GEN m,long x1,long x2,long x3)
{return gmael3(m,x1,x2,x3);}
GEN uti_gmael4(GEN m,long x1,long x2,long x3,
long x4)
{return gmael4(m,x1,x2,x3,x4);}
GEN uti_gmael5(GEN m,long x1,long x2,long x3,
long x4,long x5)
{return gmael5(m,x1,x2,x3,x4,x5);}
GEN uti_gmael(GEN m,long x1,long x2)
{return gmael2(m,x1,x2);}
GEN uti_gel(GEN m,long x1)
{return gmael1(m,x1);}
GEN uti_gcoeff(GEN a,long i,long j)
{return gcoeff(a,i,j);}
GEN uti_coeff(GEN a,long i,long j)
{return coeff(a,i,j);}
%};

The binding is quite straight: almost every sym-
bol of libpari has a counterpart in Lua with the
same name; the symbols “private” are stated in
paripriv.h, which is not listed in pari.i — they
aren’t exported and hence they are not reachable
from Lua.

The build script (for Linux) assumes SWIG and
PARI/GP installed under /opt/swig-2.0.2:

/opt/swig-2.0.2/bin/swig -lua pari.i
gcc -ansi \

-I./pari -I/opt/swig-2.0.2/include \

66

ArsTEXnica Nº 11, Aprile 2011 Extending ConTEXt MkIV with PARI/GP

-c pari_wrap.c -o pari_wrap.o
gcc -Wall -ansi -shared -I./pari \

-I/opt/swig-2.0.2/include -L./ \
-L/opt/swig-2.0.2/lib pari_wrap.o \
-lpari -lm -o pari.so

Once compiled, the pari.so is suitable to be
loaded as a Lua module with require("pari").
As a final note for this section, the same

steps can be followed under Windows using
MinGWMINGW or with GUBGUB to cross-
compile the library in a host system (Linux) for a
target system (Windows) — as is the case of this
paper, where the examples use a cross-compiled
dll libpari.

3 Examples
3.1 Summations
As we said briefly in the introduction, PARI/GP has
its own language GP, with more than 450 functions,
and its interpreter, the gp program. Most of the
time these functions are in a one-to-one correspon-
dence with the functions exported by the library
libpari, but sometimes there are some “sugar
syntactic” constructs for the sake of simplicity. In
any case, libpari has the gp_read_str(char *)
function that evaluates a GP sentence and returns
the result, so that on the Lua side it’s possible to
use both the library and the GP language. The
library is usually faster than GP and it has a finer
control — which usually also means that it’s nec-
essary to write more code.
In this first example, we will see how to

calculate exactly a summation. The GP func-
tion is sum(X,a,b,expr,start) that stands for

b∑
X=a

expr(X , ·), where start is the initial value of

expr(X , ·) :

\startluacode
require("pari")
pari.pari_init(4000000,500000)
document = document or {}
document.lscarso= document.lscarso or {}
local function sum(X,a,b,expr,start)

local avma = pari.avma
local start = start or ’0.’
local res =
pari.gp_read_str(string.format(
"sum(%s=%s,%s,%s,%s)",X,a,b,expr,start))

res = pari.GENtoTeXstr(res)
pari.avma = avma
return res

end
document.lscarso.sum = sum
\stopluacode

\starttext
\startTEXpage
\startformula
\sum_{k=0}^{30}\frac{4(-1)^k}{2k+1}=

\ctxlua{context(document.lscarso.sum(
"k",0,30,"4*(-1)^k/(2*k+1)","0"))}

\stopformula
\stopTEXpage
\stoptext

that gives

30∑

k=0

4(−1)k

2k + 1
= 58630135791001973169852284

18472920064106597929865025

Let’s explain step by step the code. First we
need to load the module with require("pari") —
assuming that the library is in the standard path or
in the current folder (see CLUAINPUTS in LUATEX
for more details).
Next, we must avoid conflicts with others Lua

functions. A common solution is to define a name-
space (document.lscarso in this case), and a local
function (sum(X,a,b,expr,start)) to be stated
within the namespace (document.lscarso.sum
= sum). This is a general issue when one defines
its own module, not only for PARI/GP — it’s the
same problem of redefining TEX macros.

There is another issue with PARI/GP. Like Lua,
PARI/GP also uses a stack but it has not a garbage
collector, and every time it makes a calculation
the result is not deleted; after a while the stack is
full and the process aborts. Fortunately, it’s easy
to clear the stack: at the beginning of every func-
tion it’s sufficient to record the initial position on
the stack with local avma=pari.avma and then
reset the stack with pari.avma=avma just before
the return statement of the function. This is an
issue with libpari, because most of GP functions
manage the stack correctly.
After these notes, calling the GP sum function

is a matter of calling gp_read_str(char *) with
the right formatted string, which is trivial thanks
to string.format, a standard LuaTEX function.
Last but not least is pari.GENtoTeXstr(GEN), a
libpari function that translates a pari object (e.g.
a fraction) into a TEX expression. It’s important
to note that the result is exact because we have
imposed with start=0 that all the values are in
Q: if we want an approximated value we just use
start=0. (0. means “zero” as floating point value)
and the result is
30∑

k=0

4(−1)k

2k + 1
= 3.173842337190749408690224140

But we can do things a bit better. First, we
want to control the precision of the result, i.e. how
many digits to show. This is quite simple: the
GP default(.,.) function can be used to get/set
some internal constants and realprecision is
what we need:

local function set_precision(prec)

67

Luigi Scarso ArsTEXnica Nº 11, Aprile 2011

local avma = pari.avma
local prec = math.floor(prec+0.5) or 28
local res = pari.gp_read_str(
string.format("default(realprecision,%s)",

prec))
res = pari.GENtostr(pari.gp_read_str(
"default(realprecision)"))

pari.avma = avma
return res

end

local function get_precision(prec)
local avma = pari.avma
local res = pari.GENtostr(
pari.gp_read_str(
"default(realprecision)"))

pari.avma = avma
return res

end

Once we define the precision, we can extend
the summation to “infinity”, i.e. until the partial
sums are stable within the precision. Of course
this depends on the character of the series — in
our case it’s an alternating series. For this kind
of series GP has the sumalt(X=a,expr) function
that does the job:

local function sum_alternate(X,a,expr,prec)
local avma = pari.avma
local gp = document.lscarso.get_precision
local oldprec = gp(prec)
document.lscarso.set_precision(prec)
local res=pari.GENtostr(pari.gp_read_str(
string.format("sumalt(%s=%s,%s)",

X,a,expr)))
document.lscarso.set_precision(oldprec)
pari.avma = avma
res=string.gsub(res,"(%d)","%1\\hskip0sp")
return res

end

We can hence try to calculate the series with a
precision of 800 digits:

\startformula
\sum_{k=0}^{\infty}\frac{4(-1)^k}{2k+1}=
\stopformula
\ctxlua{context(

document.lscarso.sum_alternate(
"k",0,"4*(-1)^k/(2*k+1)",800))}

Given that the result is quite long (see fig.1) with
string.gsub(res,"(%d)","%1\\hskip0sp") we
insert an invisible skip to help TEX to break the
expression.
Of course this is a well known series: from

arctan(1) = π/4 one can calculate the Tay-
lor expansion of arctan(x) around x = 0 with
taylor(expr,x):

local function taylor(expr,x)
local avma = pari.avma
local res = pari.gp_read_str(
string.format("taylor(%s,%s)",expr,x))

res = pari.GENtoTeXstr(res)
pari.avma = avma

∞∑

k=0

4(−1)k

2k + 1
≈

3.141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
9310511854807446237996274956735188575272
4891227938183011949129833673362440656643
0860213949463952247371907021798609437027
7053921717629317675238467481846766940513
2000568127145263560827785771342757789609
1736371787214684409012249534301465495853
7105079227968925892354201995611212902196
0864034418159813629774771309960518707211
3499999983729780499510597317328160963186

Figure 1: Evaluation of an alternating series with 800 digit
precision.

return res
end

$\mathrm{arctan}(x)=$
\startformula
\ctxlua{context(document.lscarso.taylor(

"atan(x)","x"))}
\stopformula

i.e.
arctan(x) =

x − 1
3

x3 + 1
5

x5 − 1
7

x7 + 1
9

x9 − 1
11

x11 + 1
13

x13 − 1
15

x15 + O(x16)

The series is convergent in x = 1 (there are
several proofs about this, e.g. see Leibniz), and the
result is exactly arctan(1), hence

4
∞∑

k=0

(−1)k

2k + 1 =
∞∑

k=0

4(−1)k

2k + 1 = 4π4 = π .

It’s important to note that theoretically this
series has a slow convergence to π (it’s hence a bad
choice to calculate π) but in practice it can be used
with PARI/GP to give quickly an high precision
result — this is the power of the library.
Before going further, let’s consider again this

summation:
\startformula
\sum_{k=0}^{3}\frac{1}{x^2+k}=
\ctxlua{context(document.lscarso.sum(

"k",0,3,"1/(x^2+k)","0"))}
\stopformula

68

ArsTEXnica Nº 11, Aprile 2011 Extending ConTEXt MkIV with PARI/GP

that gives

3∑

k=0

1
x2 + k

= 4x6 + 18x4 + 22x2 + 6
x8 + 6x6 + 11x4 + 6x2

PARI/GP is also capable of some symbolic calcu-
lations — it’s not only a numeric library.

3.2 Continued fractions
A simple finite (canonical) continued fraction is a
rational number q given by

q = a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

where a0 is an integer and aj , j > 0 are strictly
positive integers. Every rational number can be
expressed with a finite continued fraction; if we
consider a succession of finite continued fractions,
for n→∞ we have an infinite (canonical) contin-
ued fraction, and every irrational number has an
unique infinite continued fraction. For a finite c.f.
[a0, a1, a2, . . . , an] the rational number given by
calculating all the intermediate fractions is usually
termed as pn/qn, i.e.

[a0, a1, a2, . . . , an] = pn

qn

For example [0,3] = 1/3 and it’s possible to show
that pn/qn = [a0, a1, a2, . . . , an] is the fraction in
lowest terms. The GF contfrac function calculate
(the vector of) the continued fraction of a rational
number, while contfracpnqn, given a (finite vec-
tor of) continued fraction, return pn, qn. But the
interesting point here is to use, given a real number
with a fixed precision, the continued fraction to
find its best rational approximation. The libpari
bestappr(x,A) function calculates exactly what
we need:

local function bestappr(x,A)
local avma = pari.avma
local x = tostring(x) or nil
local A = math.floor(A+0.5)
local res, bestx
if x == nil then return nil,nil end

bestx = pari.bestappr(pari.geval(
pari.strtoGENstr(x)),
pari.geval(
pari.strtoGENstr(tostring(A))))

res = {}
res[1] = pari.GENtostr(bestx)
res[2] = pari.GENtostr(

pari.uti_gel(bestx,1))
res[3] = pari.GENtostr(

pari.uti_gel(bestx,2))
pari.avma = avma

return res[1],res[2],res[3]
end

Note that the return value is an array with 3
components, namely pn/qn, pn, qn. We also use
pari.uti_gel, the wrapped version of libpari
gel function, to access an array by components.
Instead of an arbitrary real number, we choose

π because the libpari mppi(long) function gives π
with the required precision.

\startluacode
local collect = {}
local avma = pari.avma
local prec = 800
document.lscarso.set_precision(prec)
avma = pari.avma
local pi = pari.mppi(prec)
local pi_str = pari.GENtostr(pi)
pari.avma = avma
--print("=====>pi:",pi_str)
for d = 4,50000,1 do

res,num,den =
document.lscarso.bestappr(pi_str,d)

collect[res] = {num,den,d}
end
context("\\starttabulate[|l|l|]")
context("\\HL")
context(string.format(

"\\NC %s \\NC %s \\NC\\NR",
"fraction","approx. value"))

context("\\HL")
for k,v in pairs(collect) do

print(k, v[1]/v[2],v[3])
-- context(k, v[1]/v[2],v[3])
context(string.format(
"\\NC %s \\NC %s \\NC\\NR",k,v[1]/v[2]))

end
context("\\stoptabulate")
\stopluacode

Note that we use pn, qn as a key for the dictio-
nary collect, so we have just the set of results –
i.e. we drop the same best approximations for dif-
ferent denominators. For a precision of 800 digits
and a range of denominators between 4 and 50000
we have hence:

fraction approx. value
333/106 3.1415094339623
104348/33215 3.1415926539214
16/5 3.2
13/4 3.25
22/7 3.1428571428571
355/113 3.141592920354
19/6 3.1666666666667
103993/33102 3.1415926530119

where the approximate values are due to the Lua
floating point math.

69

Luigi Scarso ArsTEXnica Nº 11, Aprile 2011

3.3 Equations
Solving numeric equations in PARI/GP require
more attention than other packages. The GP
solve(X=a,b,expr) functions implements a very
good algorithm but it works with one variable only
and it fails if expr is not defined in [a, b] and it
hasn’t a variation in [a, b]. This Lua wrapper solve
tries to ensure that at in [a, b] there is a variation,
by evaluating the sign of expr(a)*expr(b):

function solve(expr,X,a,b,prec)
local av = pari.avma
pari.gp_read_str(
string.format(
"default(realprecision,%s)",prec))

local tr,res
pari.gp_read_str(string.format("f(%s)=%s",

X,expr))
tr = pari.gp_read_str(
string.format(
"if(f(%s)*f(%s)<0,1,0)",a,b))

tr = pari.GENtostr(tr)
tr = tonumber(tr)
res = nil
if (tr==1) then
local expr=string.format(
"solve(%s=%s,%s,%s)",X,a,b,expr)

res = pari.gp_read_str(expr)
res = pari.GENtostr(res)

end
return res,
pari.GENtoTeXstr(
pari.strtoGENstr(expr))

end

The following code tries to solve

x5 + x3arctan(x) + 2x2 + x+ 1 = 0

for x ∈ [−100,100] with a precision of 12 digits:

\startluacode
local solve = document.lscarso.solve
for a=-100,99,1 do
local res,TeX,aa,bb =

solve(’x^5+atan(x)*x^3+2*x^2+x+1’,
"x",a,(a+1),12)

if res ~= nil then
context(string.format(
"$%s\\approx 0$ \\crlf

for $x\\approx%s$\\par",
TeX,res))

else
-- print("TeX="..TeX)

end
end
\stopluacode

We have hence:
x5 + atan(x) ∗ x3 + 2 ∗ x2 + x + 1 ≈ 0
for x ≈ −1.47704735548

PARI/GP has a rich set of functions for poly-
nomials, and solve is not necessarily the best

choice to find the roots of multivariate polyno-
mials. The next and last example will show how
to draw the real roots of P [X,Y] with a given
precision in a square region [a, b] × [a, b]. First
of all, we need to understand that with a fixed
precision there is also an associated zero: with
precision=12 then zero=1E-96. Next, PARI/GP
finds the complex roots of a univariate polyno-
mial, so we need a get_value wrapper to evaluate
P (x, y) for y ∈ [a, b] (with a given precision), so
we have an expression in the x indeterminate that
we will consider as a polynomial P [X]:

local function get_value(expr,X,a,prec)
local avma = pari.avma
pari.gp_read_str(string.format(
"default(realprecision,%s)",prec))

pari.gp_read_str(string.format(
"%s=%s",X,a))

local res = pari.gp_read_str(
string.format("eval(%s)",expr))

res = pari.GENtostr(res)
pari.avma = avma
return res

end

The polroots function evaluates the roots and
returns an array of roots where each root is sepa-
rated into the real and complex components:

local function polroots(poly,prec)
local avma = pari.avma
pari.gp_read_str(string.format(

"default(realprecision,%s)",prec))
local poly = tostring(poly)
local prec = tonumber(prec)
local degree = pari.degree(

pari.geval(pari.strtoGENstr(poly)))
local roots = pari.roots(
pari.geval(pari.strtoGENstr(poly)),prec)

local res ={}
for i=1,degree do

local real_part,im_part =
pari.GENtostr(pari.uti_gel(
pari.uti_gel(roots,i),1)),
pari.GENtostr(pari.uti_gel(
pari.uti_gel(roots,i),2))

res[#res+1]={real_part,im_part}
end
pari.avma = avma
return res

end

Finally, we need to iterate y over [a, b] and find
the roots of P [X]. Instead of producing a table,
we plot the values with the help of a MetaPost
\startMPpage...\stopMPpage environment:

\startluacode
local poly = "x^3-x-y^2"
local step= 1/2^6
local results = {}
local limit = 5
local zero = ’0.E-96’
local prec = 12
get_value = document.lscarso.get_value
polroots = document.lscarso.polroots

70

ArsTEXnica Nº 11, Aprile 2011 Extending ConTEXt MkIV with PARI/GP

context("\\startMPpage")
context("pickup pencircle scaled 0.1pt;")
context(string.format("draw (-%s,0)--(%s,0);",

limit,limit))
context(string.format("draw (0,-%s)--(0,%s);",

limit,limit))
context("pickup pencircle scaled 0.2pt;")
for y=-limit,limit,step do
local poly_x = get_value(poly,’y’,y,prec)
-- print("poly_x="..poly_x,y)
local roots = polroots(poly_x,prec)
for _,root in pairs(roots) do
local real,imag = root[1],root[2]
-- print("real="..real,"imag="..imag)
if imag == zero then

if real == zero then real = ’0’ end
--print(string.format("(%s,%s)",real,y))
context(string.format("draw (%s,%s);",

real,y))
end

end
end
context("\\stopMPpage")
\stopluacode

With a precision of 12 digits and a square region
of [−5,5] we have then :

3.4 Solving a simple problem
In this last example we will show how to solve
a simple problem of algebraic geometry, the ap-
proximation of a quarter of a circumference with
a Bezier curve, with a mix of visual, numeric and
symbolic techniques. The idea is to show the power-
ful of the extension together with the typographical
capabilities of the TEX and MetaPost, rather than
present some original ideas.
First, let’s recall some basic definitions.

Given a field k (for us k = Q or k = R), a plain
cubic Bezier curve in parametric form is a subset

(x, y) ⊂ k × k where

x =(1− t)3Px + 3(1− t)2tC1x + 3(1− t)t2C2x

+ t3Qx

y =(1− t)3Py + 3(1− t)2tC1y + 3(1− t)t2C2y

+ t3Qy

and t ∈ [0,1] ⊂ k. The points P, C1, C2, Q are
called control points; P is the starting point (t = 0),
Q is the ending point (t = 1). MetaPost has a built
in macro to draw cubic Bezier curves: for example
this code

\starttext
\startMPpage
pair P,C[],Q;
P:=(0,0); C[1]:=(20,1);
C[2]:=(30,15); Q:=(50,7);
draw P..controls C[1] and C[2]..Q ;
\stopMPpage
\stoptext

draws:

P C1

C2

Q
A nice property is that

the derivative of the curve at P and Q are 3(C1−
P) and 3(Q−C2), as we can qualitatively see in
the previous picture.
The next definition is the ring of polynomials

in the two indeterminates k[X,Y]. Informally, it’s
the set of the finite expressions P [X,Y] where
P [X,Y] =

∑
i,j

aijX
iY j and aij ∈ k. The total de-

gree of P [X,Y] is max(i+ j), aij 6= 0 and if all aij

are zero then we have the zero polynomial 0 (the
zero of the ring k[X,Y]) which has degree unde-
fined (but many authors set it to −1 or −∞). Two
polynomials P1[X,Y] and P2[X,Y] are identical if
and only if P1[X,Y]− P2[X,Y] = 0; two polyno-
mials with different degree are never identical.

Given (x, y) ∈ k × k and a polynomial P [X,Y],
with an abuse of notation we can consider the
function P (x, y) : k×k 7→ k where we “replace” X
with x and Y with y in P [X,Y] and then calculate
the value (P (x, y) it’s an expression of k).

Now, a root of P [X,Y] is a point (x, y) ∈ k × k
for which P (x, y) = 0; given a P [X,Y], the set of
its roots is the curve of the polynomial and describe
the properties of a curve is the main scope of the
algebraic geometry (of course not only with two
indeterminates and not only with k = Q or k = R).
In general it’s a difficult task, but anyway we can
already say something:

1. P [X,Y] = X2 + 1 has no roots in k × k (re-
member that k = Q or k = R);

2. P [X,Y] = X has infinite roots because for
every y ∈ k P (0, y) = 0;

71

Luigi Scarso ArsTEXnica Nº 11, Aprile 2011

3. P [X,Y] = 0 (the zero polynomial) has infi-
nite roots: for every point of (x, y) ∈ k × k
P (x, y) = 0, so in this case the set of roots is
k × k.

Hence the curve of P [X,Y] can be empty, infinite
but properly included in k × k, or all k × k. Of
great interest are also the set of intersections of two
curves, which can be empty (i.e. P1[X,Y] = Y − 2
and P2[X,Y] = Y), finite (P1[X,Y] = X − Y and
P2[X,Y] = X +Y) and infinite (P1[X,Y] = 0 and
P2[X,Y] = Y)

Let’s consider P [X,Y] = X2+Y 2−1. The “brute
force” approach to have an idea of its curve C is,
given a tolerance ε and a limit R, verify whenever∣∣x2 + y2 − 1

∣∣ < ε for (x, y) ∈ [−R,R]× [−R,R]; a
bit less primitive way is to solve x2

0 + y2 − 1 = 0
for y, with a fixed tolerance ε and the parameter
x0 ∈ [−R,R]. Both methods was shown in the
previous sections, so here we take another way.
Let’s consider the set Pt[X,Y] = Y − tX indexed
by t; it’s trivial to show that its curves are the lines
y = tx. The intersection between P (x, y) = 0 and
Pt(x, y) = 0 is also easy to calculate: just replace
y2 with (tx)2. We have hence x2 + (tx)2 − 1 = 0
and

C =


x2 = 1

1 + t2

y2 = t2

1 + t2

or, after few simplifications,

C =


x = ± 1√

1 + t2

y = ± t√
1 + t2

where t runs over k. This is called a parametric
form of the curve C, while x2 + y2− 1 = 0 is called
the implicit form of the curve (the curve defined
implicitly by X2 +Y 2−1). Although it was easy to
obtain, it’s not a nice formula, due to the presence
of the square root factor; maybe we cannot avoid
the fractions, but we would like to have integer
exponents. In fact, in k = Q,

√
1 + t2 not always

is rational: for example for t = 1/3 we have the√
10 factor which is not rational.
We can now come back to our problem, and

make some assumptions. First, we will consider
a quarter of a circumference C with x ≥ 0 and
y ≥ 0 and radius 1. Next, we will assume that
MetaPost is able to draw a circumference, that we
will use as a reference. In this case, the best can-
didates seem to be the cubics with control points
{P,C1,C2,Q} = {(1,0), (1, a), (a,1), (0,1)} where
a ∈ [0,1] and hence we can draw these cubics for
some values of a, just to see how they look like.

P = (1,0)

Q = (0,1)

(0,0)

(1,1)

C1 = (1,a)

C2 = (a,1)

Circumference with R=1

y = x

a = 0

a = 0.2

a = 0.4
a = 0.55

a = 2/3
a = 0.8

a = 1

After few tries we can discover that a good ap-
proximation can be reach with a = 0.55, so we have
some hints for a solution; but to better understand
the problem we need to find the implicit form of
a Bezier curve, at least for those ones that we are
studying. Let’s rewrite the parametric form:

Ca =


x = (1− t)3 + 3(1− t)2t+ 3(1− t)t2a

y = 3(1− t)2ta+ 3(1− t)t2 + t3

First let’s note that for t = 1/2 we have

subst([(1-t)^3+3*(1-t)^2*t+3*(1-t)*t^2*a,
3*(1-t)^2*t*a+3*(1-t)*t^2+t^3],t,1/2)

= [3/8*a + 1/2, 3/8*a + 1/2]

i.e. the middle points of the curves are along the
line y = x.
Next let’s introduce the hybrid form
−X + (1− t)3 + 3(1− t)2t+ 3(1− t)t2a

−Y + 3(1− t)2ta+ 3(1− t)t2 + t3

We would like, if possible, to eliminate the pa-
rameter t from the hybrid form and obtain a poly-
nomial Pa[X,Y] indexed by a. The PARI-GP func-
tion polresultant is what we need:

PaXY=polresultant(
-X + (1-t)^3+3*(1-t)^2*t+3*(1-t)*t^2*a,
-Y + 3*(1-t)^2*t*a+3*(1-t)*t^2+t^3,t);

give us
Pa[X,Y] = (27a3 − 54a2 + 36a− 8)X3 + ((81Y −
108)a3+(−162Y +207)a2+(108Y −126)a+(−24Y +
24))X2 +((−81Y +81)a4 +(81Y 2−162Y +81)a3 +
(−162Y 2+414Y −252)a2+(108Y 2−252Y +144)a+
(−24Y 2 + 48Y − 24))X + ((81Y − 81)a4 + (27Y 3−
108Y 2+81Y)a3+(−54Y 3+207Y 2−252Y +99)a2+
(36Y 3 − 126Y 2 + 144Y − 54)a+ (−8Y 3 + 24Y 2 −
24Y + 8))

Now, if Pa[X,Y] has degree 3 then it cannot be
identical to X2 + Y 2 − 1, and each approximation

72

ArsTEXnica Nº 11, Aprile 2011 Extending ConTEXt MkIV with PARI/GP

will never be perfect (always remember that k = Q
or k = R and that they have infinite elements). If
we calculate the roots of the coefficient of X3 with
factor(27*a^3 - 54*a^2 + 36*a - 8)

we have
[3*a - 2 3]
i.e a0 = 2/3 is a root of order 3. So, maybe

for a0 = 2/3 we have a chance that Pa0 [X,Y] has
degree 2. Let’s substitute a with 2/3 in Pa[X,Y]:
subst(PaXY,a,2/3)

The result is:
0.
This suggests that the previous parametrization

is not valid if a = 2/3: in fact if we calculate
polresultant with a = 2/3 we have

P23XY=polresultant(
-X + (1-t)^3+3*(1-t)^2*t+3*(1-t)*t^2*(2/3),
-Y + 3*(1-t)^2*t*(2/3)+3*(1-t)*t^2+t^3,t)

= X^2 + (-2*Y + 2)*X + (Y^2 + 2*Y - 3)

We should be not surprised: after all the curve
with a = 2/3 is showed in the picture so we already
know that it is a curve; only it has order 2 :

[(1-t)^3+3*(1-t)^2*t+3*(1-t)*t^2*(2/3),
3*(1-t)^2*t*(2/3)+3*(1-t)*t^2+t^3]

= [-t^2 + 1, -t^2 + 2*t]

i.e. x = 1 − t2, y = 2t − t2, t ∈ [0,1] (actually,
the picture shows that a cubic Bezier curve can be
a segment (a = 0), a curve of second order (a =
2/3) or a curve of third order). But anyway again
X2 +(−2∗Y +2)∗X+(Y 2 +2∗Y −3)−X2−Y 2 +1
is not the zero polynomial.
The conclusion then seems to be: Pa[X,Y], a ∈

[0,1] can never be equal to X2 + Y 2 − 1, or with a
Bezier curve we can never draw a circumference.
But we must consider that it depends from the
result of the parametrization, and we have not
proved that this is unique — or that one from
polresultant is exact.
But let’s go on. We have already seen that

for t = 1/2 each curve has x = y; another idea
from the picture comes if we consider the inter-
section of the circumference with the line y = x,
i.e. (x, y) = (1/

√
2,1/
√

2), and impose that our
Bezier curves pass through (1/

√
2,1/
√

2). This is
because the curves in P and Q are already a good
approximation of the circumference (they have sim-
ilar derivatives) and they evolve smoothly, so if
we choose the middle point as another constrain
things maybe are better. Theoretically we should
go from Pa[X,Y] to Pa(x, y) = 0, substitute y with
x, substitute x with 1/

√
2 and calculate the roots

of Pa(1/
√

2,1/
√

2) = 0, but we can collect all these
steps with

factor(subst(subst(PaXY,Y,X),X,1/sqrt(2)))

that gives

[a + 0.4714045207910484616383139538 1]
[a + 0.4714045207910149042294785297 1]

[a - 0.5522847498307933984022516309 1]
[a - 0.6666666666666666666666666685 1]

and we find that, for a ∈ [0,1] and a 6= 2/3,
a∗0 = 0.5522847498307933984022516309

is our only solution.
Now, for t = 1/2 the curves Pa0 must pass in

x = y = 1/
√

2, hence, from the parametric form,
3
8a+ 1

2 = 1√
2

which have a unique solution a0

a0 = 4
√

2− 1
3

It has a nice look (sometimes it is called the “1-2-
3-4” formula): its value is
4*(sqrt(2)-1)/3
= 0.5522847498307933984022516323

and it is a root of Pa(x, y):
subst(subst(subst(PaXY,Y,X),X,1/sqrt(2)),

a,4*(sqrt(2)-1)/3)
= 1.186446801E-27

Hence, whether we follow the implicit way or the
parametric way the conclusion is the same: there
is a unique Bezier curve that is an optimal approx-
imation of a circumference. The parametric way
give us a nice formula for the curve, the implicit
way tell us that there are no Bezier curves that
are circumferences.

Now, the last step. We would like to have an esti-
mation of the error, i.e. how much our optimal cu-
bic differs from the circumference. We can consider
the distance between two points P1 = {y = tx∩C}
and P2 = {y = tx ∩ Pa0(x, y)} and take the max
of this distance as an indicator of the error. Re-
calling that C has radius 1, it’s easy to show that
~P1P2 = ~P2 − ~P1 = ~P2 − 1 and the relative per-

centage error is

er =
~P1P2
~P1

100 = 100
(
~P2 − 1

)
(1)

The following code print the error er vs. the angle
φ, where y = xtan(φ), 0◦ ≤ φ < 90◦ , and the
max(er):
B=subst(subst(PaXY,a,

4*(sqrt(2)-1)/3,),Y,m*X);
MAX=-100;
forstep(f=0,89,1,mf=tan(Pi/180*f);

roots=polroots(subst(B,m,mf));
forstep(i=1,3,1,
xf=real(roots[i]);

iif=imag(roots[i]);
if(xf<=1.0 && xf>=0.0 && iif <1e-12,

yf=mf*xf; Pf=sqrt(xf^2+yf^2);
if(MAX<(Pf-1)*100,MAX=(Pf-1)*100,MAX;);
print(f,",", (Pf-1)*100,",",MAX))))

The error is er = 0.0272%, and confirms that a0
is a good choice.

73

Luigi Scarso ArsTEXnica Nº 11, Aprile 2011

3.4.1 Some notes
A different parametrization of the circumference is
given by the intersection of the line that join (0,1)
and (r,0), y = −1

r
x+ 1, with x2 + y2 − 1 = 0:

C =


x = 2r

1 + r2

y = r2 − 1
1 + r2

(r,0)

(0,0)

(0,1)

(1,0)

(2r
1+r2 , r2−1

1+r2

Both x and y are rational if r is rational, so this
shows that there are infinite rational points on a
circumference.

Another question is when
√

1 + t2 is rational if
t is rational. Let t = t1/t2, t1 ≥ 0, t2 ≥ 0: then√

1 +
(
t1
t2

)2
= n1
n2
⇐⇒

√
t21 + t22 = t2

n1
n2

i.e. the problem is to find t1 and t2 so that√
t21 + t22 = t3 is an integer, or t21 + t22 = t23 with t3

integer. There is an easy “3-4-5” formula to start
with: 32 + 42 = 52. If we rewrite it as 42 = 52 − 32

or 4 · 4 = (5 − 3)(5 + 3) = 2 ∗ 8, we see that 4
divides (5 + 3), so t1t1 = (t3 − t2)(t3 + t2) and
t1 divides (t3 + t2) is true at least for the triple
(t1, t2, t3) = (3,4,5). Let’s then suppose that t1 di-
vides (t3+t2), i.e. t3+t2 = k1t1: with this condition
we have 

t1 = (t3 − t2)k1

k1t1 = (t3 + t2)
and hence

t3 = t1
2
k2

1 + 1
k1

that is an integer if t1 = l1k1 and l1(k2
1 +1) is even,

with l1 integer.

The last note is about the field k. We have
used k = Q or k = R were the distinction between

P [X,Y] and P (x, y) seem to be artificial, but there
are fields k where distinction matter. For example
the classes of residues modulo p with p prime is
a field Fp with the usual operation “+,×” as in
Q or R. Let’s consider F5: denote each class of
residue with {0, 1, 2, 3, 4} (hence 4 ·3 = 12 = 2 and
4 + 3 = 7 = 2).
The polynomial P [X] = X(X − 1)(X − 2)(X −
3)(X − 4) = X5 + 4X it’s not the zero polynomial
of F5[X], but P (x) = 0 for every element in F5.

4 Conclusion
One of the main advantages of ConTEXt MkIV
is the clear separation between Lua code and
TEX code, and in this case it’s a very useful
thing that we can import a pari-lua script into
ConTEXt MkIV without too much work to adapt
it to the ConTEXt MkIV machinery — i.e. we have
an high degree of code reuse. PARI/GP has also
a nice TEX formatter, even if in some situations
things are a bit crude.
On the other side, solving numerical problems

always requires some amount of theoretical analy-
sis before doing the computation, as in the case of
solve — in some circumstances PARI/GP abruptly
aborts if it finds an error. Some computations
can require a long time to finish, and given that
ConTEXt MkIV is a multi pass system a caching
mechanism should be provided to solve these situ-
ations.

Numeric results can (but they shouldn’t) depend
on the compiler and/or platform, but it seems that
from this point of view that PARI/GP is really
platform-independent.

References
URL http://pari.math.u-bordeaux.fr.

URL http://sagemath.org.

URL http://www.nongnu.org/gsl-shell.

URL http:
//www.inf.puc-rio.br/~roberto/pil2.

URL http://swig.org.

URL http://www.mingw.org.

URL http://www.lilypond.org/gub.

URL http://www.luatex.org/svn/trunk/
manual/luatexref-t.pdf.

URL http://en.wikipedia.org/wiki/
Leibniz_formula_for_pi.

. Luigi Scarso
luigi.scarso at gmail dot com

74

http://pari.math.u-bordeaux.fr
http://sagemath.org
http://www.nongnu.org/gsl-shell
http://www.inf.puc-rio.br/~roberto/pil2
http://www.inf.puc-rio.br/~roberto/pil2
http://swig.org
http://www.mingw.org
http://www.lilypond.org/gub
http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf
http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf
http://en.wikipedia.org/wiki/Leibniz_formula_for_pi
http://en.wikipedia.org/wiki/Leibniz_formula_for_pi

